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Abstract Stochastic virus dynamics modeled by a system of stochastic dif-
ferential equations with Beddington-DeAngelis functional response and driven
by white noise is investigated. The global existence of positive solutions and
the existence of stationary distribution are proved. Upper and lower bounds
of the pathwise and asymptotic moments for the positive solutions are sharply
estimated. The absorbing property in time average is shown and the moment
Lyapunov exponents are proved to be nonpositive.
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1. Introduction

In this paper we shall consider the stochastic viral dynamics modeled by the fol-
lowing stochastic differential equations

dx =

(
λ− δx− βxz

1 + ax+ bz

)
dt+ σ1x dB1(t),

dy =

(
βxz

1 + ax+ bz
− qy

)
dt+ σ2y dB2(t),

dz = (ky − γz)dt+ σ3z dB3(t),

(1.1)

where the susceptible cells whose density is denoted by x(t) are generated at a
constant rate λ, die at a density-proportional rate δx, and become infected with a
rate βxz/(1+ax+by) in terms of the Beddington-DeAngelis functional response, the
infected cells of the density y(t) are produced at the same rate from the susceptible
cells and die at a density-dependent rate qy, while the virus-free cells z(t) are
released from the infected cells at a rate ky and die at a rate γz, cf. [4, 8, 16]. All
these involved parameters and the intensity coefficients σi’s of the stochastic driving
terms are positive constants.
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In the classical infectious disease model, a bilinear incidence as βxz was often
used. However, the actual incidence rate is most likely not linear over the entire
range of the densities x and z. The nonlinear incidence rate with this Holling type
II response βxz/(1 + ax + bz) was introduced by Beddington [1] and DeAngelis
et al. [3] in the study of HIV-1 virus and uninfected CD4+T cells. This incidence
rate is more reasonable than a bilinear rate because it incorporates the behavioral
change and crowding effect of the infective cells or particles.

As indicated in recent researches on epidemic dynamics, infection dynamics, as
well as population dynamics, cf. [2,4,5,14,16,17] and references therein, it is found
that the deterministic models are subject to some limitations in modeling the virus
transmission of infectious or epidemic diseases. Virus or disease transmission dy-
namics are influenced by the random effect of environmental noise, immunodeficien-
cy, antibiotic resistance, even weather conditions, or uncertain fluctuations. These
researches also showed that stochastic differential equation models with the white
noise generated by Brownian motion can provide some additional degree of real-
ism in dealing with continuous fluctuations of randomness affecting the birth and
death rates, transmission coefficients, and other parameters in the system . The
stochastic models with this kind of Wiener noise likely serve better in predicting
the future dynamics than the deterministic models. It is commented in [5, page
879] that adding the stochastic Wiener noise to the parameters of relevant rates is a
well-established way of introducing stochastic environmental noise into biologically
realistic population dynamic models. Thus it is reasonable to include the additive or
multiplicative white noises to the death rates as −δx+σ1x dB1(t),−qy+σ2y dB2(t)
and −γz + σ3z dB3(t) in the model equations (1.1) for tackling the effect of envi-
ronmental fluctuations.

The global stability of virus dynamics for the corresponding deterministic system

dx

dt
= λ− δx− βxz

1 + ax+ bz
,

dy

dt
=

βxz

1 + ax+ bz
− qy,

dz

dt
= ky − γz,

(1.2)

was analyzed in [8] and the following results are proved: When the comprehensive
reproductive ratio of the virus

R0 =
kβλ

δqγ + aqγλ
≤ 1,

the disease-free equilibrium E0 = (λ/δ, 0, 0) is globally asymptotically stable; When
R0 > 1, then the endemic equilibrium E1 = (x0, y0, z0) is globally asymptotically
stable, where

x0 =
qγ + kbλ

kβ − aqγ + bkδ
, y0 =

kβλ− aλqγ − δqγ
q(kβ − aqγ + bkδ)

, z0 =
k(kβλ− aλqγ − δqγ)

qγ(kβ − aqγ + bkδ)
.

Dynamics of a stochastic predator-prey system with Beddiongton-DeAngelis
functional response and multiplicative or additive noise was studied in [9,18]. It was
shown that if the noise is large, both species in the system may go to extinction,
which does not occur for the deterministic system. Besides, in [21] and [27], station-
ary distribution of stochastic population systems and stochastic Hopf bifurcation
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of the predator-prey system with Beddington-DeAngelis response have been inves-
tigated. Stochastic dynamics of predator-prey system with Leslie-Gower response
and lévy jumps was studied in [19].

The main objective of this article is to study the pathwise, time-averaging, and
asymptotic dynamics for the almost surely positive solutions in terms of construction
of Lyapunov functions, proving the existence of a stationary distribution, conducting
sharp estimates of stochastic upper and lower bounds of trajectories, application of
the ergodic property, and evaluation of the moment Lyapunov exponents in regard
to stochastic stability.

The basic concepts and some underlying results for stochastic ordinary differ-
ential equations can be found in [10] and [22]. In this paper, let (Ω, F, {Ft}t≥0, P )
be a complete probability space with a filtration {Ft}t≥0, which is right continuous
and F0 contains all P -null sets. Assume that Bi(t), i = 1, 2, 3, are independent
standard Brownian motion defined on this probability space. We use the notation

Rn+ = {x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n}.

For an n-dimensional stochastic differential equation driven by the white noise,
which will be called nonautonomous if functions f and g are explicitly dependent
of time t,

dX(t) = f(X(t), t) dt+ g(X(t), t) dB, for t ≥ t0, (1.3)

we shall denote by C2,1(Rn × [t0,∞), R+ ∪ {0}) the family of all nonnegative func-
tions V (x, t) defined on Rn × [t0,∞) and continuously differentiable in x to the
second order and in t to the first order. Define the differential operator L associat-
ed with (1.3) by

L =
∂

∂t
+

n∑
i=1

fi(x, t)
∂

∂xi
+

1

2

n∑
i,j=1

[g(x, t)gT (x, t)]ij
∂2

∂xi∂xj
.

