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1. Introduction

In this paper, we consider the following p-Laplacian fractional differential boundary
value problem (BVP for short) with Dirichlet’s boundary value condition: tD

α
T

(
1

ω(t)p−2ϕp(ω(t)0D
α
t u(t))

)
+ λu(t) = f(t, u, c0D

α
t u(t)) + h(u(t)),

u(0) = u(T ) = 0, a.e. t ∈ [0, T ],

(1.1)

where 1
p < α ≤ 1, λ is a non-negative real parameter, c

0D
α
t is the left Caputo

derivative, 0D
α
t and tD

α
T denote the left and right standard Riemann-Liouville frac-

tional derivatives, respectively. ω(t) ∈ L∞[0, T ] with ω0 = ess inf [0,T ] ω(t) > 0 and
ω0 = ess sup[0,T ] ω(t). The functions ϕp(s) = |s|p−2s, p ≥ 2, f : [0, T ]×R×R→ R
is continuous, h : R → R is a Lipschitz continuous function with the Lipschitz
constant L > 0, i.e.,

| h(x1)− h(x2) |≤ L | x1 − x2 |, (1.2)

for every x1, x2 ∈ R, and h(0) = 0.
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Fractional calculus is a broader concept, since it is a generalization of arbitrary
order derivatives and integrals. With the development of fractional differential
equation (FDE for short), a growing number of researchers have been aroused to
discuss the existence of solutions for nonlinear FDE owing to the vast application
space in different areas of science and engineering, such as physics, mechanics,
chemistry, economics, engineering and biological sciences, etc. For details, see [7,
8, 14, 17, 18]. In recent years, the existence of solutions for nonlinear FDE has
been established with all kinds of classical tools, such as fixed-point theorems, the
method of upper and lower solutions, the topological degree theory and the critical
point theory, etc. (see [1–3, 9, 12] and references therein). In [1], by using the
Schauder fixed point theorem, the existence results were obtained for the fractional
differential equation with three-point boundary conditions. By means of the Leray-
Schauder degree theory and upper and lower solutions method, the existence of
multiple solutions was proved for the fractional BVP in [12]. Especially, because of
the practicability and effectiveness of variational methods and critical point theory,
more and more scholars have paid attention to tackling the existence of solutions
for fractional BVP by applying those tools, such as [4,10,11,13,23,24], although it
is often difficult to develop appropriate function spaces and variational frameworks
for FDE containing both left and right fractional derivatives. For example, in [13],
under suitable assumptions, the existence of at least one solution for the following
FDE was obtained by applying the mountain pass theorem tD

α
T (0D

α
t u(t)) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.3)

where 0D
α
t and tD

α
T are the left and right Riemann-Liouville derivatives with order

0 < α ≤ 1, respectively. F : [0, T ] × RN → R, ∇F (t, u(t)) is the gradient of F at
u. Recently, in [10], Heidarkhani et al. investigated the existence results for FDE
with the following form tD

αi
T (ai(t)0D

αi
t ui(t)) = Fui(t, u1, ..., un) + hi(ui(t)), t ∈ (0, T ),

ui(0) = ui(T ) = 0,
(1.4)

for 1 ≤ i ≤ n, where ai(t) ∈ L∞[0, T ] with ai = ess inf [0,T ] ai(t) > 0, for 1 ≤ i ≤ n.
F : [0, T ] × Rn → R is measurable with respect to t, for all u ∈ Rn, continuously
differentiable in u, for any t ∈ [0, T ] such that F (t, 0, ..., 0) = 0 for any t ∈ [0, T ],
hi : R → R is a Lipschitz continuous function, 1 ≤ i ≤ n. Based on variational
methods, the existence of one weak solution for BVP (1.4) was established.

In addition, the existence of solutions for fractional BVP with generalized p-
Laplacian operator has been discussed via using variational methods in recent years.
Chen in [5] considered the existence of at least one weak solution for a class of p-
Laplacian type FDE by using variational method as below tD

α
Tϕp(0D

α
t u(t)) = f(t, u(t)), t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.5)

where 0 < α ≤ 1, 0D
α
t and tD

α
T are the left and right Riemann-Liouville derivatives,

respectively. ϕp(s) =| s |p−2 s, p > 1.
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However, with the advent of the fractional derivative contained in the nonlin-
earity f , we are not able to deal with the existence of solutions of BVP just relying
on variational method and critical point theory directly. Therefore, in this paper,
combining the variational method with iterative technique, the existence results
are obtained for a class of generalized p-Laplacian type fractional boundary value
problem with nonlinear function f including the fractional derivative c

0D
α
t .

The main contributions of our work include three points. Firstly, the suitable
function space and the variational framework are developed reasonably for BVP
(1.1). Then, a new criteria on the existence of solutions is obtained for BVP (1.1).
Secondly, the nonlocal and nonlinear differential operator tD

α
Tϕp(0D

α
t ) can be re-

duced to the linear differential operator tD
α
T 0D

α
t under p = 2. Thus, the content

of this article is discussed based on the space of Lp([0, T ],R) (2 ≤ p < ∞), which
is a generalization for the existing results based on the inner product space of
L2([0, T ],R). Finally, comparing with the published relevant results, some looser
assumptions are given to guarantee the existence of solutions for BVP (1.1) in this
paper. For instance, the literature [6] discussed a class of fractional equation whose
nonlinear function f includes the fractional derivative, and the complex parameter
conditions P0 < 1 and Q0

1−P0
< 1 were required to ensure the existence of solu-

tions of the equation. In our assumptions, the analogous restricted conditions do
not appear. Hence, the conclusion obtained in the paper is more convenience for
application and differ from the results mentioned above.

The organization of this paper is as follows. Section 2 shows a brief review of
fractional calculus and the construct of theoretical framework. In section 3, the
main result is proposed to guarantee the existence of solutions of BVP (1.1). Then,
we demonstrate the application of our result through an example in Section 4.
Finally, a conclusion is given in Section 5.

2. Preliminaries and lemmas

In this section, some associated definitions and basic lemmas are introduced, which
will be used throughout this paper.

