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SOME ITERATIVE ALGORITHMS FOR
POSITIVE DEFINITE SOLUTION TO
NONLINEAR MATRIX EQUATIONS∗

Baohua Huang1and Changfeng Ma1,†

Abstract This paper is concerned with the unique positive definite solu-
tion to a system of nonlinear matrix equations X − A∗Ȳ −1A = In and Y −
B∗X̄−1B = In, where A,B ∈ Cn×n are given matrices. Based on the spe-
cial structure of the system of nonlinear matrix equations, the system can
be equivalently reformulated as V − C∗V̄ −1C = I2n. Moreover, by means
of Sherman-Moorison-Woodbury formula, we derive the relationship between
the solutions of V − C∗V̄ −1C = I2n and the well studied standard nonlinear
matrix equation Z + D∗Z−1D = Q, where D, Q are uniquely determined by
C. Then, we present a structure-preserving doubling algorithm and two modi-
fied structure-preserving doubling algorithms to compute the positive definite
solution of the system. Furthermore, cyclic reduction algorithm and two mod-
ified cyclic reduction algorithms for the positive definite solution of the system
are proposed. Finally, some numerical examples are presented to illustrate the
efficiency of the theoretical results and the behavior of the considered algo-
rithms.

Keywords Nonlinear matrix equation, structure-preserving algorithm, cyclic
reduction algorithm, positive definite solution, convergence theory.
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1. Introduction

Matrix equations appear frequently in many areas of applied mathematics and play
important roles in many applications, such as control theory, system theory [8–
10, 18, 20, 27, 28, 30, 35–39]. Various kinds of matrix equations have received much
attention in the literature (see, for example, [6,7,11,30,37,43–45] and the references
therein). Especially, Zhou et al. [45] considered the solution of matrix equation
X = Af(X)B + C with f(X) = XT , f(X) = X̄ and f(X) = X∗, where XT ,
X̄ and X∗ represent the transpose, the conjugate and the conjugate transpose of
the matrix X, respectively. It is proven that the solvability of these equations is
equivalent to the solvability of some auxiliary standard Stein equations in the form
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of W = AWB+ C, where the dimensions of the coefficient matrices A, B and C are
the same as those of the original equation. A new iterative method for obtaining
an approximation solution of Stein matrix equation X = AXB + C is established
by Zhou et al. [44]. In 2012, Al-Dubiban [1] studied the following systemX −A∗Y −nA = In,

Y −B∗X−mB = In,

where n,m are two positive integers. And Al-Dubiban derived the necessary and
sufficient conditions for the existence of positive definite solutions and presented an
iterative algorithm for obtaining positive definite solutions of the system. Later,
Al-Dubiban [2] further discussed the following problemX +A∗Y −nA = In,

Y +B∗X−mB = In

and proposed an iterative algorithm for finding the positive definite solutions of
the system. Very recently, Huang and Ma [22] established the structure-preserving
doubling algorithms for positive definite solution to the following system of nonlinear
matrix equations X +A∗Y −1A = In,

Y +B∗X−1B = In.
(1.1)

On the other hand, consimilarity of complex matrices arises as a result of studying
an antilinear operator referred to different bases in complex vector spaces and it
plays an important role in modern quantum theory [25]. Based on the theory of
consimilarity, linear matrix equations AX − XB = C and X − AXB = C which
are generally derived by the similarity of square matrices have been respectively
extended to AX − X̄B = C and X − AX̄B = C [4, 5, 26]. Similarly, the system
(1.1) can be generalized to the following system of nonlinear matrix equationsX +A∗Ȳ −1A = In,

Y +B∗X̄−1B = In.

In this paper, we consider the following nonlinear matrix equationsX −A∗Ȳ −1A = In,

Y −B∗X̄−1B = In,
(1.2)

where X,Y ∈ Cn×n are unknown matrices, A,B ∈ Cn×n are given matrices and In
is the identity matrix of order n. By introducing the notations

V =

X 0

0 Y

 , C =

 0 B

A 0

 , (1.3)

the system (1.2) can be equivalently reformulated as

V − C∗V̄ −1C = I2n. (1.4)
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Just as the linear case does, it is expected that nonlinear matrix equation (1.4)
will find the possible applications in the design of modern quantum control theo-
ry. Hence, nonlinear matrix equation (1.4) has received much attention in recent
years [23, 42]. By introducing and studying a matrix operator on complex matri-
ces, Zhou et al. [42] showed that the existence of positive definite solutions to this
class of nonlinear matrix equations is equivalent to the existence of positive definite
solutions to another nonlinear matrix equation. They also studied the bounds of
the positive definite solutions and proposed some sufficient conditions and neces-
sary conditions for the existence of positive definite solutions. Huang and Ma [23]
proposed the structure-preserving-doubling like algorithm for obtaining the posi-
tive definite solution of the nonlinear matrix equation (1.4). Li et al. [31] showed
that the nonlinear matrix equation X +A∗X̄−1A = In has a positive definite solu-
tion if and only if an auxiliary standard nonlinear matrix equation in the form of
Y + (ĀA)∗Y −1(ĀA) = Q has a positive definite solution. They also proposed three
iterative algorithm for finding the positive definite solution.

Motivated and inspired by the work mentioned above, in this paper, we consid-
er the system (1.2). First, we transform the system (1.2) to the nonlinear matrix
equation V − C∗V̄ −1C = I2n. Then, by means of Sherman-Moorison-Woodbury
formula, we derive the relationship between the solutions of V − C∗V̄ −1C = I2n
and the well studied standard nonlinear matrix equation Z +D∗Z−1D = Q, where
D, Q are uniquely determined by C. The standard nonlinear matrix equation
Z + D∗Z−1D = Q has been widely studied [3, 12, 17, 21, 24, 41]. There are several
kinds of results for the analysis on this nonlinear matrix equation, such as, the fixed
point iteration [14], structure-preserving doubling algorithm [16, 32] and some in-
version free iterations [13,34]. Based on reformulation equation Z +D∗Z−1D = Q,
we present a structure-preserving doubling algorithm and two modified structure-
preserving doubling algorithms to compute the positive definite solution of the sys-
tem. Also, cyclic reduction algorithm and two modified cyclic reduction algorithms
for the positive definite solution of the system are proposed. In addition, some nu-
merical examples are presented to illustrate the efficiency of the theoretical results
and the behavior of the considered algorithms.

