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Abstract In this article, we consider the oscillation of second order nonlinear
dynamic equations with a nonlinear neutral term on time scales. Some new suf-
ficient conditions which insure that any solution of the equation oscillates are
established by means of an inequality technique and Riccati transformation.
This paper improves and generalizes some known results. Several illustrative
examples are given throughout.
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1. Introduction

The theory of the calculus on time scales, which has recently received a lot of
attention, was introduced by Stefan Hilger in his PhD thesis in 1988 [5] in order to
unify continuous and discrete analysis. In recent years, there has been an increasing
interest in obtaining sufficient conditions for oscillatory behavior of different classes
of dynamic equations on time scales, we refer the reader to [2,7,8] and the references
cited therein.

The neutral functional differential equation arises in the design of high-speed
computer lossless transmission lines. It also finds wide applications in certain high-
tech fields, such as control, communication, mechanical engineering, biomedicine,
physics, mechanics, economics and so on. Also the neutral dynamic equation having
a nonlinearity in the neutral term arises in many applications.

B. Baculikova et al. [3] studied the oscillation of the second-order nonlinear
neutral differential equation

(a(t)[z′(t)]γ)′(t) + q(t)xβ(δ(t))) = 0,

where z(t) = x(t) + p(t)x(τ(t)), and two oscillation criteria were presented.
R. P. Agarwal et al. [1] studied the oscillation of the second-order differential

equation with a sublinear neutral term

(r(t)(x(t) + p(t)xα(τ(t)))′)′ + q(t)x(σ(t)) = 0, t ≥ t0,
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and derived some oscillation results.
S. H. Saker [9] studied the oscillation of the second-order nonlinear neutral delay

dynamic equation

(r(t)([y(t) + p(t)y(t− τ)]∆)γ)∆ + f(t, y(t− δ)) = 0

on time scales and presented some necessary and sufficient conditions for oscillation.
Motivated by the above articles, in this article, we consider the following non-

linear dynamic equation

(a(t)(x(t) + p(t)xα(m(t)))∆)∆ + q(t)f(x(r(t))) = 0, t ∈ I, (1.1)

where I = [t0,∞)T and 0 < α ≤ 1 is the ratio of two odd positive integers, and σ(t)
is a jump operator on time scales, σ(t) ≥ t. Assume that the following conditions
are satisfied:

(H1) a ∈ C1
rd(I, (0,∞)T), p ∈ Crd(I, [0,∞)T), q ∈ Crd(I, (0,∞)T), for all t ∈ I;

(H2) m, r∈C1
rd(I,R), m(t)≤ t, r(t)≤ t, r∆(t)>0 and lim

t→∞
m(t)= lim

t→∞
r(t)=∞;

(H3) f ∈ C(R,R) such that xf(x) > 0 and f(x)/xβ ≥ k > 0, for x 6= 0, k > 0
is a constant, β is the ratio of two odd positive integers.

A function x is called a solution of (1.1), and x ∈ C1
rd([Tx,∞)T,R), Tx ≥ t0,

which has the property a(t)(x(t) + p(t)xα(m(t))) ∈ C1
rd([Tx,∞)T,R) and satisfies

(1.1) on [Tx,∞)T. Let T be a time scale with supT =∞. We restrict our attention
to those solutions of (1.1) which exist on I = [t0,∞)T and satisfy the condition

sup{|x(t)| : T ≤ t} > 0 for T ≥ Tx.

As usual, a solution x of (1.1) is said to be oscillatory, if it is neither eventually
positive nor eventually negative. Otherwise, it is called nonoscillatory. The equation
(1.1) is called oscillatory, if all its solutions are oscillatory. Otherwise, it is called
nonoscillatory.

Throughout this paper we assume that∫ ∞ 1

a(t)
∆t <∞. (1.2)

And we investigate the oscillatory behavior of (1.1) under the condition (1.2). By
using a Riccati transformation and an inequality technique, we present some new
sufficient conditions which ensure that any solution of (1.1) oscillates. Specifically,
we study neutral dynamic equation and the constants α and β are independent with
each other.