Let Lp([0, T ],R) (1 ≤ p <∞) be the space of functions for which the p-th power
of the absolute value is Lebesgue integrable with the norm

‖x‖Lp = (

∫ T

0

| x(t) |p dt)
1
p , ∀ x ∈ Lp([0, T ],R), a.e. t ∈ [0, T ], (2.1)

C([0, T ],R) be the space of continuous functions with the norm ‖ x ‖∞= max
t∈[0,T ]

|x(t)|.

Definition 2.1 ( [14, 19]). Let x be a function on [0, T ]. Define the left and right
Riemann-Liouville fractional integrals with order 0 < α ≤ 1 by

0D
−α
t x(t) =

1

Γ(α)

∫ t

0

(t− η)α−1x(η)dη,

and

tD
−α
T x(t) =

1

Γ(α)

∫ T

t

(η − t)α−1x(η)dη,

respectively.



Existence results for fractional differential equation 1781

Definition 2.2 ( [14, 19]). The left and right Riemann-Liouville fractional deriva-
tives with order α are represented as

0D
α
t x(t) =

d

dt
0D

α−1
t x(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− η)−αx(η)dη,

and

tD
α
Tx(t) = (−1)

d

dt
tD

α−1
T x(t) =

−1

Γ(1− α)

d

dt

∫ T

t

(t− η)−αx(η)dη,

where 0 < α ≤ 1 and x is a function defined on [0, T ].

Literatures [14] and [21] show that the Riemann-Liouville fractional integrals
satisfy the following property.

Property 2.1. If f ∈ Lp([0, T ],R), g ∈ Lq([0, T ],R) and p ≥ 1, q ≥ 1, 1
p + 1

q ≤ 1+α

or p 6= 1, q 6= 1, 1
p + 1

q = 1 + α. Then∫ T

0

(0D
−α
t f(t))g(t)dt =

∫ T

0

(tD
−α
T g(t))f(t)dt, α > 0.

Nextly, the suitable function space and the variational framework are developed
to apply variational method.

Definition 2.3. Let 0 < α ≤ 1, and 2 ≤ p < ∞. The fractional derivative space
Eαp is defined by the closure C∞0 ([0, T ],R), i.e., Eαp = C∞0 ([0, T ],R) with the norm

‖u‖α,p =

(∫ T

0

| u(t) |p dt+

∫ T

0

ω(t) | 0D
α
t u(t) |p dt

) 1
p

, ∀ u ∈ Eαp . (2.2)

Remark 2.1. Obviously, Eαp is the space of functions u(t) ∈ Lp([0, T ],R) with an
α-order Riemann-Liouville fractional derivative 0D

α
t u(t) ∈ Lp([0, T ],R) and u(0) =

u(T ) = 0.

Property 2.2. From [14], the following properties hold

0D
α
t u(t) = c

0D
α
t u(t), tD

α
Tu(t) = c

tD
α
Tu(t), ∀ u(t) ∈ Eαp , a.e. t ∈ [0, T ],

where c
aD

α
t and c

tD
α
T are the left and right Caputo fractional derivatives with order

α, respectively. (See [14] for a detailed introduction of Caputo fractional derivatives
and integrals).

Lemma 2.1 ( [13]). Let 0 < α ≤ 1, and 1 < p <∞. For any u ∈ Eαp , we have

‖ u ‖Lp≤
Tα

Γ(α+ 1)
‖ 0D

α
t u ‖Lp , (2.3)

furthermore, when α > 1
p and 1

p + 1
q = 1, we have

‖ u ‖∞≤
Tα−

1
p

Γ(α)((α− 1)q + 1)
1
q

‖ 0D
α
t u ‖Lp . (2.4)
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By Lemma 2.1, we obtain

‖ u ‖Lp≤
Tα

Γ(α+ 1)(ω0)
1
p

(∫ T

0

ω(t) | 0D
α
t u |p dt

) 1
p

, 0 < α ≤ 1, (2.5)

‖ u ‖∞≤
Tα−

1
p

Γ(α)(ω0)
1
p ((α− 1)q + 1)

1
q

(∫ T

0

ω(t) | 0D
α
t u |p dt

) 1
p

,
1

p
< α ≤ 1. (2.6)

Denote Λ = Tα

Γ(α+1)(ω0)
1
p

and Λ = T
α− 1

p

Γ(α)(ω0)
1
p ((α−1)q+1)

1
q

.

Based on (2.5), the norm of (2.2) is equivalent to

‖u‖α,p =

(∫ T

0

ω(t) | 0D
α
t u(t) |p dt

) 1
p

, ∀u ∈ Eαp . (2.7)

Lemma 2.2 (Lemma 9, [15]). The fractional derivative space Eαp is a reflexive and
separable Banach space.

Lemma 2.3 ( [13]). Let 1
p < α ≤ 1, and 1 < p < ∞. Assume that the sequence

{uk}k∈N converges weakly to u in Eαp , that is uk ⇀ u, as k →∞. Then uk → u in
C([0, T ],R) as k →∞, which means that ‖ uk − u ‖∞→ 0, as k →∞.

Lemma 2.4. Let u(t) ∈ Eαp . According to [15], the following relationship∫ T

0
tD

α
T (

1

ω(t)p−2
ϕp(ω(t)0D

α
t u(t)))v(t)dt =

∫ T

0

1

ω(t)p−2
ϕp(ω(t)0D

α
t u(t))0D

α
t v(t)dt

holds, for any v(t) ∈ Eαp .

Hence, the definition of weak solution for the BVP (1.1) can be given as below.

Definition 2.4. We say u(t) ∈ Eαp is a weak solution of the BVP (1.1). If the
following identity∫ T

0

1

ω(t)p−2
ϕp(ω(t)0D

α
t u(t))0D

α
t v(t) + λu(t) · v(t)− h(u(t))v(t)dt

=

∫ T

0

f(t, u(t), 0D
α
t u(t))v(t)dt

holds, for any v(t) ∈ Eαp .