Then the action of the operator L on V ∈ C2,1(Rn × [t0,∞); R+ ∪ {0}) is

LV (X(t), t) = Vt(X, t) + Vx(X, t)f(X, t) +
1

2
Tr
[
gT (X, t)Vxx(X, t)g(X, t)

]
, (1.4)

where Vt = ∂V
∂t , Vx = ( ∂V∂x1

, · · ·, ∂V∂xn ) and Vxx = ( ∂2V
∂xixj

)n×n. By the Itô formula, we

have the following differential formula, which corresponds to the the total derivative
in deterministic case,

dV (X(t), t) = LV (X(t), t) dt+ Vx(X(t), t)g(X(t), t) dB(t).

Definition 1.1. [10, 21] Let PX0,t(·) be the probability measure induced by a
stochastic process {X(t)}t≥0 in Rn+ (or Rn) over a probability space (Ω,F ,P) with
initial state X(0) = X0, namely,

PX0,t(S) = P{X(t, ω) ∈ S}, S ∈ B(Rn+),

where B(·) stands for the σ-algebra of all Borel sets. If there is a probability measure
µ(·) on the measurable space (Rn+,B(Rn+)) such that

PX0,t(·) −→ µ(·) as t→∞,

in distribution for any X0 ∈ Rn+, then X(t) has a stationary distribution µ(·).
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Definition 1.2. A set S of solutions of a SDE (1.3) is said to have the p-th moment
absorbing property in time average, if there is a positive constant M = M(p) > 0
such that

lim sup
t→∞

1

t

∫ t

0

|X(s, X0)|p ds ≤M

for all solutions in S. This property means the trajectories of a random dynamical
system will be confined in a fixed bounded region in time average.

Definition 1.3. The p-th moment Lyapunov exponent of a solution X(t,X0) of a
SDE (1.3) is defined by

Λ(p) = lim sup
t→∞

1

t
logE|X(t,X0)|p, X0 6= 0, p ≥ 1.

In Section 2, we shall prove the global existence of positive solutions to the
system of the model equations (1.1) for the stochastic virus dynamics. In Section 3,
it will be shown that a stationary distribution exists. In Section 4, we present the
pathwise and asymptotic moment estimation of the upper and lower bounds of the
positive solutions. In Section 5, we show the absorbing property of in time average.
In Section 6, we show that the moment Lyapunov exponents are nonpositive for
this dynamical system.

2. Global Existence of Positive Solutions

First we prove the existence and uniqueness of a global positive solution for the
initial value problem of the SDE (1.1).

Theorem 2.1. Under the condition q ≥ k, for any initial data (x0, y0, z0) ∈ R3
+,

there exists a unique positive solution (x(t), y(t), z(t)) to the system (1.1) such that
the solution will remain in R3

+ for all t ≥ 0 with probability one.

Proof. Since the coefficients of the equations in (1.1) are locally Lipschitz contin-
uous, for any ω ∈ Ω and any given initial data (x0, y0, z0) ∈ R3

+, there is a unique
local solution (x(t), y(t), z(t)) on t ∈ [0, τe), where [0, τe) is the maximal existence
interval pathwise depending on the initial data.

We now show that the solution exists globally, namely, τe = ∞ a.s. Let an
integer m0 > 0 be sufficiently large such that (x0, y0, z0) ∈ [1/m0, m0]

3
. For each

integer m > m0 we define the stopping time

τm = inf

{
t ∈ [0, τe) : x(t) 6∈

(
1

m
,m

)
, y(t) 6∈

(
1

m
,m

)
, or z(t) 6∈

(
1

m
,m

)}
.

(2.1)
We set the infimum of empty set =∞. Obviously, τm is increasing as m→∞. Set
τ∞ = limm→∞ τm.

It suffices to prove that τ∞ = ∞ for any initial data a.s. If this statement is
false, then there would be constants ε ∈ (0, 1) and T > 0 such that

P{τ∞ ≤ T} > ε. (2.2)

Since τ∞ ≥ τm, there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ε, for any m > m1.
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Consider the function V (x, y, z) defined by

V (x, y, z) = (x− 1− log x) + (y − 1− log y) + (z − 1− log z). (2.3)

Using the Itô formula, we have

dV =

(
1− 1

x

)(
λ− δx− βxz

1 + ax+ bz
+ σ1x dB1(t)

)
+

(
1− 1

y

)(
βxz

1 + ax+ bz
− qy + σ2y dB2(t)

)
+

(
1− 1

z

)
(ky − γz + σ3z dB3(t)) +

1

2
(σ2

1 + σ2
2 + σ2

3) dt

=LV dt+ σ1(x− 1) dB1(t) + σ2(y − 1) dB2(t) + σ3(z − 1) dB3(t),

(2.4)

where the condition q ≥ k implies that

LV =
1

2
(σ2

1 + σ2
2 + σ2

3) + λ+ δ + q + γ − δx− λ

x
− qy + ky − γz

+
βz

1 + ax+ bz
− βxz

y(1 + ax+ bz)

=
1

2
(σ2

1 + σ2
2 + σ2

3) + λ+ δ + q + γ + (k − q)y +
βz

1 + ax+ bz

≤ 1

2
(σ2

1 + σ2
2 + σ2

3) + λ+ δ + q + γ +
β

b
.