2. Preliminaries

In this section, we will present some necessary background. Without loss of gener-
ality, we can only deal with the positive solutions of equation (1.1) since the proof
of the other case is similar. For the sake of simplicity, we define

z(t) = x(t) + p(t)xα(m(t)), A(t) =

∫ ∞
t

1

a(s)
∆s and R(t) =

∫ t

t0

1

a(s)
∆s.

Next, we state and prove the following lemmas.



Oscillation of second order dynamic equations 1813

Lemma 2.1. If x(t) is an eventually positive solution of (1.1), then one of the
following two cases holds for all sufficiently large t:

(1) z(t) > 0, z∆(t) > 0, (a(t)z∆(t))∆ < 0, (2.1)

(2) z(t) > 0, z∆(t) < 0, (a(t)z∆(t))∆ < 0. (2.2)

Proof. From the definition of z(t), (H1) and (H3), we have z(t) > 0. By (1.1),
then

(a(t)z∆(t))∆ = −q(t)f(x(r(t))) ≤ −kq(t)xβ(r(t)) < 0 (2.3)

for all sufficiently large t. Thus a(t)z∆(t) is decreasing, which implies a(t)z∆(t)
does not change sign eventually, so as z∆(t), then there exists a t1 ≥ t0 such that
either z∆(t) > 0 or z∆(t) < 0 for any t ≥ t1. This completes the proof.

Lemma 2.2. Suppose that (2.1) of Lemma 2.1 holds. If x(t) is an eventually
positive solution of equation (1.1), then there exists a T ≥ t1 such that

x(t) ≥ (1− p1(t))z(t), (2.4)

where p1(t) = p(t)Aα−1(t), t ≥ T .

Proof. By the definition of z(t) and (H1), we get z(t) ≥ x(t) for all t ≥ t1 ≥ t0.
Since m(t) ≤ t, then

x(t) = z(t)− p(t)xα(m(t)) ≥ z(t)− p(t)zα(m(t)) ≥ z(t)− p(t)zα(t), t ≥ t1. (2.5)

From (2.1), we see that z(t) is positive and increasing, since A(t) is positive, de-
creasing and tends to zero as t→∞, there exists a T ≥ t1 such that

z(t) ≥ A(t), t ≥ T ≥ t1 ≥ t0. (2.6)

By (2.5) and (2.6), we have

x(t) ≥ z(t)
(
1− p(t)Aα−1(t)

)
, t ≥ T.

This completes the proof.

Lemma 2.3. Suppose that (2.2) of Lemma 2.1 holds. If x(t) is an eventually
positive solution of equation (1.1), then there exists a T ≥ t1 such that

x(t) ≥ (1− p2(t))z(t), (2.7)

where p2(t) = p(t)Aα(m(t))Aα−2(t), t ≥ T .

Proof. Since (2.3), we have (a(t)z∆(t))∆ < 0, then

z∆(s) ≤ a(t)

a(s)
z∆(t), s ≥ t ≥ t1. (2.8)

Integrating (2.8) from t to l, then

z(l)− z(t) ≤ a(t)z∆(t)

∫ l

t

∆s

a(s)
.
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Letting l→∞, we obtain

a(t)z∆(t)

z(t)
A(t) ≥ −1, t ≥ t1, (2.9)

thus
z(t)

A(t)
≥ −a(t)z∆(t) > 0, t ≥ t1, (2.10)

i.e.,
z∆(t)A(t) ≥ −a−1(t)z(t), t ≥ t1. (2.11)

By (2.11), we have(
z(t)

A(t)

)∆

=
z∆(t)A(t)− z(t)A∆(t)

A(σ(t))A(t)
=
z∆(t)A(t) + z(t)a−1(t)

A(σ(t))A(t)
≥ 0,

which means that z(t)
A(t) is nondecreasing. Therefore, z(t)

A(t) ≥
z(m(t))
A(m(t)) , i.e.,

A(m(t))

A(t)
z(t) ≥ z(m(t)).

What’s more, we get

x(t) ≥ z(t)− p(t)zα(m(t)) ≥ z(t)− p(t)zα(t)
Aα(m(t))

Aα(t)

= z(t)

(
1− p(t)zα−1(t)

Aα(m(t))

Aα(t)

)
, t ≥ t1.