In order to obtain our result, let us first consider the functional Iξ : Eαp → R for
any fixed ξ(t) ∈ Eαp as follows

Iξ(u(t)) =
1

p
‖u‖pα,p +

1

2

∫ T

0

λ | u(t) |2 dt−
∫ T

0

H(u(t))dt

−
∫ T

0

F (t, u(t), 0D
α
t ξ(t))dt, (2.8)

where u(t) ∈ Eαp , F (t, x, y) =
∫ x

0
f(t, s, y)ds and H(x) =

∫ x
0
h(s)ds, for x, y ∈ R.
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Since Eαp is compactly embedded in C([0, T ],R) and f is continuous, we can
know that Iξ is a continuous and Fréchet differentiable functional on Eαp . The
Fréchet derivative of Iξ at the point u ∈ Eαp is given as

〈I ′ξ(u(t)), v(t)〉 =

∫ T

0

1

ω(t)p−2
ϕp(ω(t)0D

α
t u(t))0D

α
t v(t) + λu(t) · v(t)dt

−
∫ T

0

h(u(t)) · v(t)dt−
∫ T

0

f(t, u(t), 0D
α
t ξ(t)) · v(t)dt, (2.9)

for any v(t) ∈ Eαp , a.e. t ∈ [0, T ].

Lemma 2.5. Let 0 < α ≤ 1, and 2 ≤ p <∞. We say u(t) is a classical solution of
BVP (1.1). If the function u(t) ∈ Eαp is a nontrivial weak solution of BVP (1.1).

Proof. In fact, if u(t) ∈ Eαp is a nontrivial weak solution of BVP (1.1), then,
Definition 2.4 is satisfied for any v(t) ∈ Eαp . According to Lemma 2.4, we have∫ T

0

1

ω(t)p−2
ϕp(ω(t)0D

α
t u(t))0D

α
t v(t)dt

=

∫ T

0
tD

α
T

(
1

ω(t)p−2
ϕp(ω(t)0D

α
t u(t))

)
v(t)dt. (2.10)

Combining Definition 2.4 with (2.10), yields

tD
α
T

(
1

ω(t)p−2
ϕp(ω(t)0D

α
t u(t))

)
+ λu(t) = f(t, u, c0D

α
t u(t)) + h(u(t)),

for a.e. t ∈ [0, T ]. Namely, u satisfies the equation of (1.1).
Moreover, u(t) ∈ Eαp = C∞0 ([0, T ],R) means that u(0) = u(T ) = 0, i.e., the

boundary value condition of (1.1) holds. Hence, u(t) is a classical solution of BVP
(1.1).

Conversely, if u(t) ∈ Eαp is a nontrivial classical solution of BVP (1.1), u(t) is
also a weak solution of BVP (1.1) obviously. The proof is completed.

Lemma 2.6 (Multiple Hölder inequality, [16] ). If fi ∈ Lqi(E), where E is a

measurable space, i = 1, ..., n, and
n∑
i=1

1
qi

= 1, where qi ≥ 1, then

‖ Πn
i=1fi ‖L1≤ Πn

i=1 ‖ fi ‖Lqi .

Definition 2.5 (P.S. condition). Let E be a Banach space. We say functional
I ∈ C1(E,R) satisfy the Palais-Smale (P.S. for short) condition, if for any sequence
{uk}∞k=1 ⊂ E, for which {I(uk)}∞k=1 is bounded and lim

k→∞
I ′(uk) = 0, possesses a

convergent subsequence in E.

Theorem 2.1 (Mountain pass theorem, [20]). Let E be a real Banach space and
functional I ∈ C1(E,R) satisfying the P.S. condition. Suppose that

(i) I(0) = 0;

(ii) There exist ρ > 0 and σ > 0 such that I(z) ≥ σ for every z ∈ E with ‖ z ‖= ρ;

(iii) There exists z1 ∈ E with ‖ z1 ‖≥ ρ such that I(z1) < σ.
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Then, functional I possesses a critical value z∗ ≥ σ. Moreover, z∗ can be
characterized as

z∗ = inf
g∈Ω

max
z∈g([0,1])

I(z),

where Ω = {g ∈ C([0, 1], E) | g(0) = 0, g(1) = z1}.

3. Main results

In this section, the existence of solutions for BVP (1.1) is established by using
Theorem 2.1 and iterative technique.

Firstly, some necessary assumptions are stated, which will be used in the further
discussion of the main result.
(H1) There exist constants τ > p, a ≥ 0, b ≥ 0, d ≥ 0 and 0 < β, β < p, such that

τF (t, x, y)− f(t, x, y)x ≤ a | x |β +b | y |β +d,

for x, y ∈ R, a.e. t ∈ [0, T ].
(H2) There exist non-negative constants s1, s2, s′1, s′2, δ and ζ > p, γ > p, 0 < η1 <
p, 0 < η2 ≤ p− 1 and functions c(t), ϑ(t) ∈ L1([0, T ],R+), such that

F (t, x, y) ≤ s1 | x |ζ +s2x
γ | y |η1 −c(t), | x |≤ δ, y ∈ R, (3.1)

F (t, x, y) ≥ s′1 | x |ζ −s′2x | y |η2 −ϑ(t), for x, y ∈ R. (3.2)

(H3) There exist nonnegative constants M1,M2 such that

| f(t, x, y)− f(t, x′, y′) |≤M1 | x− x′ | +M2 | y − y′ |,

for x, x′ ∈ [−G∗, G∗], y, y′ ∈ R, a.e. t ∈ [0, T ], where G∗ is introduced in the sequel.

In order to describe easily for the further analysis, some notations are given as
below. Denote

u0(t) =


Γ(2−α)
T t, t ∈ [0, T4 [,

Γ(2− α), t ∈ [T4 ,
3T
4 ], ũ0 = u0

‖u0‖α,p , A = (TL2 + Tλ
2 )Λ

2
,

Γ(2−α)
T (T − t), t ∈] 3T

4 , T ],

B =
s′2

(ω0)
η2
p

‖ ũ0 ‖
L

p
p−η2

, D = s′1 ‖ ũ0 ‖ζLζ , W =
p− η2

p
(B)

p
p−η2 · ( 6η2τ

τ − p
)

η2
p−η2 ,

d1 = (
TτL

2
+ LT )Λ

2
, d2 = aTΛ

β
, d3 = b

(
T p−β

(ω0)β

) 1
p

,

d∗1 =
p− 2

p

(
12

τ − p

) 2
p−2

d
p
p−2

1 , d∗2 =
p− β
p

(
6β

τ − p

) β
p−β

d
p

p−β
2 ,

d∗3 =
p− β
p

(
6β

τ − p

) β

p−β

d
p

p−β
3 ,

G =

(
6p

2(τ − p)
(τC3 + τ ‖ ϑ ‖L1 +d∗1 + d∗2 + d∗3 + dT )

) 1
p

, G∗ = ΛG.
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Theorem 3.1. Let 1
p < α ≤ 1, 2 ≤ p <∞. Suppose that the conditions (H1)−(H3)

hold, and λ− L ≥ 0. Then, BVP (1.1) has at least one nontrivial solution on Eαp .