(2.5)

Therefore, we obtain

dV ≤ K dt+ σ1x dB1(t) + σ2y dB2(t) + σ3z dB3(t), (2.6)

where

K =
1

2
(σ2

1 + σ2
2 + σ2

3) + λ+ δ + q + γ +
β

b
.

By integrating both sides of (2.6) from 0 to τm∧T and then taking the expectation
on both sides, it yields

E[V (x(τm ∧ T ), y(τm ∧ T ), z(τm ∧ T ))] ≤ V (x0, y0, z0) +KT.

Let Ωm = {τm ≤ T}, then P (Ωm) ≥ ε. Note that for every ω ∈ Ωm at least one of
x(τm, ω), y(τm, ω), z(τm, ω) equals tom or 1/m, then V (x(τm, ω), y(τm, ω), z(τm, ω))
is no less than

m− 1− logm or
1

m
− 1 + logm.

Thus we get

V (x(τm, ω), y(τm, ω), z(τm, ω)) ≥ (m− 1− logm) ∧
(

1

m
− 1 + logm

)
.

It follows that

V (x0, y0, z0) +KT ≥ E [ IΩm(ω)V (x(τm ∧ T ), y(τm ∧ T ), z(τm ∧ T )) ]

= E [ IΩm(ω)V (x(τm, ω), y(τm, ω), z(τm, ω)) ]

≥ ε
[
(m− 1− logm) ∧

(
1

m
− 1 + logm

)]
,

(2.7)
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where IΩm(ω) is the indicator function of Ωm(ω). Let m → ∞. Then it leads to a
contradiction

∞ > V (x(0), y(0), z(0)) +KT =∞.
Therefore we have τe =∞ for any given initial data almost surely, which completes
the proof.

According to [22, Theorem 2.9.1], this positive solution X(t) = (x(t), y(t), z(t))T

is a Markov process with time-homogeneous transition function.

3. Stationary Distribution

The system of stochastic autonomous differential equations (1.1) can be written in
the vector-matrix form

dX = f(X) dt+ g(X) dB, (3.1)

where B(t) = (B1(t), B2(t), B3(t))T is the independent 3-dimensional Wiener pro-
cess and

f(X) =


λ− δx− βxz

1+ax+bz

βxz
1+ax+bz − qy

ky − γz

 , g(X) =


σ1x 0 0

0 σ2y 0

0 0 σ3z

 .

Its diffusion matrix is given by

A(x, y, z) =


σ2

1x
2 0 0

0 σ2
2y

2 0

0 0 σ2
3z

2

 .

Here we shall prove the existence of a stationary distribution for a positive solution
of the system (1.1). We mention the following assumption in cf. [10, p.107].

Assumption U. There is a bounded open domain U ⊂ R3
+ with regular boundary

and the following properties:

I. In a neighborhood of U , the smallest eigenvalue of the diffusion matrixA(x, y, z)
is uniformly bounded away from zero.

II. For anyX = (x, y, z) ∈ R3
+\U , the mean time τ at which a path fromX reaches

the set U is finite and supK EX [τ ] <∞ for every compact set K ⊂ R3
+.

Lemma 3.1. Suppose the Assumption U is satisfied. Then the Markov process
X(t,X0) given by the pathwise solution of (3.1) has a stationary distribution µ(·)
such that µ(R3 \ R3

+) = 0 and for any nonnegative continuous function Q(X) it
holds that ∫

R3
+

E[Q(X(t, ξ)] dµ(ξ) =

∫
R3

+

Q(ξ) dµ(ξ), t ≥ 0. (3.2)

Moreover, for any integrable function F (X) with respect to µ, it holds that

lim
T→∞

P

{
1

T

∫ T

0

F (X(t, ξ)) dt =

∫
R3

+

F (ξ) dµ(ξ)

}
= 1, for all ξ ∈ R3

+. (3.3)
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The proof of this lemma is referred to Theorems 4.4.1 and 4.4.2 in [10].

Theorem 3.1. If there exists a positive equilibrium point (x0, y0, z0) ∈ R3
+ for the

deterministic system (1.2), then there exists a stationary distribution with respect
to the positive solutions of the system (1.1).

Proof. Consider a new Lyapunov function

V (x, y, z) =
1 + bz0

1 + ax0 + bz0

(
x− x0 − x0 log

x

x0

)
+ y − y0 − y0 log

y

y0
+
q

k

(
z − z0 − z0 ln

z

z0

)
.

(3.4)

By the differential formula (1.4), we obtain

LV (x(t), y(t), z(t)) =
1 + bz0

1 + ax0 + bz0

(
1− x0

x

)(
λ− δx− βxz

1 + ax+ bz

)
+

(1 + bz0)x0σ
2
1

2(1 + ax0 + bz0)
+

(
1− y0

y

)(
βxz

1 + ax+ bz
− qy

)
+
q

k

(
1− z0

z

)
(ky − γz) +

y0σ
2
2

2
+
qz0σ

2
3

2k

=λ− δx− qγ

k
z − (1 + ax+ bz0)x0

(1 + ax0 + bz0)x

(
λ− δx− βxz

1 + ax+ bz

)
− y0

y

(
βxz

1 + ax+ bz
− qy

)
− qz0

kz
(ky − γz) + σ.

(3.5)
Since (x0, y0, z0) is a positive equilibrium point, we have

λ = δx0 + qy0

γ/k = y0/z0

qy0 = βx0z0/(1 + ax0 + bz0).