For convenience, we use the following notations throughout this paper. Let
Cn×n be the sets n × n complex matrices. For A ∈ Cn×n, we write AT , Ā, A∗,
A−1, ‖A‖F and ‖A‖2 to denote transpose, the conjugate, the conjugate transpose,
the inverse, Frobenius norm and the spectral norm of the matrix A, respectively.
Saying A is positive definite matrix means A is a Hermitian positive definite matrix.
For any A = (aij), B = (bij) ∈ Cn×n, we write A ≥ B (or B ≤ A) if A − B is a
Hermitian positive semidefinite matrix. And we write A > B (or B < A) if A−B
is a Hermitian positive definite matrix. Obviously, if 0 ≤ A ≤ B, ‖A‖2 ≤ ‖B‖2.
In addition, 0 denotes the zero matrix of size implied by context. In denotes the
n-order identity matrix and I2n denotes the 2n-order identity matrix.

The reminder of this paper is organized as follows. In Section 2, we give some
preliminaries and related lemmas which will be used in this paper. Then we derive
the relationship between the reformulation equation (1.4) and the standard nonlin-
ear matrix equation Z+D∗Z−1D = Q. Section 3 presents the structure-preserving
doubling algorithms to compute the positive definite solution of the system (1.2).
Cyclic reduction algorithm and two modified cyclic reduction algorithms for the
positive definite solution of the system (1.2) are proposed in Section 4. The numer-
ical examples are given to show the efficiency of the proposed algorithms in Section
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5. The paper ends up with some conclusions in Section 6.

2. Reformulation of nonlinear matrix equation (1.4)

First, we recall the following Sherman-Moorison-Woodbury formula and some ex-
isting results about the positive definite solution of V − C∗V̄ −1C = Q and V +
C∗V̄ −1C = Q.

Lemma 2.1 (Theorem 1.8.1 [40] (Sherman-Morrison-Woodbury formula)). Let A,
B, C and D be some matrices of appropriate dimensions. Assume that A, C,
A+BCD and C−1 +DA−1B are all nonsingular matrices. Then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1.

Lemma 2.2 (Proposition 5.1 [15]). The set of solutions to V − C∗V −1C = Q is
nonempty, and admits a maximal element V+ and a minimal element V−, where V+

satisfies ρ(V −1
+ C) < 1. Moreover, V+ is the unique positive definite solution and it

can be approximated by the fixed point iteration V0 = Q,

Vk+1 = Q+ C∗V −1
k C, k = 0, 1, 2, · · · .

Concerning matrix equation V + C∗V −1C = Q, let us introduce the rational
matrix function

ψ(λ) = λC +Q+ λ−1C∗

defined on the unit circle C of the complex plane, which is Hermitian for any λ ∈ C.
This function is said to be regular if there exists at least a λ ∈ C such that ψ(λ) 6= 0.
Then, we have the following fundamental results.

Lemma 2.3 (Theorem 2.1, Algorithm 4.1 [14]). Matrix equation V +C∗V −1C = Q
has a positive definite solution V if and only if ψ(λ) is regular and ψ(λ) ≥ 0 for
all λ ∈ C. Moreover, if matrix equation V + C∗V −1C = Q has a positive definite
solution, then it has a maximal solution V+ and a minimal solution V− such that
0 < V− ≤ V ≤ V+ for any positive definite solution V . In addition, the maximal
positive definite solution V+ satisfies ρ(V −1

+ C) < 1 and it can be approximated by
the following basic fixed point iteration V0 = Q,

Vk+1 = Q− C∗V −1
k C, k = 0, 1, 2, · · · .

Lemma 2.4 (Theorem 2.2 [33]). Let C be a nonsingular matrix. Then V solves
V +C∗V −1C = Q if and only if U = Q−V solves U+CU−1C∗ = Q. In particular, if
U+ is the maximal positive definite solution of U+CU−1C∗ = Q, then V− = Q−U+

is the minimal positive definite solution of V + C∗V −1C = Q.

Following the idea of [42], it is easy to see that the nonlinear matrix equation
(1.4) can be transformed to the following nonlinear matrix equation

V F − (CH)T (V F)−1CH = I4n, (2.1)
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where the operators (·)F and (·)H are defined as follows. For a complex matrix
A = A1 + iA2 ∈ Cn×n with A1, A2 ∈ Rn×n, we have

AF =

A1 −A2

A2 A1

 , AH =

A2 A1

A1 −A2

 .

Based on the properties of the operator (·)F, (·)H and Lemma 2.2, we have the
following theorem.

Theorem 2.1. The nonlinear matrix equation (1.4) always has a unique positive
definite solution V+, and the matrix sequence {Vk} generated by the following iter-
ation  V0 = I2n,

Vk+1 = I2n + C∗V̄ −1
k C, k = 0, 1, 2, · · ·

(2.2)

converges to V+.

Proof. The proof is similar to Proposition 5.2 in [15], so we omit here.
In order to derive effective algorithms for the unique positive definite solution

to nonlinear matrix equation (1.4), following the idea of Theorem 2 in [31], we
introduce the precondition technique and transform (1.4) to the extensively studied
nonlinear matrix equation Z+D∗Z−1D = Q, where D = C̄C and Q = I2n+C∗C+
C̄C̄∗.

Theorem 2.2. Let V+ > 0 be the unique positive definite solution of (1.4). Then
V+ = Z+ − C̄CT , where Z+ is the maximal positive definite solution of

Z +D∗Z−1D = Q, (2.3)

where D = C̄C and Q = I2n + C∗C + C̄C̄∗.

Proof. First, we consider the nonlinear matrix equation (2.3). Since for all λ ∈ C
with |λ| = 1, we have

Ψ(λ) = Q+ λC̄C + λ−1C̄C

= I2n + C∗C + C̄C̄∗ + λC̄C + λ−1(C̄C)∗

= I2n + C̄C̄∗ + |λ|2C∗C + λC̄C + λ̄(C̄C)∗

= I2n + (C̄∗ + λC)∗(C̄∗ + λC)

> 0.