Proof. The proof will be shown as four steps.
Step 1. We claim that functional Iξ satisfies the P.S. condition.
Suppose that {uk}∞k=1 ⊂ Eαp is a sequence such that {Iξ(uk)}∞k=1 is bounded

and I ′ξ(uk)→ 0 as k →∞.
For any fixed ξ(t) ∈ Eαp with ‖ ξ ‖α,p≤ G. Combining (1.2) with h(0) = 0, one

has | h(u) |≤ L | u | for any u ∈ R. Then, based on (1.2), (2.6), (2.8), (2.9) and
(H1), we have

τIξ(uk(t))− 〈I ′ξ(uk(t)), uk(t)〉 (3.3)

=(
τ

p
− 1) ‖ uk ‖pα,p +(

λτ

2
− λ)

∫ T

0

| uk(t) |2 dt+

∫ T

0

h(uk(t))uk(t)− τH(uk(t))dt

+

∫ T

0

f(t, uk(t), 0D
α
t ξ(t))uk(t)− τF (t, uk(t), 0D

α
t ξ(t))dt

≥(
τ

p
− 1) ‖ uk ‖pα,p −

∫ T

0

L | uk(t) |2 dt− TτL

2
Λ

2 ‖ uk ‖2α,p

−
∫ T

0

a | uk(t) |β +b | 0D
α
t ξ(t)) |β dt− dT

≥(
τ

p
− 1) ‖ uk ‖pα,p −(

TτL

2
+ LT )Λ

2 ‖ uk ‖2α,p −aTΛ
β ‖ uk ‖βα,p

− b
(
T p−β

(ω0)β

) 1
p

‖ ξ ‖βα,p −dT,

where∫ T

0

| 0D
α
t ξ(t) |β dt ≤ T

p−β
p · (

∫ T

0

| 0D
α
t ξ(t)) |p dt)

β
p ≤

(
T p−β

(ω0)β

) 1
p

‖ ξ ‖βα,p .

Recalling Iξ(uk(t)) is bounded and I ′ξ(uk(t)) → 0 as k → ∞ on Eαp , we have
{uk}∞k=1 ⊂ Eαp is bounded. Since Eαp is a reflexive space, there exists a weakly
convergent subsequence such that uki ⇀ u0 in Eαp . For convenience, we still take
{uki} as {uk}. In view of the fact that uk ⇀ u0 and I ′ξ(uk(t)) → 0 as k → ∞ on
Eαp , we derive

〈I ′ξ(uk(t))− I ′ξ(u0(t)), uk(t)− u0(t)〉
=〈I ′ξ(uk(t)), uk(t)− u0(t)〉 − 〈I ′ξ(u0(t)), uk(t)− u0(t)〉
≤ ‖ I ′ξ(uk) ‖−α,q · ‖ uk − u0 ‖α,p −〈I ′ξ(u0(t)), uk(t)− u0(t)〉
→0, as k →∞,

which implies that

〈I ′ξ(uk(t))− I ′ξ(u0(t)), uk(t)− u0(t)〉 (3.4)

=

∫ T

0

1

ωp−2(t)
(ϕp(ω(t)0D

α
t uk(t))− ϕp(ω(t)0D

α
t u0(t)))0D

α
t (uk(t)− u0(t))

+ λ(uk(t)− u0(t))2dt−
∫ T

0

(h(uk(t))− h(u0(t)))(uk(t)− u0(t))dt
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−
∫ T

0

(f(t, uk(t), 0D
α
t ξ(t))− f(t, u0(t), 0D

α
t ξ(t)))(uk(t)− u0(t))dt

→0, as k →∞.

Since uk(t) → u0(t) in C([0, T ],R) as k → ∞ and f is continuous, h is Lipschitz
continuous, one has

uk(t)− u0(t)→ 0, t ∈ [0, T ],

(f(t, uk(t), 0D
α
t ξ(t))− f(t, u0(t), 0D

α
t ξ(t)))(uk(t)− u0(t))→ 0,

(h(uk(t))− h(u0(t)))(uk(t)− u0(t))→ 0,

as k →∞. Hence, according to (3.4), we obtain∫ T

0

1

ωp−2(t)
(ϕp(ω(t)0D

α
t uk(t))−ϕp(ω(t)0D

α
t u0(t)))0D

α
t (uk(t)−u0(t))dt→0, k→∞.

(3.5)
It is well known that there exist nonnegative constants a1 and a2, for each υ1,

υ2 ∈ Rn, the following inequalities hold (see [22])

〈| υ1 |p−2 υ1− | υ2 |p−2 υ2, υ1 − υ2〉 ≥

a1 | υ1 − υ2 |p, p ≥ 2,

a1
|υ1−υ2|2

(|υ1|+|υ2|)2−p , 1 < p ≤ 2,
(3.6)

and

|| υ1 |p−2 υ1− | υ2 |p−2 υ2 |≤

a2 | υ1 − υ2 | (| υ1 | + | υ2 |)p−2, p ≥ 2,

a2 | υ1 − υ2 |p−1, 1 < p ≤ 2.
(3.7)

Recalling p ≥ 2, from (3.6), there exists l1 ∈ R+ such that∫ T

0

1

ωp−2(t)
(ϕp(ω(t)0D

α
t uk(t))− ϕp(ω(t)0D

α
t u0(t)))0D

α
t (uk(t)− u0(t))dt

≥l1
∫ T

0

1

ωp−1(t)
| ω(t)0D

α
t uk(t)− ω(t)0D

α
t u0(t) |p dt

=l1 ‖ uk − u0 ‖pα,p . (3.8)

Then, from (3.5) and (3.8), we assert ‖ uk − u0 ‖pα,p→ 0 as k → ∞, which means
that uk → u0 in Eαp . Hence, functional Iξ satisfies the P.S. condition.