(3.6)

It folows that

LV (x(t), y(t), z(t))

=δx0 + qy0 − δx−
qy0z

z0
− (1 + ax+ bz0)x0

(1 + ax0 + bz0)x
δx0

− (1 + ax+ bz0)x0

(1 + ax0 + bz0)x
qy0 +

(1 + ax+ bz0)

(1 + ax0 + bz0)
δx0 +

(1 + ax+ bz0)z0

(1 + ax0 + bz0)z
qy0

− y0

y

(
βxz

1 + ax+ bz
− qy

)
− qz0

kz
(ky − γz) + σ

=δx0

(
1− x

x0
− (1 + ax+ bz0)x0

(1 + ax0 + bz0)x
+

(1 + ax+ bz0)

(1 + ax0 + bz0)

)
+ qy0

(
1− (1 + ax+ bz0)x0

(1 + ax0 + bz0)x
+

(1 + ax+ bz0)z0

(1 + ax+ bz)z

)
+ qy0

(
1− (1 + ax0 + bz0)xy0z

(1 + ax+ bz)x0yz0
) + qy0(1− z

z0
− yz0

y0z

)
+ σ

=−Q(x(t), y(t), z(t)) + σ,

(3.7)
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where

σ :=
(1 + bz0)x0σ

2
1

2(1 + ax0 + bz0)
+
y0σ

2
2

2
+
qz0σ

2
3

2k
(3.8)

and

−Q(x, y, z)=− δ(1 + bz0)

x(1 + ax0 + bz0)
(x− x0)2 − qy0b(1 + ax)(z − z0)2

z0(1 + ax+ bz)(1 + ax+ bz0)

+qy0

[
4− (1+ax+bz0)x0

(1+ax0+bz0)x
− (1+ax0+bz0)xy0z

(1+ax+bz)x0yz0
− yz0

y0z
− (1+ax+bz)

(1+ax+bz0)

]
.

(3.9)

It can be verified by reciprocal calculation that

4− (1 + ax+ bz0)x0

(1 + ax0 + bz0)x
− (1 + ax0 + bz0)xy0z

(1 + ax+ bz)x0yz0
− yz0

y0z
− (1 + ax+ bz)

(1 + ax+ bz0)
≤ 0.

Hence we have the observation that Q(x, y, z) is continuous and Q(x, y, z) ≥ 0.
Moreover,

• Q(x, y, z) = 0, if (x, y, z) = (x0, y0, z0);

• Q(x, y, z) > 0, if otherwise;

• Q(x, y, z)→∞ as (x, y, z)→∞.

Take U = {(x, y, z) : Q(x, y, z) < σ}
⋂
R3

+, which is a bounded open set. Then
LV (x, y, z) is nonpositive for any (x, y, z) ∈ R3

+/U , which implies that the second
condition in the aforementioned Assumption U is satisfied. Moreover, let M =
min(x,y,z)∈Ū{σ2

1x
2, σ2

2y
2, σ2

3z
2} (> 0). Then we have

σ2
1x

2ξ2
1 + σ2

2y
2ξ2

2 + σ2
3z

2ξ2
3 ≥M |ξ|2 for all (x, y, z) ∈ U and ξ ∈ R3.

Thus the first condition in the Assumption U is also satisfied. Therefore, by Lemma
3.1, the system of SDE (1.1) has a unique stationary distribution µ(·) on R3

+.
The ergodic property in terms of this stationary distribution will be shown in

Section 5.

4. Asymptotic Moment Estimation

First we prove an auxiliary lemma useful for dynamic estimation of the moments
of the positive solutions to the stochastic viral system (1.1).

Lemma 4.1. The solution of an initial value problem of the Bernoulli equation

dv

dt
= p v(t)

[
−
(
δ − σ2

2
(p− 1)

)
+ λv−

1
p (t)

]
,

v(0) = x0

(4.1)

is given by

v(t) =

{
x

1/p
0 e

−
(
δ−σ22 (p−1)

)
t

+
λ

δ − σ2

2 (p− 1)

(
1− e−

(
δ−σ22 (p−1)

)
t
)}p

. (4.2)
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Proof. Divided the equation (4.1) by v1− 1
p (t), we get

1

v1− 1
p (t)

dv(t)

dt
≤ −p

(
δ − σ2

2
(p− 1)

)
v

1
p (t) + pλ.

Let w = v
1
p (t), then we come up with the linear ordinary differential equation

dw

dt
= −

(
δ − σ2

2
(p− 1)

)
w + λ

and the solution (4.2) is obtained.
We now derive an asymptotic upper bound for the p-th moment of each compo-

nent solution of the system of SDE (1.1).

Theorem 4.1. Suppose the following conditions are satisfied,

δ +
σ2

1

2
− σ2

1

2
p > 0, q +

σ2
2

2
− σ2

2

2
p > 0, and γ +

σ2
3

2
− σ2

3

2
p > 0. (4.3)

Let (x(t), y(t), z(t)) be a solution of the system of stochastic viral equations (1.1)
with any initial data (x0, y0, z0) ∈ R3

+. Then for any p > 1 it holds that

lim sup
t→∞

E[xp(t)] ≤ L1(p), lim sup
t→∞

E[yp(t)] ≤ L2(p), lim sup
t→∞

E[zp(t)] ≤ L3(p),

(4.4)
where

L1(p) =

(
λ

δ − σ2
1

2 (p− 1)

)p
,

L2(p) =

(
4βbλ

b(2δ − σ2
1(p− 1))(2q − σ2

2(p− 1))

)p
,

L3(p) =
8kβλ

b(2δ − σ2
1(p− 1))(2q − σ2

2(p− 1))(2γ − σ2
3(p− 1))

.

Proof. By the Itô formula, for the x-component solution of (1.1) we have

d(xp) = pxp−1dx+
1

2
p(p− 1)xp−2(dx)2

= pxp−1

[(
λ− δx− βxz

1 + ax+ bz

)
dt+ σ1x dB1(t)

]
+

1

2
p(p− 1)xpσ2

1 dt

= pxp−1

(
λ− δx− βxz

1 + ax+ bz
+
σ2

1

2
(p− 1)x

)
dt+ pxpσ1 dB1(t)

≤ pxp−1

(
λ− δx+

σ2
1

2
(p− 1)x

)
dt+ pxpσ1 dB1(t), t ≥ 0.