(2.12)

By (2.10) and −a(t)z∆(t) is positive and increasing, A(t) is positive, decreasing and
tends to zero as t→∞, there exists a T ≥ t1 such that

z(t)

A(t)
≥ −a(t)z∆(t) ≥ A(t), t ≥ T ≥ t1. (2.13)

Combining (2.13) with (2.12), we have

x(t) ≥ z(t)
(

1− p(t)zα−1(t)
Aα(m(t))

Aα(t)

)
≥ z(t)

(
1− p(t)Aα(m(t))Aα−2(t)

)
, t≥T.

(2.14)
This completes the proof.

3. Oscillation Results

We are now in a position to state and prove our main results in this paper.

Theorem 3.1. Assume that (1.2) holds, β ≥ 1 and max{p1(r(t)), p2(r(t))} < 1,
t ∈ I, where p1(t) and p2(t) are defined as in Lemma 2.1 and Lemma 2.2. Suppose
that the condition r(σ(t)) = σ(r(t)) holds. If there exists a positive, nondecreasing
and ∆-differentiable function b(t) such that

lim sup
t→∞

∫ t

t0

[
k(1− p1(r(σ(s))))βb(s)q(σ(s))− a(r(s))(b∆(s))2

4βr∆(s)b(s)Mβ−1

]
∆s =∞,

(3.1)
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or

lim sup
t→∞

∫ t

t0

[
k(1− p2(r(s)))βAβ(s)q(s) +

βKβ−1

L2β−2A(s)a(s)

]
∆s =∞, (3.2)

where K > 0 and M > 0 are any positive constants, then every solution of (1.1) is
oscillatory.

Proof. By contradiction, suppose that (1.1) is nonoscillatory and x(t) is a nonoscil-
latory solution for (1.1). Without loss of generalization, assume that x(t) is even-
tually positive, and there exists a t1 ≥ t0 such that x(t) > 0, x(m(t)) > 0 and
x(r(t)) > 0 for any t ≥ t1. By the definition of z(t), we have z(t) > 0, t ≥ T ≥ t1,
where T is chosen so that (2.1) and (2.2) of Lemma 2.1 hold for all t ≥ T . We shall
show that in each case we are led to a contradiction.

Case (1): Suppose that (2.1) of Lemma 2.1 holds, by (2.3) and (2.4), we obtain

(a(t)z∆(t))∆ + kq(t)(1− p1(r(t)))βzβ(r(t)) < 0, for all t ≥ T. (3.3)

Define the following Riccati transformation:

w(t) = b(t)
a(σ(t))z∆(σ(t))

zβ(r(t))
, t ≥ T. (3.4)

Then w(t) ≥ 0 for t ≥ T , and

w∆(t) =

[
b(t)

a(σ(t))z∆(σ(t))

zβ(r(t))

]∆

= b∆(t)
a(σ(σ(t)))z∆(σ(σ(t)))

zβ(r(σ(t)))
+ b(t)

[
a(σ(t))z∆(σ(t))

zβ(r(t))

]∆

=
b∆(t)

b(σ(t))
w(σ(t))+b(t)

[a(σ(t))z∆(σ(t))]∆

zβ(r(σ(t)))
−b(t)a(σ(t))z∆(σ(t))[zβ(r(t))]∆

zβ(r(t))zβ(r(σ(t)))
.

(3.5)
By the corollary of the Keller chain rule [4] and the condition r(σ(t)) = σ(r(t)) ( [6]
Lemma 2.2), for β ≥ 1, we have

(zβ(r(t)))∆ = β

∫ 1

0

[hz(r(σ(t))) + (1− h)z(r(t))]
β−1

(z(r(t)))∆dh

≥ β
∫ 1

0

[hz(r(t)) + (1− h)z(r(t))]
β−1

(z(r(t)))∆dh

= βzβ−1(r(t))z∆(r(t))r∆(t),

then

− b(t)a(σ(t))z∆(σ(t))[zβ(r(t))]∆

zβ(r(t))zβ(r(σ(t)))

≤− b(t)a(σ(t))z∆(σ(t))βzβ−1(r(t))z∆(r(t))r∆(t)

zβ(r(t))zβ(r(σ(t)))