Step 2. We will verify that functional Iξ satisfies the geometry conditions of
mountain pass theorem.

Let ρ ≤ δ
Λ

, where δ is defined in (3.1). From (2.6), we have

‖ u ‖∞≤ Λ ‖ u ‖α,p= Λρ ≤ δ, ∀ u ∈ Eαp , ‖ u ‖α,p= ρ, (3.9)

then, combining (2.8), (2.5) and (3.1), and noting λ− L ≥ 0, we obtain

Iξ(u(t)) ≥1

p
‖u‖pα,p +

λ

2

∫ T

0

| u(t) |2 dt− L

2

∫ T

0

| u(t) |2 dt (3.10)
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−
∫ T

0

s1 | u(t) |ζ +s2u
γ(t) | 0D

α
t ξ(t) |η1 −c(t)dt

≥1

p
‖u‖pα,p − s1T

p−ζ
p ‖ u ‖ζLp −s2 ‖ u ‖γ∞ T

p−η1
p ‖ 0D

α
t ξ ‖

η1
Lp + ‖ c ‖L1

≥1

p
ρp − T

p−ζ
p s1Λζρζ − s2Λ

γ
T
p−η1
p

Gη1

(ω0)
η1
p

ργ+ ‖ c ‖L1

for any u(t) ∈ Eαp with ‖ u ‖α,p= ρ. Noting ζ, γ > p. Choose ρ small enough, then,
we can obtain a constant σ > 0 such that Iξ(u(t)) ≥ σ with ‖ u ‖α,p= ρ. Hence,
the condition (ii) of Theorem 2.1 holds.

On the other hand, choose ũ0(t) = u0(t)
‖u0‖α,p ∈ E

α
p with ‖ ũ0 ‖α,p= 1, and

u0(t) =


Γ(2−α)
T t, t ∈ [0, T4 ],

Γ(2− α), t ∈ [T4 ,
3T
4 ],

Γ(2−α)
T (T − t), t ∈] 3T

4 , T ].

(3.11)

From Definition 2.2 and (3.11), we have

0D
α
t u0(t) =

1

T


t1−α, t ∈ [0, T4 ],

t1−α − (t− T
4 )1−α, t ∈ [T4 ,

3T
4 ],

t1−α − (t− T
4 )1−α − (t− 3T

4 )1−α, t ∈] 3T
4 , T ].

Then, for any µ ∈ R+, due to (2.8), (2.6), (3.2) and Holder inequality, we deduce

Iξ(µũ0(t)) ≤µ
p

p
‖ ũ0 ‖pα,p +

(
TL

2
+
Tλ

2

)
‖ µũ0 ‖2∞ (3.12)

−
∫ T

0

s′1 | µũ0(t) |ζ −s′2(µũ0(t)) | 0D
α
t ξ(t) |η2 −ϑ(t)dt

≤µ
p

p
+

(
TL

2
+
Tλ

2

)
µ2Λ

2
+ s′2µ

∫ T

0

ũ0(t) | 0D
α
t ξ(t) |η2 dt

− s′1µζ ‖ ũ0 ‖ζLζ + ‖ ϑ ‖L1 .

≤µ
p

p
+

(
TL

2
+
Tλ

2

)
µ2Λ

2 − s′1µζ ‖ ũ0 ‖ζLζ + ‖ ϑ ‖L1

+ s′2µ

(∫ T

0

| ũ0(t) |
p

p−η2 dt

) p−η2
p

·
(∫ T

0

| 0D
α
t ξ(t) |p dt

) η2
p

≤µ
p

p
+µ2

(
TL

2
+
Tλ

2

)
Λ

2
+µ

s′2G
η2

(ω0)
η2
p

‖ ũ0 ‖
L

p
p−η2
−µζs′1 ‖ ũ0 ‖ζLζ +‖ϑ‖L1 .

Note that ζ > p ≥ 2. We can obtain that Iξ(µũ0(t)) → −∞ as µ → ∞. Choose
µ0 large enough and take e(t) = µ0ũ0(t) such that ‖ e ‖α,p> ρ and Iξ(e(t)) ≤ 0.
Hence, the condition (iii) of Theorem 2.1 holds.

Obviously, Iξ(0) = 0. Thus, from Theorem 2.1, there exists a critical point
u(t) ∈ Eαp such that Iξ(u(t)) ≥ σ > 0. Since Iξ is also Fréchet differentiable on Eαp ,
we have I ′ξ(u(t)) = 0.
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Step 3. We can establish a sequence {uk}∞k=1 ⊂ Eαp to satisfy I ′uk−1
(uk(t)) = 0

and Iuk−1
(uk(t)) ≥ σ with ‖ uk ‖α,p≤ G, for all k ∈ N.

For a fixed point x0(t) ∈ Eαp with ‖ x0 ‖α,p≤ G, there exists x(t) ∈ Eαp to ensure
I ′x0

(x(t)) = 0 and Ix0(x(t)) ≥ σ under the conclusion obtained in Step 2. Now, we
prove that ‖ uk ‖α,p≤ G, for all k ∈ N.

In fact, according to (3.12), one has

Ix0
(x(t)) ≤ max

0≤µ<∞
Ix0

(µũ0(t)) (3.13)

≤ max
0≤µ<∞

µp

p
+ µ2

(
TL

2
+
Tλ

2

)
Λ

2
+ ‖ ϑ ‖L1 +µs′2

Gη2

(ω0)
η2
p

‖ ũ0 ‖
L

p
p−η2

− µζs′1 ‖ ũ0 ‖ζLζ

= max
0≤µ<∞

µp

p
+ µ2A+ µGη2B − µζD+ ‖ ϑ ‖L1 ,

where A = (TL2 + Tλ
2 )Λ

2
, B =

s′2

(ω0)
η2
p
‖ ũ0 ‖

L
p

p−η2
, D = s′1 ‖ ũ0 ‖ζLζ .