It then follows from Lemma 2.3 that nonlinear matrix equation (2.3) always has a
positive definite solution, and hence has the maximal positive definite solution Z+.

On the other hand, considering nonlinear matrix equation (1.4), from Theorem
2.1, we know that (1.4) always has a unique positive definite solution V+, and the
sequence {Vk} generated by (2.2) converges to V+.

Now we consider the subsequence {V2r+1}∞r=0 consisting of odd elements of {Vk}
in (2.2). It is obvious that V1 = I2n + C∗C and for all r ≥ 1,

V2r+1 = I2n + C∗V̄ −1
2r C

= I2n + C∗(I2n + C̄∗V −1
2r−1C̄)−1C
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= I2n + C∗[I2n − C̄∗(V2r−1 + C̄C̄∗)−1C̄]C

= I2n + C∗C − (C̄C̄∗)(V2r−1 + C̄C̄∗)−1(C̄C), (2.4)

where the Sherman-Moorison-Woodbury formula is used in the third equality. Hence

V2r+1 + C̄C̄∗ = I2n + C∗C + C̄C̄∗ − (C̄C̄∗)(V2r−1 + C̄C̄∗)−1(C̄C). (2.5)

Let
Zr = V2r+1 + C̄C̄∗, r = 0, 1, 2, · · · . (2.6)

Then Zr ≥ C̄C̄∗. Moreover, from the relation (2.5), we conclude that Zr satisfiesZ0 = V1 + C̄C̄∗ = I2n + C∗C + C̄C̄∗ = Q,

Zr = Q− (C̄C)∗Z−1
r−1(C̄C), r = 1, 2, · · · .

So, by Lemma 2.3, we know that {Vr} is monotonically decreasing and converges to
V+, which is the maximal positive definite solution to the nonlinear matrix equation
(2.3).

At the same time, {Vr} converges to the unique positive definite solution V+ of
the nonlinear matrix equation (1.4), so does the odd sequence {V2r+1}∞r=0. Taking
limits on both sides of (2.6), we have

Z+ = lim
r→∞

Zr = lim
r→∞

V2r+1 + C̄C̄∗ = V+ + C̄C̄∗,

which completes the proof.

3. Structure-preserving doubling algorithm for the
system (1.2)

In this section, we present the structure-preserving doubling algorithm for find-
ing the unique positive definite solution of the system (1.2). Firstly, we give the
structure-preserving doubling algorithm for nonlinear matrix equation (2.3), which
has been studied in [32].

Lin and Xu [32] established the following recursive formulas:
Dk+1 = Dk(Qk − Pk)−1Dk,

Qk+1 = Qk −D∗k(Qk − Pk)−1Dk,

Pk+1 = Pk +Dk(Qk − Pk)−1D∗k, k = 0, 1, 2, · · · .

(3.1)

Algorithm 3.1 outlines the structure-preserving doubling algorithm for computing
positive definite solution to the nonlinear matrix equation (2.3) in [32].

Algorithm 3.1. [32] (Structure-preserving doubling algorithm for nonlinear ma-
trix equation (2.3)).

Step 1. Input the matrix D ∈ Cn×n and tolerance error ε ≥ 0. Compute
D0 = D, Q0 = Q, P0 = 0. Set k = 0.

Step 2. Obtain Dk+1, Qk+1, Pk+1 by the iterative scheme (3.1).
Step 3. If ‖Qk+1 −Qk‖F ≤ ε, stop. Otherwise, k = k + 1, go to Step 2.
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The convergence theory of Algorithm 3.1 has been studied in [32], that is, we
have the following lemma.

Lemma 3.1 (Theorem 4.1 [32]). Assume that Z > 0 satisfies (2.3) and S = Z−1D.
If ρ(S) < 1, then

(i) lim sup
k→∞

2k
√
‖Dk‖2 ≤ ρ(S);

(ii) lim sup
k→∞

2k
√
‖Qk − Z‖2 ≤ ρ(S)2.

Based on Algorithm 3.1, we can derive the structure-preserving doubling algo-
rithm for nonlinear matrix equation (1.4).

Algorithm 3.2. (Structure-preserving doubling algorithm for nonlinear matrix
equation (1.4)).

Step 1. Input the matrix C ∈ Cn×n and tolerance error ε ≥ 0. Compute
C0 = C̄C, Q0 = Q = I2n + C∗C + C̄C̄∗, P0 = 0. Set k = 0.

Step 2. Obtain Ck+1, Qk+1, Pk+1 by the following iterative scheme
Ck+1 = Ck(Qk − Pk)−1Ck,

Qk+1 = Qk − C∗k(Qk − Pk)−1Ck,

Pk+1 = Pk + Ck(Qk − Pk)−1C∗k , k = 0, 1, 2, · · · .

(3.2)

Step 3. If ‖Qk+1 − Qk‖F ≤ ε, then Z+ = Qk+1, compute V+ = Z+ − C̄C̄∗,
stop. Otherwise, k = k + 1, go to Step 2.

From the iterative scheme (3.2), we find that Algorithm 3.2 needs to compute a
inverse of 2n×2n matrix and five product of 2n×2n matrices. However, the matrices
in the original problem (1.2) are just n-order. Therefore, applying Algorithm 3.2
to compute the positive definite solution of the system (1.2) is unpractical even
through its fast convergence rate. In order to reduce the calculation of Algorithm
3.2, we present the following theorem, which will be important to the studies of the
structure-preserving doubling algorithm for the system (1.2).

Theorem 3.1. Let Ck, Qk, Pk be generated by Algorithm 3.2. Then, for all k ≥ 0,
Ck, Qk, Pk have the forms of

Ck =

Ak 0

0 Bk

 , Qk =

Ek 0

0 Fk

 , Pk =

Gk 0

0 Hk

 , (3.3)

respectively.