=− b(t)a(σ(t))z∆(σ(t))βz∆(r(t))r∆(t)

z(r(t))zβ(r(σ(t)))

≤− b(t)

b(σ(t))

b(σ(t))a(σ(σ(t)))z∆(σ(σ(t)))βz∆(r(t))r∆(t)

zβ(r(σ(t)))z(r(t))

=− b(t)

b(σ(t))

βw(σ(t))z∆(r(t))r∆(t)

z(r(t))
,

(3.6)
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thus, using (3.6) and (3.3) in (3.5), we get

w∆(t)

≤ b∆(t)

b(σ(t))
w(σ(t)) + b(t)

[a(σ(t))z∆(σ(t))]∆

zβ(r(σ(t)))
− b(t)

b(σ(t))

βw(σ(t))z∆(r(t))r∆(t)

z(r(t))

<
b∆(t)

b(σ(t))
w(σ(t)) + b(t)

−kq(σ(t))(1− p1(r(σ(t))))βzβ(r(σ(t)))

zβ(r(σ(t)))

− b(t)

b(σ(t))

βw(σ(t))z∆(r(t))r∆(t)

z(r(t))

=
b∆(t)

b(σ(t))
w(σ(t))−kq(σ(t))b(t)(1−p1(r(σ(t))))β− b(t)

b(σ(t))

βw(σ(t))z∆(r(t))r∆(t)

z(r(t))
.

(3.7)
Because z(t) is increasing, and there exists a constant M > 0 such that z(t) ≥ M ,
t ≥ T . Thus, by (3.7), we have

w∆(t)

<
b∆(t)

b(σ(t))
w(σ(t))− kq(σ(t))b(t)(1− p1(r(σ(t))))β − βw2(σ(t))b(t)r∆(t)Mβ−1

b2(σ(t))a(r(t))
.

(3.8)
Then by completing the square in (3.8), we get

w∆(t) <− kq(σ(t))b(t)(1− p1(r(σ(t))))β

−
(
βb(t)r∆(t)Mβ−1

b2(σ(t))a(r(t))
w2(σ(t))− b∆(t)

b(σ(t))
w(σ(t))

)
=− kq(σ(t))b(t)(1− p1(r(σ(t))))β +

a(r(t))(b∆(t))2

4βb(t)r∆(t)Mβ−1

−

(√
βb(t)r∆(t)Mβ−1

b2(σ(t))a(r(t))
w(σ(t))−

√
a(r(t))(b∆(t))2

4βb(t)r∆(t)Mβ−1

)2

≤− kq(σ(t))b(t)(1− p1(r(σ(t))))β +
a(r(t))(b∆(t))2

4βb(t)r∆(t)Mβ−1
, t ≥ T.

(3.9)

Integrating (3.9) from T to t, we obtain∫ t

T

[
kq(σ(s))b(s)(1− p1(r(σ(s))))β − a(r(s))(b∆(s))2

4βb(s)r∆(s)Mβ−1

]
∆s < w(T ),

which contradicts with (3.1) as t→∞.
Case (2): Suppose that (2.2) of Lemma 2.1 holds, by (2.3) and (2.7), we obtain

(a(t)z∆(t))∆ + kq(t)(1− p2(r(t)))βzβ(r(t)) < 0, for all t ≥ T. (3.10)

Define the following Riccati transformation:

u(t) =
a(t)z∆(t)

zβ(t)
, t ≥ T. (3.11)

Then u(t) ≤ 0, t ≥ T . By (2.9), we have

−a(t)z∆(t)(−a(t)z∆(t))β−1Aβ(t)

zβ(t)
≤ 1, t ≥ T. (3.12)
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So by −a(t)z∆(t) > 0 and (3.11), we obtain

− 1

Lβ−1
≤ u(t)Aβ(t) ≤ 0, (3.13)

where L = −a(T )z∆(T ). Differentiating (3.11), we get

u∆(t) =

[
a(t)z∆(t)

zβ(t)

]∆

=
[a(t)z∆(t)]∆zβ(t)− a(t)z∆(t)[zβ(t)]∆

zβ(t)zβ(σ(t))

=
[a(t)z∆(t)]∆

zβ(σ(t))
− a(t)z∆(t)[zβ(t)]∆

zβ(t)zβ(σ(t))
.