Consequently,

xp ≤ xp0 +

∫ t

0

pxp−1(s)

(
λ− δx(s) +

σ2
1

2
(p− 1)x(s)

)
ds+

∫ t

0

pxp(s)σ1dB1(s).

(4.5)
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Taking the expectation on both sides of (4.5), we have

E[xp(t)] ≤ xp0 +

∫ t

0

[
pλE[xp−1(s)]− p

(
δ − σ2

1

2
(p− 1)

)
E[xp(s)]

]
ds. (4.6)

Therefore, the p-moment of the x-component solution satisfies the differential equa-
tion

dE[xp(t)]

dt
≤ pλE[xp−1]− p

(
δ − σ2

1

2
(p− 1)

)
E[xp]

≤− p
(
δ − σ2

1

2
(p− 1)

)
E[xp] + pλE[xp]

1− 1
p .

Define u(t) = E[xp] and we have

du(t)

dt
≤ −p

(
δ − σ2

1

2
(p− 1)

)
u(t) + pλu1− 1

p (t). (4.7)

According to the condition (4.3), we have δ +
σ2
1

2 −
σ2
1

2 p ≥ 0. By the exponential
decay in (4.2) of Lemma 4.1 and by the comparison theorem of ODE, we have

lim sup
t→∞

E[xp(t)] = lim sup
t→∞

u(t) ≤ L1(p) =

(
λ

δ − σ2
1

2 (p− 1)

)p
. (4.8)

Similarly we can treat the y-component of the positive solutions of (1.1) as
follows,

d(yp) = pyp−1dy +
1

2
p(p− 1)yp−2(dy)2

= pyp−1

(
βxz

1 + ax+ bz
− qy +

σ2
2

2
(p− 1)

)
dt+ pyp−1σ2y dB2(t)

≤ pyp−1

(
βx

b
− qy +

σ2
2

2
(p− 1)y

)
dt+ pxpσ2 dB2(t)

and consequently,

E[yp(t)] ≤ yp0 +

∫ t

0

[
pβ

b
E[x(s)yp−1(s)]− p

(
q − σ2

2

2
(p− 1)

)
E[yp(s)]

]
ds. (4.9)

Hence,

dE[yp(t)]

dt
≤− p

(
q − σ2

2

2
(p− 1)

)
E[yp(t)] +

pβ

b
E[x(t)yp−1(t)]

≤− p
(
q − σ2

2

2
(p− 1)

)
E[yp(t)] +

pβ

b
E[x(t)]E[yp−1(t)]

≤− p
(
q − σ2

2

2
(p− 1)

)
E[yp(t)] +

2pβλ

b(2d− σ2
1(p− 1))

E[y(t)]
1− 1

p .

(4.10)

By Lemma 4.1 and its proof, the solution of the following Bernoulli equation

dv

dt
= pv(t)

[
−
(
q − σ2

2

2
(p− 1)

)
+

2pβλ

b(2δ − σ2
1(p− 1))

v−
1
p (t)

]
(4.11)
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with v(0) = y0 is given by v(t) = [w(t)]p, where

dw

dt
= −

(
q − σ2

2

2
(p− 1)

)
w +

2βλ

b(2δ − σ2
1(p− 1))

.

Thus the solution of (4.11) is given by

vp(t) = y
1/p
0 e

−
(
q−σ

2
2
2 (p−1)

)
t

+
4βλ

b(2δ − σ2
1(p− 1))(2q − σ2

2(p− 1))

(
1− e

−
(
q−σ

2
2
2 (p−1)

)
t

)
.

According to the condition (4.3), we have q− σ2
2

2 (p−1) > 0. Due to the exponential
decay and by the comparison theorem, we get

lim sup
t→∞

E[yp(t)] ≤ L2(p) =

(
4βλ

b(2δ − σ2
1(p− 1))(2q − σ2

2(p− 1))

)p
. (4.12)

Finally, for the z-component solution we have

d(zp) = pzp−1dx+
1

2
p(p− 1)zp−2(dz)2

= pzp−1 [(ky − γz) dt+ σ3z dB3(t)] +
1

2
p(p− 1)zpσ2

3 dt

= pzp−1

(
ky − γz +

σ2
3

2
(p− 1)z

)
dt+ pzpσ3 dB3(t)

and

E[zp(t)] ≤ zp0 +

∫ t

0

[
pk E[y(s)zp−1(s)]− p

(
γ − σ2

3

2
(p− 1)

)
E[zp(s)]

]
ds. (4.13)

Hence,

dE[zp(t)]

dt
≤ pk E[y(t)]E[zp−1(t)]− p

(
γ − σ2

3

2
(p− 1)

)
E[zp(t)]

≤−p
(
γ− σ

2
3

2
(p−1)

)
E[zp(t)]+

4pkβλ

b(2δ−σ2
1(p−1))(2q−σ2

2(p−1))
E[zp]

1− 1
p .

(4.14)

Similarly, since γ +
σ2
3

2 −
σ2
3

2 p > 0, through solution of the corresponding Bernoulli
equation similar to Lemma 4.1 and the comparison argument, we obtain

lim sup
t→∞

E[zp(t)] ≤ L3(p) =

(
8kβλ

b(2δ − σ2
1(p− 1))(2q − σ2

2(p− 1))(2γ − σ2
3(p− 1))

)p
.

(4.15)
The proof is completed.