Proof. We prove this theorem by mathematical induction. Firstly, from Step 1
of Algorithm 3.2, we have

C0 = C̄C =

 0 B̄

Ā 0

 0 B

A 0

 =

 B̄A 0

0 ĀB

 , P0 =

0 0

0 0


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and

Q0 = I2n + C∗C + C̄C̄∗

=

 In 0

0 In

 +

 0 A∗

B∗ 0

 0 B

A 0

 +

 0 B̄

Ā 0

 0 AT

BT 0


=

 In +A∗A+ B̄B̄∗ 0

0 In +B∗B + ĀĀ∗

 .

Suppose that Ck, Pk, Qk have the forms of (3.3). Then, we immediately have

Qk − Pk =

Ek 0

0 Fk

−
Gk 0

0 Hk

 =

Ek −Gk 0

0 Fk −Hk

 .

It then follows from iterative scheme (3.2) that

Ck+1 = Ck(Qk − Pk)−1Ck

=

Ak 0

0 Bk

Ek −Gk 0

0 Fk −Hk

−1 Ak 0

0 Bk


=

Ak(Ek −Gk)−1Ak 0

0 Bk(Fk −Hk)−1Bk

 ;

Qk+1 = Qk − C∗k(Qk − Pk)−1Ck

=

Ek 0

0 Fk

−
A∗k 0

0 B∗k

Ek −Gk 0

0 Fk −Hk

−1 Ak 0

0 Bk


=

Ek −A∗k(Ek −Gk)−1Ak 0

0 Fk −B∗k(Fk −Hk)−1Bk

 ;

Pk+1 = Pk + Ck(Qk − Pk)−1C∗k

=

Gk 0

0 Hk

−
Ak 0

0 Bk

Ek −Gk 0

0 Fk −Hk

−1 A∗k 0

0 B∗k


=

Gk +Ak(Ek −Gk)−1A∗k 0

0 Hk +Bk(Fk −Hk)−1B∗k

 .

Hence, Ck+1, Pk+1, Qk+1 also have the forms of (3.3). The proof is completed.

Remark 3.1. From the proof of Theorem 3.1, we have the following formulas
Ak+1 = Ak(Ek −Gk)−1Ak,

Ek+1 = Ek −A∗k(Ek −Gk)−1Ak,

Gk+1 = Gk +Ak(Ek −Gk)−1A∗k, k = 0, 1, 2, · · · ,

(3.4)
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Bk+1 = Bk(Fk −Hk)−1Bk,

Fk+1 = Fk −B∗k(Fk −Hk)−1Bk,

Hk+1 = Hk +Bk(Fk −Hk)−1B∗k , k = 0, 1, 2, · · · .

(3.5)

Now we are in a position to give the structure-preserving doubling algorithm for
solving the system (1.2).

Algorithm 3.3. (Structure-preserving doubling algorithm for the system (1.2)).
Step 1. Input the matrix A,B ∈ Cn×n and tolerance error ε ≥ 0. Compute

A0 = B̄A, G0 = 0, E0 = In + A∗A + B̄B̄∗, B0 = ĀB, F0 = In + B∗B + ĀĀ∗,
H0 = 0. Set k = 0.

Step 2. Compute Ak+1, Ek+1, Gk+1 by the iterative scheme (3.4) and Bk+1,
Fk+1, Hk+1 by the iterative scheme (3.5).

Step 3. If ‖Ek+1 − Ek‖F + ‖Fk+1 − Fk‖F ≤ ε, then X�+ = Ek+1, Y �+ = Fk+1,
compute X+ = X�+ − B̄B̄∗, Y+ = Y �+ − ĀĀ∗, stop . Otherwise, k = k + 1, go to
Step 2.

Next, we establish the convergence theory for Algorithm 3.3 based on Lemma
3.1.

Theorem 3.2. Assume that X > 0 and Y > 0 satisfies the system (1.2), let
X� = X + B̄B̄∗, Y � = Y + ĀĀ∗ and S1 = (X�)−1B̄A, S2 = (Y �)−1ĀB. If
ρ(S1) < 1 and ρ(S2) < 1, then

(i) lim sup
k→∞

2k
√
‖Ak‖2 ≤ max{ρ(S1), ρ(S2)},

lim sup
k→∞

2k
√
‖Bk‖2 ≤ max{ρ(S1), ρ(S2)};

(ii) lim sup
k→∞

2k
√
‖Ek −X�‖2 ≤ max{ρ(S1), ρ(S2)}2,

lim sup
k→∞

2k
√
‖Fk − Y �‖2 ≤ max {ρ(S1), ρ(S2)}2.

Proof. If X > 0 and Y > 0 satisfies the system (1.2), then

V =

X 0

0 Y


satisfies the nonlinear matrix equation (1.4).

From Theorem 2.2, we know that

V + C̄C̄∗ =

X 0

0 Y

 +

 0 B̄

Ā 0

 0 Ā∗

B̄∗ 0

 =

X + B̄B̄∗ 0

0 Y + ĀĀ∗

 =

X� 0

0 Y �


is the solution of nonlinear matrix equation (2.3). By the definition of S in Lemma
3.1, we have

S =

X� 0

0 Y �

−1 0 B̄

Ā 0

0 B

A 0

 =

(X�)−1B̄A 0

0 (Y �)−1ĀB

 =

S1 0

0 S2

 . (3.6)
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On the other hand, from Algorithm 3.3 and Theorem 3.1, we get

Dk = Ck =

Ak 0

0 Bk

 , Qk =

Ek 0

0 Fk

 . (3.7)

Together (3.6) with (3.7) yields

lim sup
k→∞

2k
√
‖Ak‖2 ≤ lim sup

k→∞

2k
√
‖Dk‖2 ≤ ρ(S) = max{ρ(S1), ρ(S2)}

and

lim sup
k→∞

2k
√
‖Ek −X�‖2 ≤ lim sup

k→∞

2k
√
‖Qk − (V + C̄C̄∗)‖2

≤ ρ(S)2 = max{ρ(S1), ρ(S2)}2,

which completes the proof.
From Algorithm 3.3, we find that the iterative scheme (3.4) and (3.5) are inde-

pendent of each other. So, we have the following two independent algorithms.

Algorithm 3.4. (Modified structure-preserving doubling algorithm for the sys-
tem(1.2)).