Based on Young inequality, taking q = p
p−η2 , q′ = p

η2
and ε0 = ( τ−p6η2τ

)
η2
p , we

have

µGη2B≤ 1

q
(

1

ε0
µB)q+

1

q′
(ε0G

η2)q
′
=
p− η2

p
(µB)

p
p−η2 · (6η2τ

τ−p
)

η2
p−η2 +

η2

p
(
τ − p
6η2τ

)Gp.

(3.14)

Define W = p−η2
p (B)

p
p−η2 · ( 6η2τ

τ−p )
η2
p−η2 . Combining (3.13) with (3.14), we obtain

Ix0
(x) ≤ max

0≤µ<∞

µp

p
+ µ2A+ µ

p
p−η2W − µζD +

τ − p
6pτ

Gp+ ‖ ϑ ‖L1 .

Denote

ψ(µ) = max
0≤µ<∞

µp

p
+ µ2A+ µ

p
p−η2W − µζD.

When 0 ≤ µ < 1, one has

ψ(µ) ≤ 1

p
+A+W := C1.

In addition, when 1 ≤ µ <∞, noting p ≥ 2, ζ > p and 0 < η2 ≤ p− 1, we derive

ψ(µ) ≤ (
1

p
+A+W )µp −Dµζ := ψ(µ).

Then, ψ
′
(µ) = p( 1

p +A+W )µp−1−ζDµζ−1, i.e., there exists µ =

(
p( 1
p+A+W )

ζD

) 1
ζ−p

such that ψ
′
(µ) = 0 and ψ(µ) = max

1≤µ<∞
ψ(µ) := C2. Take C3 = max{C1, C2}, we

have

Ix0
(x(t)) ≤ C3 +

τ − p
6pτ

Gp+ ‖ ϑ ‖L1 . (3.15)

On the other hand, based on (3.3), yields

τIx0
(x(t))− 〈I ′x0

(x(t)), x(t)〉 (3.16)
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≥(
τ

p
− 1) ‖ x ‖pα,p −(

TτL

2
+ LT )Λ

2 ‖ x ‖2α,p

− aTΛ
β ‖ x ‖βα,p −b

(
T p−β

(ω0)β

) 1
p

‖ x0 ‖βα,p −dT

≥(
τ

p
− 1) ‖ x ‖pα,p −d1 ‖ x ‖2α,p −d2 ‖ x ‖βα,p −d3G

β − dT,

where d1 = (TτL2 + LT )Λ
2
, d2 = aTΛ

β
, d3 = b

(
Tp−β

(ω0)β

) 1
p

.

At this point, taking account of (3.15), (3.16) and I ′x0
(x) = 0, we have

(
τ

p
−1) ‖ x ‖pα,p≤ τ(C3+

τ−p
6pτ

Gp+‖ ϑ ‖L1)+d1 ‖ x ‖2α,p+d2 ‖ x ‖βα,p+d3G
β+dT. (3.17)

Applying the Young inequality, we deduce

d1 ‖ x ‖2α,p≤
p− 2

p

(
12

τ − p

) 2
p−2

d
p
p−2

1 +
τ − p

6p
‖ x ‖pα,p:= d∗1 +

τ − p
6p

‖ x ‖pα,p,

d2 ‖ x ‖βα,p≤
p− β
p

(
6β

τ − p

) β
p−β

d
p

p−β
2 +

τ − p
6p

‖ x ‖pα,p:= d∗2 +
τ − p

6p
‖ x ‖pα,p,

d3G
β ≤ p− β

p

(
6β

τ − p

) β

p−β

d
p

p−β
3 +

τ − p
6p

Gp := d∗3 +
τ − p

6p
Gp,

which means that

τ − p
p
‖ x ‖pα,p≤ τC3 +

τ − p
3p

Gp + τ ‖ ϑ ‖L1 +d∗1 + d∗2 + d∗3 + dT +
τ − p

3p
‖ x ‖pα,p,

that is

‖ x ‖pα,p≤
3p

2(τ − p)
(τC3 + τ ‖ ϑ ‖L1 +d∗1 + d∗2 + d∗3 + dT ) +

1

2
Gp.

Since G =

(
6p

2(τ−p) (τC3 + τ ‖ ϑ ‖L1 +d∗1 + d∗2 + d∗3 + dT )

) 1
p

, one has ‖ x ‖pα,p≤ Gp,

i.e., ‖ x ‖α,p≤ G.

Suppose that ‖ uk−1 ‖α,p≤ G, similar to the proof procedure above, we obtain
that ‖ uk ‖α,p≤ G. Hence, ‖ uk ‖α,p≤ G, for all k ∈ N. From (2.6), we confirm that
‖ uk ‖∞≤ ΛG := G∗.

Step 4. We will point out that {uk}∞k=1 converges to u∗ ∈ Eαp , and u∗ is a
solution of BVP(1.1) on Eαp .

According to the conclusion obtained in Step 3, we have {uk}∞k=1 ⊂ Eαp is
bounded. Since Eαp is a reflexive space, there exists a weakly convergent subsequence
such that uki ⇀ u∗ on Eαp as ki → ∞. Without loss of generality, take {uki} as
{uk}. Then, from Lemma 2.3, one has uk → u∗ in C([0, T ],R), as k →∞.

Suppose that the sequence {uk}∞k=1 is divergent on Eαp . Then, there exists a
number ε0 > 0, for any positive number N such that for each k, k′ > N , we have
‖ uk′ − uk ‖α,p≥ ε0.
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Moreover, from (3.8), there exists l2 ∈ R+ such that∫ T

0

1

ωp−2(t)
(ϕp(ω(t)0D

α
t uk′(t))− ϕp(ω(t)0D

α
t uk(t)))0D

α
t (uk′(t)− uk(t))dt

≥l2 ‖ uk′ − uk ‖pα,p .