Next we derive specific pathwise upper bound and lower bound for each of the
three component solutions of the system (1.1) for the study of stochastic virus
dynamics and stability.
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Theorem 4.2. Every positive solution (x(t), y(t), z(t)) of the system (1.1) with any
initial data (x0, y0, z0) ∈ R3

+ satisfies the estimates

Φl(t) ≤ x(t) ≤ Φu(t), Ψl(t) ≤ y(t) ≤ Ψu(t), Γl(t) ≤ z(t) ≤ Γu(t), t ≥ 0, a.s.
(4.16)

where the upper and lower bounds Φu(t),Φl(t),Ψu(t),Ψl(t),Γu(t) and Γl(t) are the
stochastic processes shown by (4.17) through (4.22) below.

Proof. Since the solutions are positive in probability one, from (1.1) we have

dx ≤ (λ− δx) dt+ σ1x dB1, t ≥ 0.

We can assert and verify that the stochastic process given by

Φu(t) =λ

∫ t

0

exp

{
−
(
δ +

σ2
1

2

)
(t− s) + σ1(B1(t)−B1(s))

}
ds

+ x0 exp

{
−
(
δ +

σ2
1

2

)
t+ σ1B1(t)

} (4.17)

is the unique solution of stochastic differential equation

dΦ

dt
= (λ− δΦ(t))dt+ σ1Φ(t) dB1

with the initial condition Φ(0) = x0. By the comparison theorem for the pathwise
solutions of stochastic differential equations, it holds that

x(t) ≤ Φu(t), t ≥ 0, a.s.

For the y-component solution, we have

dy =

(
βxz

1 + ax+ bz
− qy

)
dt+ σ2y dB2(t) ≥ (−β − qy) dt+ σ2y dB2(t).

Here we can claim and check that the stochastic process given by

Ψl(t) = − β
∫ t

0

exp

{
−
(
q +

σ2
2

2

)
(t− s) + σ2(B2(t)−B2(s))

}
ds

+ y0 exp

{
−
(
q +

σ2
2

2

)
t+ σ2B2(t)

} (4.18)

is the unique solution of the initial value problem

dΨ

dt
= (−β − qΨ(t)) dt+ σ2Ψ(t) dB2,

with Ψ(0) = y0. By the comparison argument, we obtain

y(t) ≥ Ψl(t), t ≥ 0, a.s.

On the other hand,

dy =

 βx(t)
1+ax(t)
z(t) + b

− qy(t)

 dt+ σ2y(t) dB2(t)

≤
(
βΦu(t)

b
− qy(t)

)
dt+ σ2y(t) dB2(t).
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Similarly, by the comparison argument, we can get the stochastic process given by

Ψu(t) =
β

b

∫ t

0

Φu(s) exp

{
−
(
q +

σ2
2

2

)
(t− s) + σ2(B2(t)−B2(s))

}
ds

+ y0 exp

{
−
(
q +

σ2
2

2

)
t+ σ2B2(t)

}
,

(4.19)

as the upper bound for the y-component solution,

y(t) ≤ Ψu(t), t ≥ 0, a.s.

For the component solution z(t), we have

dz = (ky − γz) dt+ σ3z dB3 ≥ −γz dt+ σ3z dB3.

Accordingly, the stochastic process given by

Γl(t) = z0 exp

{
−
(
γ +

σ2
3

2

)
t+ σ3B3(t)

}
(4.20)

is the unique solution of the initial value problem

dΓ

dt
= −γΓ(t) dt+ σ3Γ(t) dB3

with Γ(0) = z0 and we have

z(t) ≥ Γl(t), t ≥ 0, a.s.

On the other hand,

dz = (ky − γz) dt+ σ3z dB3(t) ≤ (kΨ2(t)− γz) dt+ σ3z dB3.

Thus we have
z(t) ≤ Γu(t), t ≥ 0, a.s.

where

Γu(t) = k

∫ t

0

Ψu(s) exp

{
−
(
γ +

σ2
3

2

)
(t− s) + σ3(B3(t)−B3(s))

}
ds

+ z0 exp

{
−
(
γ +

σ2
3

2

)
t+ σ3B3(t)

}
.

(4.21)

Finally, by the first stochastic differential equation in (1.1) and z(t) ≤ Γu(t), we
notice that

dx ≥
(
λ− δx− βΓu(t)

a

)
dt+ σ1x dB1.

Hence we can deduce by the similar argument that

x(t) ≥ Φl(t), t ≥ 0, a.s.

where

Φl(t) =x0 exp

{
−
(
δ +

σ2
1

2

)
t+ σ1B1(t)

}
+

∫ t

0

(
λ− βΓ2(t)

a

)
exp

{
−
(
δ +

σ2
1

2

)
(t− s) + σ1(B1(t)−B1(s))

}
ds.

(4.22)
The proof is completed.
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5. Absorbing Property in Time Average

Here we prove the absorbing property of the positive solutions in time average for
the stochastic viral system (1.1) based on the asymptotic moment estimation and
the stationary distribution shown in previous sections.

Theorem 5.1. Under the same condition as in Theorem 3.1, if (4.3) is satisfied
and p > 1, then

lim
t→∞

1

t

∫ t

0

xp(s) ds =

∫
R3

+

ξp dµ(ξ, η, ζ) ≤ L1(p), a.s.

lim
t→∞

1

t

∫ t

0

yp(s) ds =

∫
R3

+

ηp dµ(ξ, η, ζ) ≤ L2(p), a.s.

lim
t→∞

1

t

∫ t

0

zp(s) ds =

∫
R3

+

ζp dµ(ξ, η, ζ) ≤ L3(p), a.s.

(5.1)

where (x(t), y(t), z(t)) is any solution of the system (1.1) with initial data in R3
+

and Li(p), 1 ≤ i ≤ 3, are given in (4.4). Consequently, the p-th moments of the
pathwise positive solutions exist for p > 1 with respect to the stationary distribution
µ.