Step 1. Input the matrix A,B ∈ Cn×n and tolerance error ε ≥ 0. Compute
A0 = B̄A, G0 = 0 and E0 = In +A∗A+ B̄B̄∗. Set k = 0.

Step 2. Compute Ak+1, Ek+1, Gk+1 by the iterative scheme (3.4).
Step 3. If ‖Ek+1 − Ek‖F ≤ ε, then X�+ = Ek+1, compute X+ = X�+ − B̄B̄∗,

Y = In −B∗X̄−1
+ B. Otherwise, k = k + 1, go to Step 2.

Algorithm 3.5. (Modified structure-preserving doubling algorithm for the system
(1.2)).

Step 1. Input the matrix A,B ∈ Cn×n and tolerance error ε ≥ 0. Compute
B0 = ĀB, F0 = In +B∗B + ĀĀ∗ and H0 = 0. Set k = 0.

Step 2. Compute Bk+1, Fk+1, Hk+1 by the iterative scheme (3.5).
Step 3. If ‖Fk+1 − Fk‖F ≤ ε, stop. Set Y �+ = Fk+1, compute Y+ = Y �+ − ĀĀ∗

and X = In −A∗Ȳ −1
+ A. Otherwise, k = k + 1, go to Step 2.

Remark 3.2. Although the variables X and Y in the system (1.2) are coupled to
each other, Algorithms 3.4 and 3.5 can fast implement decoupling calculation of X
and Y . Therefore, we can expect that the CPU time of Algorithms 3.4 and 3.5 is
about half of that of Algorithm 3.3.

4. Cyclic reduction algorithm for the system (1.2)

In this section, we present the cyclic reduction algorithm for finding the unique
positive definite solution of the system (1.2). First, we review the cyclic reduction
algorithm for solving nonlinear matrix equation (2.3), which has been discussed
in [33].

Algorithm 4.1. [33] (Cyclic reduction algorithm for nonlinear matrix equation
(2.3)).

Step 1. Input the matrix D ∈ C2n×2n and tolerance error ε ≥ 0. Compute
D0 = D, Q0 = Q, Z0 = Q. Set k = 0.
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Step 2. Obtain Dk+1, Qk+1, Zk+1 by the following iterative scheme
Dk+1 = DkQ

−1
k Dk,

Qk+1 = Qk −D∗kQ
−1
k Dk −DkQ

−1
k D∗k,

Zk+1 = Zk −D∗kQ
−1
k Dk, k = 0, 1, 2, · · · .

(4.1)

Step 3. If ‖Zk+1 − Zk‖F ≤ ε, stop. Otherwise, k = k + 1, go to Step 2.

The convergence theory of Algorithm 4.1 has been studied in [33], that is, we
have the following lemma.

Lemma 4.1 (Theorem 4.1 [33]). For the sequences of matrices {Zk}, {Qk} defined
in Algorithm 4.1, the following results hold:

(i) 0 < Zk+1 ≤ Zk, 0 < Qk+1 ≤ Qk, k = 0, 1, 2, · · · ;
(ii) {Qk} and {Q−1

k } are bounded in norm.

Moreover, assume that Z > 0 satisfies (2.3) and S = Z−1D. If σ = ρ(S) < 1, then
for any ε > 0 and for any matrix norm ‖ · ‖, it holds that

(iii) ‖Dk‖ = O((σ + ε)2k

);

(iiii) ‖I2n − ZkZ
−1‖ = O((σ + ε)2k+1

).

By means of Theorem 2.2, we give the cyclic reduction algorithm for nonlinear
matrix equation (1.4).

Algorithm 4.2. (Cyclic reduction algorithm for nonlinear matrix equationv(1.4)).
Step 1. Input the matrix C ∈ C2n×2n and tolerance error ε ≥ 0. Compute

C0 = C̄C, Q0 = Q = I2n + C∗C + C̄C̄∗, Z0 = Q = I2n + C∗C + C̄C̄∗. Set k = 0.
Step 2. Obtain Ck+1, Qk+1, Zk+1 by the following iterative scheme

Ck+1 = CkQ
−1
k Ck,

Qk+1 = Qk − C∗kQ
−1
k Ck − CkQ

−1
k C∗k ,

Zk+1 = Zk − C∗kQ
−1
k Ck, k = 0, 1, 2, · · ·

(4.2)

Step 3. If ‖Zk+1−Zk‖F ≤ ε, then Z+ = Zk+1, compute V+ = Z+− C̄C̄∗, stop.
Otherwise, k = k + 1, go to Step 2.

From the iterative scheme (4.2), we find that Algorithm 4.2 needs to compute a
inverse of 2n× 2n matrix and seven product of 2n× 2n matrices. However, the ma-
trices in the original problem (1.2) are just n-order. Therefore, applying Algorithm
4.2 to compute the positive definite solution of the system (1.2) is unpractical even
through its fast convergence rate. In order to reduce the calculation of Algorithm
4.2, we present the following theorem, which will be important to the studies of the
structure-preserving doubling algorithm for the system (1.2).

Theorem 4.1. Let Ck, Qk, Zk be generated by Algorithm 4.2. Then, for all k ≥ 0,
Ck, Qk, Zk have the forms of

Ck =

Ak 0

0 Bk

 , Qk =

Ek 0

0 Fk

 , Zk =

Gk 0

0 Hk

 , (4.3)
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respectively.

Proof. We prove this theorem by mathematical induction. First, for k = 0, from
Step 1 of Algorithm 4.2, we have

C0 = C̄C =

 0 B̄

Ā 0

 0 B

A 0

 =

 B̄A 0

0 ĀB


and

Q0 = I2n + C∗C + C̄C̄∗

=

 In 0

0 In

 +

 0 A∗

B∗ 0

 0 B

A 0

 +

 0 B̄

Ā 0

 0 AT

BT 0


=

 In +A∗A+ B̄B̄∗ 0

0 In +B∗B + ĀĀ∗

 .

Hence

Z0 = Q0 = Q =

 In +A∗A+ B̄B̄∗ 0

0 In +B∗B + ĀĀ∗

 .