(3.14)

By the corollary of the Keller chain rule [4] and β ≥ 1 we have

(zβ(t))∆ = β

∫ 1

0

[hz(σ(t)) + (1− h)z(t)]β−1z∆(t)dh

≤ β
∫ 1

0

[hz(σ(t)) + (1− h)z(σ(t))]β−1z∆(t)dh = βzβ−1(σ(t))z∆(t),

(3.15)
using (3.15) and (3.10) in (3.14),

u∆(t) ≤ [a(t)z∆(t)]∆

zβ(σ(t))
− βa(t)(z∆(t))2

zβ(t)z(σ(t))

<
−kq(t)(1− p2(r(t)))βzβ(r(t))

zβ(σ(t))
− βa(t)(z∆(t))2

zβ+1(t)

≤ −kq(t)(1− p2(r(t)))βzβ(σ(t))

zβ(σ(t))
− βu2(t)

a(t)
zβ−1(t)

= −kq(t)(1− p2(r(t)))β − βu2(t)

a(t)
zβ−1(t).

(3.16)

By (2.10) and −a(t)z∆(t) is positive and increasing, there exists a constant K > 0
such that

z(t)

A(t)
≥ −a(t)z∆(t) ≥ K, t ≥ T. (3.17)

Using (3.17) in (3.16), we obtain

u∆(t) < −kq(t)(1− p2(r(t)))β − βKβ−1(t)Aβ−1(t)

a(t)
u2(t), t ≥ T. (3.18)

Multiplying (3.18) by Aβ(t) and integrating the resulting inequality from T to t, we
have

Aβ(t)u(t)−Aβ(T )u(T ) +

∫ t

T

kq(s)(1− p2(r(s)))βAβ(s)∆s

+

∫ t

T

βKβ−1A2β−1(s)

a(s)
u2(s)∆s < 0.

By using (3.13), we get∫ t

T

[
kq(s)(1− p2(r(s)))βAβ(s) +

βKβ−1

L2β−2A(s)a(s)

]
∆s < Aβ(T )u(T ) +

1

Lβ−1
.

This contradicts (3.2) and the proof is complete.
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Example 3.1. As an illustrative example, we consider the following equation[
t2
(
x(t) +

1

4
x
( t

2

))′]′
+ 4x

( t
3

)
= 0, t ≥ 1. (3.19)

Here T = R+, and a(t) = t2, p(t) = 1
4 , q(t) = 4, m(t) = t

2 , f(t) = t, r(t) = t
3 ,

α = 1. Let β = 1, k = 1. Then A(t) = 1
t , p1(r(t)) = 1

4 , p2(r(t)) = 1
2 , and∫∞

1
1
t2 dt = 1 <∞. By taking b(t) = 1, we get

lim sup
t→∞

∫ t

1

[
k(1− p1(r(σ(s))))βb(s)q(σ(s))− a(r(s))(b′(s))2

4βr′(s)b(s)Mβ−1

]
ds

= lim sup
t→∞

∫ t

1

3ds =∞,

and

lim sup
t→∞

∫ t

1

[
k(1− p2(r(s)))βAβ(s)q(s) +

βKβ−1

L2β−2A(s)a(s)

]
ds

= lim sup
t→∞

∫ t

1

1

s
ds =∞.

It is easy to verify that all conditions of Theorem 3.1 are satisfied, thus we conclude
that every solution of the equation (3.19) is oscillatory.

Theorem 3.2. Assume that (1.2) holds, 0 < β < 1 and max{p1(r(t)), p2(r(t))} <
1, t ∈ I, where p1(t) and p2(t) are defined as in Lemma 2.1 and Lemma 2.2. If∫ ∞

t0

kq(s)(1− p1(r(s)))βRβ(r(s))∆s =∞, (3.20)

or

lim sup
t→∞

∫ t

t0

[
kKβ−1(1− p2(r(s)))βA(s)q(s) +

1

A(s)a(s)

]
∆s =∞, (3.21)

where K > 0 is any positive constant, then every solution of (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we see that two cases of Lemma
2.1 hold.