Therefore, we have

〈I ′uk′−1
(uk′(t))− I ′uk−1

(uk(t)), uk′(t)− uk(t)〉 (3.18)

=

∫ T

0

1

ωp−2(t)
(ϕp(ω(t)0D

α
t uk′(t))− ϕp(ω(t)0D

α
t uk(t)))0D

α
t (uk′(t)− uk(t))

+ λ(uk′(t)− uk(t))2dt−
∫ T

0

(h(uk′(t))− h(uk(t)))(uk′(t)− uk(t))dt

−
∫ T

0

(f(t, uk′(t), 0D
α
t uk′−1(t))− f(t, uk(t), 0D

α
t uk−1(t)))(uk′(t)− uk(t))dt

≥l2 ‖ uk′−uk ‖pα,p+

∫ T

0

λ(uk′(t)−uk(t))2−(h(uk′(t))−h(uk(t)))(uk′(t)−uk(t))dt

−
∫ T

0

(f(t, uk′(t), 0D
α
t uk′−1(t))− f(t, uk(t), 0D

α
t uk−1(t)))(uk′(t)− uk(t))dt.

Recalling 〈I ′uk−1
(uk(t)), uk′(t) − uk(t)〉 = 0, 〈I ′uk′−1

(uk′(t)), uk′(t) − uk(t)〉 = 0 and

λ ≥ L, then, combining (3.18), (1.2), (2.6) and (H3), yields

l2 ‖ uk′ − uk ‖pα,p

≤
∫ T

0

(h(uk′(t))− h(uk(t)))(uk′(t)− uk(t))dt−
∫ T

0

λ(uk′(t)− uk(t))2dt

+

∫ T

0

(f(t, uk′(t), 0D
α
t uk′−1(t))− f(t, uk(t), 0D

α
t uk−1(t)))(uk′(t)− uk(t))dt

≤
∫ T

0

(L− λ) | uk′(t)− uk(t) |2 dt+

∫ T

0

(
M1 | uk′(t)− uk(t) |

+M2 | 0D
α
t uk′−1(t)− 0D

α
t uk−1(t) |

)
| uk′(t)− uk(t) | dt

≤M1

∫ T

0

| uk′(t)− uk(t) || uk′(t)− uk(t) | dt+M2

∫ T

0

| 0D
α
t uk′−1(t)

− 0D
α
t uk−1(t) || uk′(t)− uk(t) | dt

≤M1T ‖uk′ − uk ‖∞‖uk′−uk ‖∞+M2T
p−1
p ‖ uk′−uk ‖∞‖ 0D

α
t (uk′−1−uk−1) ‖Lp

≤2M1TG
∗ ‖ uk′ − uk ‖∞ +

2M2T
p−1
p G

ω
1
p

0

‖ uk′ − uk ‖∞

=

(
2M1TG

∗ +
2M2T

p−1
p G

ω
1
p

0

)
‖ uk′ − uk ‖∞

:=C∗ ‖ uk′ − uk ‖∞,

which means that ‖ uk′ − uk ‖∞≥ l2
C∗ ‖ uk′ − uk ‖

p
α,p≥ l2

C∗ ε
p
0 := ε′0, i.e., there exists

a number ε′0 > 0, for any positive number N such that for each k, k′ > N , we have
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‖ uk′ − uk ‖∞≥ ε′0. It is contradict with the fact that {uk(t)} strongly converges
to u∗(t) in C([0, T ],R) as k → ∞. Hence, we obtain that the sequence {uk(t)}
converges to u∗(t) on Eαp as k →∞.

In the following, we claim that I ′u∗(u
∗(t)) = 0. In fact, in view of (3.7), there

exists a nonnegative constant l3 such that

|| 0D
α
t uk(t) |p−2

0D
α
t uk(t)− | 0D

α
t u
∗(t) |p−2

0D
α
t u
∗(t) | (3.19)

≤l3 | 0D
α
t uk(t)− 0D

α
t u
∗(t) | (| 0D

α
t uk(t) | + | 0D

α
t u
∗(t) |)p−2, p ≥ 2.

Then, for any v(t) ∈ Eαp , from (3.19), we derive

|
∫ T

0

1

ωp−2(t)
(ϕp(ω(t)0D

α
t uk(t))− ϕp(ω(t)0D

α
t u
∗(t)))0D

α
t v(t)dt | (3.20)

≤
∫ T

0

ω(t) || 0D
α
t uk(t) |p−2

0D
α
t uk(t)− | 0D

α
t u
∗(t) |p−2

0D
α
t u
∗(t) | · | 0D

α
t v(t) | dt

≤
∫ T

0

ω(t)l3 | 0D
α
t (uk(t)− u∗(t)) | (| 0D

α
t uk(t) | + | 0D

α
t u
∗(t) |)p−2 | 0D

α
t v(t) | dt.

According to multiple Hölder inequality presented in Lemma 2.6, we obtain∫ T

0

ω(t) | 0D
α
t (uk(t)− u∗(t)) | (| 0D

α
t uk(t) | + | 0D

α
t u
∗(t) |)p−2 | 0D

α
t v(t) | dt

≤ ‖ ω(t)0D
α
t (uk − u∗) ‖Lp · ‖ 0D

α
t (| uk | + | u∗ |) ‖p−2

Lp · ‖ 0D
α
t v ‖Lp

≤(ω0)1− 1
p ‖ uk − u∗ ‖α,p · ‖ 0D

α
t (| uk | + | u∗ |) ‖p−2

Lp · ‖ 0D
α
t v ‖Lp . (3.21)

Then, (3.20) is written as

|
∫ T

0

1

ωp−2(t)
(ϕp(ω(t)0D

α
t uk(t))− ϕp(ω(t)0D

α
t u
∗(t)))0D

α
t v(t)dt |

≤l3(ω0)1− 1
p ‖ uk − u∗ ‖α,p · ‖ 0D

α
t (| uk | + | u∗ |) ‖p−2

Lp · ‖ 0D
α
t v ‖Lp .

Since uk(t)→ u∗(t) in Eαp as k →∞, we can easily observe that

lim
k→∞

∫ T

0

1

ωp−2(t)
ϕp(ω(t)0D

α
t uk(t))0D

α
t v(t)dt

=

∫ T

0

1

ωp−2(t)
ϕp(ω(t)0D

α
t u
∗(t))0D

α
t v(t)dt. (3.22)

Additionally, based on (1.2) and (2.6), we have

|
∫ T

0

λuk(t)v(t)− h(uk(t))v(t)dt−
∫ T

0

λu∗(t)v(t)− h(u∗(t))v(t)dt |

≤
∫ T

0

λ | uk(t)− u∗(t) || v(t) | +L | uk(t)− u∗(t) || v(t) | dt

≤T (λ+ L)Λ
2 ‖ uk − u∗ ‖α,p‖ v ‖α,p .