Suppose that Ck, Qk, Zk have the forms of (4.3). It then follows from the
iteration formula (4.2) that

Ck+1 = CkQ
−1
k Ck =

Ak 0

0 Bk

Ek 0

0 Fk

−1 Ak 0

0 Bk


=

AkE
−1
k Ak 0

0 BkF
−1
k Bk

 ;

Qk+1 = Qk − C∗kQ−1
k Ck − CkQ

−1
k C∗k

=

Ek 0

0 Fk

−
A∗k 0

0 B∗k

Ek 0

0 Fk

−1 Ak 0

0 Bk


−

Ak 0

0 Bk

Ek 0

0 Fk

−1 A∗k 0

0 B∗k


=

Ek −A∗kE
−1
k Ak −AkE

−1
k A∗k 0

0 Fk −B∗kF
−1
k Bk −BkF

−1
k B∗k


and

Zk+1 = Zk − C∗kQ−1
k Ck

=

Gk 0

0 Hk

−
A∗k 0

0 B∗k

Ek 0

0 Fk

−1 Ak 0

0 Bk


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=

Gk −A∗kE
−1
k Ak 0

0 Hk −B∗kF
−1
k Bk

 .

Hence, Ck+1, Qk+1, Zk+1 also have the forms of (4.3). The proof is completed.

Remark 4.1. From the proof of Theorem 4.1, we have the following formulas
Ak+1 = AkE

−1
k Ak,

Ek+1 = Ek −A∗kE
−1
k Ak −AkE

−1
k A∗k,

Gk+1 = Gk −A∗kE
−1
k Ak, k = 0, 1, 2, · · · ,

(4.4)


Bk+1 = BkF

−1
k Bk,

Fk+1 = Fk −B∗kF
−1
k Bk −BkF

−1
k B∗k ,

Hk+1 = Hk −B∗kF
−1
k Bk, k = 0, 1, 2, · · · .

(4.5)

Now we are in a position to give the cyclic reduction algorithm for solving the
system (1.2).

Algorithm 4.3. (Cyclic reduction algorithm for the system (1.2)).
Step 1. Input the matrix A,B ∈ Cn×n and tolerance error ε ≥ 0. Compute

A0 = B̄A, E0 = G0 = In + A∗A + B̄B̄∗, B0 = ĀB, F0 = H0 = In + B∗B + ĀĀ∗.
Set k = 0.

Step 2. Compute Ak+1, Ek+1, Gk+1 by the iterative scheme (4.4) and Bk+1,
Fk+1, Hk+1 by the iterative scheme (4.5).

Step 3. If ‖Gk+1 −Gk‖F + ‖Hk+1 −Hk‖F ≤ ε, then X�+ = Gk+1, Y �+ = Hk+1,
compute X+ = X�+ − B̄B̄∗, Y+ = Y �+ − ĀĀ∗, stop . Otherwise, k = k + 1, go to
Step 2.

Next, we establish the convergence theory of Algorithm 4.3 based on Lemma
4.1.

Theorem 4.2. For the sequences of matrices {Ek}, {Fk}, {Gk}, {Hk} defined in
Algorithm 4.3, the following hold:

(i) 0 < Ek+1 ≤ Ek, 0 < Fk+1 ≤ Fk, 0 < Gk+1 ≤ Gk, 0 < Hk+1 ≤ Hk,
k = 0, 1, 2, · · · ;

(ii) {Ek}, {E−1
k } and {Fk}, {F−1

k } are bounded in norm.

Moreover, assume that X > 0, Y > 0 satisfies (1.2), let X� = X + B̄B̄∗, Y � =
Y + ĀĀ∗ and S1 = (X�)−1B̄A, S2 = (Y �)−1ĀB. If σ = max{ρ(S1), ρ(S2)} < 1,
then for any ε > 0 and for any matrix norm ‖ · ‖, it holds that

(iii) ‖Ak‖ = O((σ + ε)2k

), ‖Bk‖ = O((σ + ε)2k

);

(iiii) ‖In −Gk(X�)−1‖ = O((σ + ε)2k+1

), ‖In −Hk(Y �)−1‖ = O((σ + ε)2k+1

).

Proof. First, from Algorithm 4.1, Algorithm 4.3 and Theorem 4.1, we get

Dk = Ck =

Ak 0

0 Bk

 , Qk =

Ek 0

0 Fk

 , Zk =

Gk 0

0 Hk

 . (4.6)
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It then follows from Lemma 4.1 that

0 < Ek+1 ≤ Ek, 0 < Fk+1 ≤ Fk, 0 < Gk+1 ≤ Gk, 0 < Hk+1 ≤ Hk, k = 0, 1, 2, · · · ,

and
{Ek}, {E−1

k }, {Fk}, {F−1
k }

are bounded in norm. If X > 0 and Y > 0 satisfies the system (1.2), then

V =

X 0

0 Y


satisfies the nonlinear matrix equation (1.4).

From Theorem 2.2, we know that

V + C̄C̄∗ =

X 0

0 Y

 +

0 B̄

Ā 0

 0 Ā∗

B̄∗ 0

 =

X + B̄B̄∗ 0

0 Y + ĀĀ∗

 =

X� 0

0 Y �


is the solution of nonlinear matrix equation (2.3). By the definition of S in Lemma
4.1, we have

S =

X� 0

0 Y �

−1  0 B̄

Ā 0

 0 B

A 0

 =

 (X�)−1B̄A 0

0 (Y �)−1ĀB

 =

S1 0

0 S2

 .

(4.7)
Together (4.6) with (4.7) yields

‖Ak‖ ≤ ‖Zk‖ ≤ O((σ + ε)2k

), ‖Bk‖ ≤ ‖Zk‖ ≤ O((σ + ε)2k

)

and

‖In −Gk(X�)−1‖ ≤ ‖I2n − ZkZ
−1‖ = O((σ + ε)2k+1

),

‖In −Hk(Y �)−1‖ ≤ ‖I2n − ZkZ
−1‖ = O((σ + ε)2k+1

),

which completes the proof.
From Algorithm 4.3, we find that the iterative scheme (4.4) and (4.5) are inde-

pendent of each other. So, we have the following two independent algorithms.