Case (1): Suppose that (2.1) holds. Proceeding as in the proof of Case(1) in
Theorem 3.1, we arrive at (3.3). From (2.3), we have (a(t)z∆(t))∆ < 0, then there

exists a T ∈ [t0,∞)T, and s, t ∈ [T,∞)T with t ≥ s, such that z∆(s) ≥ a(t)
a(s)z

∆(t).

Integrating the inequality from t0 to t, we get

z(t) ≥ R(t)a(t)z∆(t), t ≥ T ≥ t1. (3.22)

Using (3.22) in (3.3) we get

(a(t)z∆(t))∆ + kq(t)(1− p1(r(t)))βRβ(r(t))
(
a(r(t))z∆(r(t))

)β
< 0, t ≥ T. (3.23)

Set w(t) = a(t)z∆(t) > 0. Then by (3.23) we see that w(t) is a positive solution of
the following inequality

w∆(t) + kq(t)(1− p1(r(t)))βRβ(r(t))wβ(r(t)) < 0, t ≥ T. (3.24)
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Because r(t) ≤ t and 0 < β < 1, then integrating (3.24) from t to ∞, and by
condition (3.20), we get

lim
t→∞

w1−β(t) = −∞,

which contradicts with positivity of w(t). Then the inequality (3.24) has no positive
solution, which is a contradiction.

Case (2): Suppose that (2.2) of Lemma 2.1 holds. Proceeding as in the proof of
Case(2) of Theorem 3.1, we get (3.10). Define the following Riccati transformation:

u(t) =
a(t)z∆(t)

z(t)
, t ≥ T. (3.25)

Then u(t) ≤ 0, t ≥ T . Differentiating (3.25), and by (3.10) and (3.25), we get

u∆(t) =

[
a(t)z∆(t)

z(t)

]∆

=
(a(t)z∆(t))∆z(t)− a(t)z∆(t)z∆(t)

z(t)z(σ(t))

=
(a(t)z∆(t))∆

z(σ(t))
− a(t)(z∆(t))2

z(t)z(σ(t))

<
−kq(t)(1− p2(r(t)))βzβ(r(t))

z(σ(t))
− a(t)(z∆(t))2

z2(t)

≤ −kq(t)(1− p2(r(t)))β
zβ(σ(t))

z(σ(t))
− u2(t)

a(t)

= −kq(t)(1− p2(r(t)))βzβ−1(σ(t))− u2(t)

a(t)
.

(3.26)

Because z(t) is positive and decreasing, there exists a constant K > 0 such that

z(t) ≤ K, t ≥ T. (3.27)

Since 0 < β < 1, using (3.27) in (3.26), we get

u∆(t) < −kq(t)(1− p2(r(t)))βKβ−1 − u2(t)

a(t)
, t ≥ T. (3.28)

Multiplying (3.28) by A(t) and then integrating the resulting inequality from T to
t, we obtain

A(t)u(t)−A(T )u(T ) +

∫ t

T

kKβ−1q(s)(1− p2(r(s)))βA(s)∆s

+

∫ t

T

u2(s)

a(s)
A(s)∆s < 0.

(3.29)

By using (2.9), we get∫ t

T

[
kKβ−1q(s)(1− p2(r(s)))βA(s) +

1

a(s)A(s)

]
∆s < 1 +A(T )u(T ).

This contradicts with (3.21) as t→∞. This completes the proof.
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Example 3.2. As an illustrative example, we consider the following equation[
et
(
x(t) + e−4tx

( t
3

))′]′
+ e3tx

1
5

( t
2

)
= 0, t ≥ 1. (3.30)

Here T = R+, and a(t) = et, p(t) = e−4t, q(t) = e3t, m(t) = t
3 , f(t) = t

1
5 , r(t) = t

2 ,

α = 1. Let β = 1
5 , k = 1. Then A(t) = e−t, p1(r(t)) = e−2t, p2(r(t)) = e−

5t
3 , and

R(r(t)) = e−1 − e− t
2 . It is easy to verify that all conditions of Theorem 3.2 are

satisfied, thus we conclude that every solution of equation (3.30) is oscillatory.
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