By using uk(t)→ u∗(t) in Eαp as k →∞, for any v(t) ∈ Eαp , a.e. t ∈ [0, T ], we have

lim
k→∞

∫ T

0

λuk(t)v(t)− h(uk(t))v(t)dt =

∫ T

0

λu∗(t)v(t)− h(u∗(t))v(t)dt. (3.23)
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On the other hand, based on (H3), (2.5), (2.6) and the Hölder inequality, for
every v(t) ∈ Eαp , a.e. t ∈ [0, T ], one has

|
∫ T

0

(f(t, u∗(t), 0D
α
t u
∗(t))− f(t, uk(t), 0D

α
t uk−1(t)))v(t)dt |

≤
∫ T

0

(
M1 | uk(t)− u∗(t) | +M2 | 0D

α
t uk−1(t)− 0D

α
t u
∗(t) |

)
| v(t) | dt

≤M1 ‖ uk − u∗ ‖Lp‖ v ‖
L

p
p−1

+M2 ‖ v ‖
L

p
p−1
‖ 0D

α
t (uk−1 − u∗) ‖Lp

≤M1Λ ‖ uk − u∗ ‖α,p‖ v ‖
L

p
p−1

+M2 ‖ v ‖
L

p
p−1

‖ uk−1 − u∗ ‖α,p
ω

1
p

0

.

Clearly, sequence uk(t)→ u∗(t) in Eαp as k →∞, which means that

lim
k→∞

∫ T

0

f(t, uk(t), 0D
α
t uk−1(t))v(t)dt =

∫ T

0

f(t, u∗(t), 0D
α
t u
∗(t))v(t)dt. (3.24)

Combining (3.22)–(3.24) with I ′uk−1
(uk(t))v(t) = 0, for any v(t) ∈ Eαp , yields∫ T

0

1

ωp−2(t)
ϕp(ω(t)0D

α
t u
∗(t))0D

α
t v(t) + λu∗(t)v(t)dt

=

∫ T

0

h(u∗(t))v(t)dt+

∫ T

0

f(t, u∗(t), 0D
α
t u
∗(t))v(t)dt.

Namely, I ′u∗(u
∗(t))v(t) = 0, for any v(t) ∈ Eαp , and we can also guarantee that

lim
k→∞

I ′uk−1
(uk(t)) = I ′u∗(u

∗(t)). Hence, u∗(t) is a solution of BVP(1.1) on Eαp . The

proof is completed.

Remark 3.1. It is well known that the nonlocal and nonlinear differential operator

tD
α
Tϕp(0D

α
t ) can be reduced to the linear differential operator tD

α
T 0D

α
t under p = 2.

Thus, the contents of our paper based on the space of Lp([0, T ],R) (2 ≤ p <∞) are
more general comparing with the existing relevant results based on the inner product
space of L2([0, T ],R). Moreover, we present some looser assumptions to establish
the existence of solutions for BVP (1.1), which guarantee the conclusion obtained
in the paper more convenience for application. For example, in reference [6], the
complex parameter conditions P0 < 1 and Q0

1−P0
< 1 are required to ensure the

existence of solutions for the equation. The analogous restricted conditions do not
appear in our assumptions. So far, little work has been done for the existence of
solutions of p-Laplacian fractional boundary value problem with nonlinear function
f including the fractional derivative. Therefore, it is worth studying further.

4. Example

Let p = 3, λ = 1, h(u(t)) = 1
2 sinu(t). Then, BVP (1.1) becomes the following form tD

α
T

(
1
ω(t)ϕ3(ω(t)0D

α
t u(t))

)
+ u(t) = f(t, u, c0D

α
t u(t)) + 1

2 sinu(t),

u(0) = u(T ) = 0, a.e. t ∈ [0, T ].

(4.1)
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It is easy to observe that 1
2 sinu(t) ≤ 1

2 | u(t) |, i.e., L = 1
2 , which means that

λ − L > 0. Define F (t, x(t), y(t)) = e−tx4 + tx4(sin y)2. Then, f(t, x(t), y(t)) =
4e−tx3 + 4tx3(sin y)2.

We claim that the conditions of (H1)–(H3) in Theorem 3.1 hold.
(i)

τF (t, x, y)− f(t, x, y)x = 0, x, y ∈ R, a.e. t ∈ [0, T ],

where τ = 4, a = b = d = 0;
(ii) F (t, x, y) ≤ x4 + Tx4y2, for x, y ∈ R, a.e. t ∈ [0, T ],

F (t, x, y) ≥ 1
eT
x4 − Txy2, for x, y ∈ R, a.e. t ∈ [0, T ],

(4.2)

where ζ = 4, γ = 4, η1 = 2, η2 = 2, s1 = 1, s2 = T , s′1 = 1
eT

, s′2 = T , c(t) = ϑ(t) = 0.
(iii)

| f(t, x, y)− f(t, x′, y′) | ≤| f(t, x, y)− f(t, x′, y) | + | f(t, x′, y)− f(t, x′, y′) |
≤ (12 + 12T )(G∗)2 | x− x′ | +(4 + 8T )(G∗)3 | y − y′ |,

for x, x′ ∈ [−G∗, G∗], y, y′ ∈ R, a.e. t ∈ [0, T ], where M1 = (12 + 12T )(G∗)2 and
M2 = (4 + 8T )(G∗)3.

Hence, all the conditions of Theorem 3.1 are satisfied. Namely, BVP (4.1) exists
one nontrivial solution on Eαp , for p = 3.

5. Conclusion

In this paper, a class of fractional differential equation with p-Laplacian has been
investigated. Combining the mountain pass theorem with iterative technique, the
existence of at least one nontrivial solution for BVP (1.1) has been obtained. The
reasonably function space and variational framework for BVP (1.1) have been de-
veloped to apply the variational approach. And iterative method has been used to
obtain the solution of our equation. Finally, we have illustrated the application of
our main result through an example.
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