Algorithm 4.4. (Modified cyclic reduction algorithm for the system (1.2)).
Step 1. Input the matrix A,B ∈ Cn×n and tolerance error ε ≥ 0. Compute

A0 = B̄A and E0 = G0 = In +A∗A+ B̄B̄∗. Set k = 0.
Step 2. Compute Ak+1, Ek+1, Gk+1 by the iterative scheme (4.4).
Step 3. If ‖Gk+1 − Gk‖F ≤ ε, then X�+ = Gk+1, compute X+ = X�+ − B̄B̄∗,

Y = In −B∗X̄−1
+ B. Otherwise, k = k + 1, go to Step 2.

Algorithm 4.5. (Modified cyclic reduction algorithm for the system (1.2)).
Step 1. Input the matrix A,B ∈ Cn×n and tolerance error ε ≥ 0. Compute

B0 = ĀB and F0 = H0 = In +B∗B + ĀĀ∗. Set k = 0.
Step 2. Compute Bk+1, Fk+1, Hk+1 by the iterative scheme (4.5).
Step 3. If ‖Hk+1 −Hk‖F ≤ ε, stop. Set Y �+ = Hk+1, compute Y+ = Y �+ − ĀĀ∗

and X = In −A∗Ȳ −1
+ A. Otherwise, k = k + 1, go to Step 2.
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Remark 4.2. Although the variables X and Y in the system (1.2) are coupled to
each other, Algorithms 4.4 and 4.5 can fast implement decoupling calculation of X
and Y . Therefore, we can expect that the CPU time of Algorithms 4.4 and 4.5 is
about half of that of Algorithm 4.3.

5. Numerical experiments

In this section, we report several numerical results to examine the efficiency of all
the theoretical results. All of the tests were run on the Intel (R) Core (TM), where
the CPU is 2.40 GHz and the memory is 8.0 GB, the programming language is
MATLAB R2015a.

Example 5.1. In this example, we consider the system (1.2) with the coefficient
matrices A and B given by

A =


0.6294− 0.1565i 0.2647 + 0.3115i 0.9150 + 0.3575i 0.9143 + 0.3110i

0.8116 + 0.8315i −0.8049− 0.9286i 0.9298 + 0.5155i −0.0292− 0.6576i

−0.7460 + 0.5844i −0.4430 + 0.6983i −0.6848 + 0.4863i 0.6006 + 0.4121i

0.8268 + 0.9190i 0.0938 + 0.8680i 0.9412− 0.2155i −0.7162− 0.9363i

 ,

B =


−0.4462 + 0.4187i 0.3897 + 0.3102i −0.1225 + 0.9195i −0.6263 + 0.5025i

−0.9077 + 0.5094i −0.3658− 0.6748i −0.2369− 0.3192i −0.0205− 0.4898i

−0.8057− 0.4479i 0.9004− 0.7620i 0.5310 + 0.1705i −0.1088 + 0.0119i

0.6469 + 0.3594i −0.9311− 0.0033i 0.5904− 0.5524i 0.2926 + 0.3982i

 ,

which is generated randomly by the function (2 ∗ rand(n)− 1) + i ∗ (2 ∗ rand(n)− 1)
in MATLAB.

We compute the unique positive definite solution X+, Y+ of the system (1.2)
by Algorithms 3.3, 3.4 and 3.5, Algorithms 4.3, 4.4 and 4.5. In this example, we
stop our algorithm as the description of all kinds of algorithm with ε = 10−14. The
sufficiently accurate unique positive definite solution of the system (1.2) is obtained
as

X+ =


3.3787 + 0.0000i 0.7033− 0.1848i 1.7926− 0.8718i −1.4033− 1.0355i

0.7033 + 0.1848i 3.3038− 0.0000i 0.0475 + 0.2125i −0.2006 + 0.2291i

1.7926 + 0.8718i 0.0475− 0.2125i 3.6834 + 0.0000i 0.0506− 2.2129i

−1.4033 + 1.0355i −0.2006− 0.2291i 0.0506 + 2.2129i 3.9219 + 0.0000i

 ,

and

Y+ =


2.1819 + 0.0000i −0.0527 + 0.9413i 0.2886 + 0.2401i 0.2409 + 0.5423i

−0.0527− 0.9413i 2.1513− 0.0000i 0.3501 + 0.0314i 0.4666− 0.0160i

0.2886− 0.2401i 0.3501− 0.0314i 1.5011 + 0.0000i 0.3567 + 0.2430i

0.2409− 0.5423i 0.4666 + 0.0160i 0.3567− 0.2430i 1.5485 + 0.0000i

 .
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We list the number of required iterations k and the corresponding Res(Xk, Yk),
where Res(Xk, Yk) is defined as follows

Res(Xk, Yk) = ‖In −Xk +A∗Ȳ −1
k A‖F + ‖In − Yk +B∗X̄−1

k B‖F .

The corresponding numerical results are given in Table 1. From Table 1, we find that

Table 1. Numerical comparison of the testing algorithms for Example 5.1

Algorithm 3.3 Algorithm 3.4 Algorithm 3.5

k Res(Xk, Yk) k Res(Xk, Yk) k Res(Xk, Yk)

1 0.4481 1 0.1631 1 0.1390

2 0.0021 2 8.5034e-04 2 5.6614e-04

3 8.2274e-08 3 2.6672e-08 3 2.6037e-08

4 6.9643e-15 4 3.1411e-15 4 1.8683e-15

5 6.9643e-15 5 3.1411e-15 5 1.8683e-15

Algorithm 4.3 Algorithm 4.4 Algorithm 4.5

k Res(Xk, Yk) k Res(Xk, Yk) k Res(Xk, Yk)

1 0.4481 1 0.1631 1 0.1390

2 0.0021 2 8.5034e-04 2 5.6614e-04

3 8.2274e-08 3 2.6672e-08 3 2.6037e-08

4 6.9643e-15 4 3.1411e-15 4 1.8683e-15

5 6.9643e-15 5 3.1411e-15 5 1.8683e-15

structure-preserving doubling algorithm and cyclic reduction algorithm are actually
the same and they have quadratically convergence rate and good numerical stability,
which has been discussed in [32,33].