Proof. By the Birkhoff ergodic property, for any N > 0, it holds that

lim
t→∞

1

t

∫ t

0

[xp(s) ∧N ] ds =

∫
R3

+

(ξp ∧N) dµ(ξ, η, ζ) a.s.

lim
t→∞

1

t

∫ t

0

[yp(s) ∧N ] ds =

∫
R3

+

(ηp ∧N) dµ(ξ, η, ζ) a.s.

lim
t→∞

1

t

∫ t

0

[zp(s) ∧N ] ds =

∫
R3

+

(ζp ∧N) dµ(ξ, η, ζ) a.s.

Using the dominated convergence theorem and by Theorem 4.1, we have

E

[
lim
t→∞

1

t

∫ t

0

[xp(s) ∧N ]ds

]
= lim
t→∞

1

t

∫ t

0

E[xp(s) ∧N ]ds ≤ L1(p),

E

[
lim
t→∞

1

t

∫ t

0

[yp(s) ∧N ]ds

]
= lim
t→∞

1

t

∫ t

0

E[yp(s) ∧N ]ds ≤ L2(p),

E

[
lim
t→∞

1

t

∫ t

0

[zp(s) ∧N ]ds

]
= lim
t→∞

1

t

∫ t

0

E[zp(s) ∧N ]ds ≤ L3(p),

where Li(p), 1 ≤ i ≤ 3, are given in (4.4). Therefore,

E

[∫
R3

+

(ξp ∧N) dµ(ξ, η, ζ)

]
≤ Li(p),

E

[∫
R3

+

(ηp ∧N) dµ(ξ, η, ζ)

]
≤ L2(p),
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E

[∫
R3

+

(ζp3 ∧N) dµ(ξ, η, ζ)

]
≤ L3(p).

Let N →∞, then we obtain

lim
t→∞

1

t

∫ t

0

xp(s) ds =

∫
R3

+

ξp dµ(ξ, η, ζ) =

∫
R3

+

E[x(t, ξ)|p dµ(ξ, η, ζ) ≤ L1(p), a.s.

lim
t→∞

1

t

∫ t

0

yp(s) ds =

∫
R3

+

ηp dµ(ξ, η, ζ) =

∫
R3

+

E[y(t, η)|p dµ(ξ, η, ζ) ≤ L2(p), a.s.

lim
t→∞

1

t

∫ t

0

zp(s) ds =

∫
R3

+

ζp dµ(ξ, η, ζ) =

∫
R3

+

E[z(t, ζ)|p dµ(ξ, η, ζ) ≤ L3(p), a.s.

where we used (3.2) and (3.3) in Lemma 3.1. Thus (5.1) is proved.

6. Moment Lyapunov Exponent

Lyapunov exponent and moment Lyapunov exponent are important characteristics
for study of the almost sure stability and the moment stability of a stochastic dy-
namical system generated by stochastic differential equations. However, the actual
evaluation of the moment Lyapunov exponents will be very difficult except by few
approximation approaches of the asymptotic expansions, cf. [10, Appendix B].

Here for this stochastic virus model, we can make a calculation in the following
result based on the upper and lower bound estimates.

Theorem 6.1. Under the condition δ > σ2
1/2, q > σ2

2/2 and γ > σ2
3/2, the mean-

square moment Lyapunov exponent of the positive solution trajectories of the system
(1.1) is nonpositive,

Λ(2) = lim sup
t→∞

1

t
logE‖X(t,X0)‖2R3

+
≤ 0, (6.1)

where X(t,X0) = (x(t, x0), y(t, y0), z(t, z0)) is the solution with any initial data
X0 ∈ R3

+.

Proof. Step 1. (4.17) shows that

Φu(t)=

[
λ

∫ t

0

exp

{[
δ+

σ2
1

2

]
s−σ1B1(s)

}
ds+x0

]
exp

{
−
[
δ+

σ2
1

2

]
t+σ1B1(t)

}
.

Note that

S(t) = S(0) exp

{
−
[
δ +

σ2
1

2

]
t+ σ1B1(t)

}
, t ≥ 0, (6.2)

is a geometric Brownian motion, which is a solution of the linear SDE

dS = −δS(t) dt+ σ1S(t) dB1(t).

Hence we can calculate

E[S(t)] = S(0) e−δt and E|S(t)|2 = |S(0)|2 exp{(σ2
1 − 2δ)t}, t ≥ 0. (6.3)
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Accordingly we have

E

∣∣∣∣x2
0 exp

{
−2

[
δ +

σ2
1

2

]
t+ 2σ1B1(t)

}∣∣∣∣ = x2
0 exp{(σ2

1 − 2δ)t} → 0, as t→∞.

Then by the Fubini theorem and the Jensen inequality of integral as well as the
time-shifting property of Brownian motion, we can derive

E|Φu(t)|2 ≤ 2λ2

∫ t

0

E

[
exp

{
−2

[
δ +

σ2
1

2

]
(t− s) + 2σ1(B1(t)−B1(s))

}]
ds

+ 2x2
0 exp{(σ2

1 − 2δ)t}

= 2λ2

∫ t

0

exp{(σ2
1 − 2δ)(t− s)}ds+ 2x2

0 exp{(σ2
1 − 2δ)t}

=
2λ2

2δ − σ2
1

(
1− exp{σ2

1 − 2δ)t}
)

+ 2x2
0 exp{(σ2

1 − 2δ)t}

≤ 2λ2

2δ − σ2
1

+ 2x2
0 exp{(σ2

1 − 2δ)t}, t ≥ 0.