Example 5.2. In this example, we consider the system (1.2) with matrices A and
B are given as follows:

A = diag
{−99

2n
,
−98

2n
, · · · , n− 100

2n

}
, B = diag

{ 1

n+ 50
,

2

n+ 50
, · · · , n

n+ 50

}
.

We could obtain the unique positive definite solution X+, Y+ by the algorithm
mentioned above. In this example, we stop our algorithm as the description of all
kinds of algorithm with ε = 10−14. We take n = 64 to test our algorithm. The
numerical results are given in Table 2. Table 2 further shows that our proposed
algorithm is efficiency and the convergence rate of our proposed algorithm is quite
fast.

Example 5.3. In this example, we use the function (2 ∗ rand(8, 8) − 1) + i ∗ (2∗
rand (8, 8)− 1) in MATLAB to generate the matrices A and B.

In this example, we stop our algorithm as the description of all kinds of algorithm
with ε = 10−14. In Figure 1, the convergence histories of mentioned algorithms are
depicted, where the residual is defined as follows

Res(Xk, Yk) = ‖In −Xk +A∗Ȳ −1
k A‖F + ‖In − Yk +B∗X̄−1

k B‖F .
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Table 2. Numerical comparison of the testing algorithms for Example 5.2

Algorithm 3.3 Algorithm 3.4 Algorithm 3.5

k Res(Xk, Yk) k Res(Xk, Yk) k Res(Xk, Yk)

1 0.0042 1 0.0018 1 0.0018

2 1.0274e-06 2 4.4472e-07 2 4.4472e-07

3 6.9694e-14 3 3.0831e-14 3 3.0773e-14

4 2.5924e-15 4 1.5806e-15 4 1.6164e-15

5 2.5924e-15 5 1.5806e-15 5 1.6164e-15

Algorithm 4.3 Algorithm 4.4 Algorithm 4.5

k Res(Xk, Yk) k Res(Xk, Yk) k Res(Xk, Yk)

1 0.0042 1 0.0018 1 0.0018

2 1.0274e-06 2 4.4472e-07 2 4.4472e-07

3 6.9694e-14 3 3.0831e-14 3 3.0773e-14

4 2.5924e-15 4 1.5806e-15 4 1.6164e-15

5 2.5924e-15 5 1.5806e-15 5 1.6164e-15
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Figure 1. The comparison of convergence rates of different algorithms for Example 5.3

From Figure 1, we find that the residual of Algorithms 3.4 and 3.5 decrease
faster than that of Algorithm 3.3. Similarly, the residual of Algorithms 4.4 and 4.5
decrease faster than that of Algorithm 4.3.

Example 5.4. In this example, we compare the iteration steps and the CPU time
required to compute a sufficient accurate solution by Algorithms 3.1, 3.3, 4.1 and
4.3. We first construct the following block matrices

C =

 zeros(n, n) 2 ∗ rand(n)− 1 + i ∗ (2 ∗ rand(n)− 1)

2 ∗ rand(n)− 1 + i ∗ (2 ∗ rand(n)− 1) zeros(n, n)

 ,

L =

 zeros(n, n) 2 ∗ rand(n)− 1 + i ∗ (2 ∗ rand(n)− 1)

2 ∗ rand(n)− 1 + i ∗ (2 ∗ rand(n)− 1) zeros(n, n)

 .

Set V = L.′ ∗L+ 1/(2 ∗n) ∗ eye(2 ∗n) be the exact solution of the nonlinear matrix
equation (1.4). Then, by the relations (1.3) and (1.4), we can construct the matrices
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A and B.

Now we compute the unique positive definite solution of the system (1.2) for
different values of n. We compare the performance of all algorithms from the
aspects of iteration steps (denoted by ‘Iter’), elapsed CPU time in seconds (denoted
by ‘Time’) and the Frobenius norm of the residuals (denoted by ‘Res’). Here, ‘Res’
is defined as

Res(Xk, Yk) = ‖In −Xk +A∗Ȳ −1
k A‖F + ‖In − Yk +B∗X̄−1

k B‖F .

And, we stop our algorithm as the description of all kinds of algorithm with ε =
10−13. The corresponding numerical results are listed in Table 3. From Table 3, we

Table 3. Numerical results for Example 5.4.

n 60 90 120 200

Algorithm 3.3 Iter 5 5 5 4

Time 0.0398 0.0723 0.1186 0.3200

Res 2.3701e-15 3.0396e-15 7.7951e-15 4.9472e-15

Algorithm 3.1 Iter 5 5 5 4

Time 0.0445 0.1087 0.2129 0.7722

Res 2.3649e-15 3.0579e-15 7.7646e-15 4.8259e-15

Algorithm 4.3 Iter 5 5 5 4

Time 0.0261 0.0603 0.1068 0.3351

Res 2.3701e-15 3.0396e-15 7.7951e-15 4.9472e-15

Algorithm 4.1 Iter 5 5 5 4

Time 0.0374 0.0856 0.1640 0.5939

Res 2.3649e-15 3.0579e-15 7.7645e-15 4.8259e-15

find that the iteration steps of Algorithm 3.1 is the same as that of Algorithm 3.3.
However, the CPU time of Algorithm 3.3 is less than that of Algorithm 3.1. There
are similar results about the relationship between Algorithm 4.1 and Algorithm
4.3. That shows that Algorithms 3.3 and 4.3 outperform Algorithms 3.1 and 4.1,
respectively.

6. Conclusions

In this paper, we present a structure-preserving doubling Algorithm 3.3 and t-
wo modified structure-preserving doubling Algorithms 3.4 and 3.5 to compute the
unique positive definite solution of the system (1.2). Two modified structure-
preserving doubling algorithm both can quickly implement decoupling calculation
of X and Y . Then, we consider a cyclic reduction Algorithm 4.3 and two modified
cyclic reduction Algorithms 4.4 and 4.5 for finding the unique positive definite solu-
tion of the system (1.2). Similarly, two modified cyclic reduction algorithm both can
quickly implement decoupling calculation of X and Y . Furthermore, we establish
the convergence theory of Algorithms 3.3 and 4.3.
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