(6.4)

In view of the simple property log(1+x) ≤ x for all x > −1 and δ > σ2
1/2, it follows

that

lim sup
t→∞

1

t
log (E|x(t, x0)|2) ≤ lim sup

t→∞

1

t
log (E|Φu(t)|2)

≤ lim sup
t→∞

1

t
log

[
2λ2

2δ − σ2
1

+ 2x2
0 exp{(σ2

1 − 2δ)t}
]

= lim sup
t→∞

1

t
log

[
2λ2

2δ − σ2
1

(
1 +

x2
0(2δ − σ2

1)

λ2
exp{(σ2

1 − 2δ)t}
)]

≤ lim sup
t→∞

1

t
log

2λ2

2δ − σ2
1

+ lim sup
t→∞

1

t
log

(
1 +

x2
0(2δ − σ2

1)

λ2
exp{(σ2

1 − 2δ)t}
)

≤ lim sup
t→∞

1

t

(
x2

0(2δ − σ2
1)

λ2
exp{(σ2

1 − 2δ)t}
)

= 0.

(6.5)

Step 2. For the y-component of the solution, from (4.19) we get

E|Ψu(t)|2 ≤2β2

b2

∫ t

0

E

[
Φ2
u(s) exp

{
−2

[
q +

σ2
2

2

]
(t− s) + 2σ2(B2(t)−B2(s))

}]
ds

+ 2y2
0 exp{(σ2

2 − 2q)t}.
(6.6)

Since B1(t), B2(t), B3(t) are independent Brownian motions, from (6.3) and (6.4)
we can deduce

E

[
Φ2
u(s) exp

{
−2

[
q +

σ2
2

2

]
(t− s) + 2σ2(B2(t)−B2(s))

}]
=E[Φ2

u(s)]E

[
exp

{
−2

[
q +

σ2
2

2

]
(t− s) + 2σ2(B2(t)−B2(s))

}]
≤
[

2λ2

2δ − σ2
1

(
1− exp{σ2

1 − 2δ)s}
)

+ 2x2
0 exp{(σ2

1 − 2δ)s}
]

exp{(σ2
2 − 2q)(t− s)}.

(6.7)
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Substitute (6.7) into (6.6). In view of the condition δ > σ2
1/2 and q > σ2

2/2, we
obtain

E|Ψu(t)|2

≤2β2

b2

∫ t

0

(
2λ2

2δ−σ2
1

+2x2
0 exp{σ2

1−2δ)s}
)

exp{(σ2
2−2q)(t−s)}ds+2y2

0 exp{(σ2
2−2q)t}

≤ 2β2

b2

(
2λ2

(2δ − σ2
1)(2q − σ2

2)
+ 2x2

0

∫ t

0

exp{σ2
1 − 2δ)s} exp{(σ2

2 − 2q)(t− s)} ds
)

+ 2y2
0 exp{(σ2

2 − 2q)t}

≤ 4β2λ2

b2(2δ − σ2
1)(2q − σ2

2)
+

4β2x2
0

b2(2q − σ2
2)

+ 2y2
0 exp{(σ2

2 − 2q)t}, t ≥ 0.

(6.8)

Therefore, similar to (6.5), we have

lim sup
t→∞

1

t
log (E|y(t, y0)|2) ≤ lim sup

t→∞

1

t
log (E|Ψu(t)|2)

≤ lim sup
t→∞

1

t
log
[
C1 + 2y2

0 exp{(σ2
2 − 2q)t}

]
≤ lim sup

t→∞

1

t
logC1 + lim sup

t→∞

1

t
log

(
1 +

2y2
0

C1
exp{(σ2

2 − 2q)t}
)

≤ lim sup
t→∞

1

t

(
2y2

0

C1
exp{(σ2

2 − 2q)t}
)

= 0,

(6.9)

where

C1 =
4β2λ2

b2(2δ − σ2
1)(2q − σ2

2)
+

4β2x2
0

b2(2q − σ2
2)
.

Step 3. For the z-component of the solution, from (4.21) we have

E|Γu(t)|2 ≤ 2k2

∫ t

0

E

[
Ψ2
u(s) exp

{
−2

[
γ +

σ2
3

2

]
(t− s) + 2σ3(B3(t)−B3(s))

}]
ds

+ 2z2
0 exp{(σ2

3 − 2γ)t}.
(6.10)

Then in turn we substitute (6.8) into (6.10). By the independence of B2(t) and
B3(t) together with all the condition δ > σ2

1/2, q > σ2
2/2 and γ > σ2

3/2, we get

E|Γu(t)|2

≤2k2

∫ t

0

(
4β2λ2

b2(2δ − σ2
1)(2q − σ2

2)
+

4β2x2
0

b2(2q − σ2
2)

+ 2y2
0 exp{(σ2

2 − 2q)s}
)
·

· E
[
exp

{
−2

[
γ +

σ2
3

2

]
(t− s)+2σ3(B3(t)−B3(s))

}]
ds+2z2

0 exp{(σ2
3 − 2γ)t}

≤ 2k2

∫ t

0

(C1 + 2y2
0) exp{(σ2

3 − 2γ)(t− s)} ds+ 2z2
0 exp{(σ2

3 − 2γ)t}

≤ 2k2

(2γ − σ2
3)

(C1 + 2y2
0) + 2z2

0 exp{(σ2
3 − 2γ)t}, t ≥ 0.

(6.11)
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Consequently and similarly, we obtain

lim sup
t→∞

1

t
log (E|z(t, z0)|2) ≤ lim sup

t→∞

1

t
log (E|Γu(t)|2)

≤ lim sup
t→∞

1

t
log

[
2k2

(2γ − σ2
3)

(C1 + 2y2
0) + 2z2

0 exp{(σ2
3 − 2γ)t}

]
≤ lim sup

t→∞

1

t
log

[
2k2

(2γ − σ2
3)

(C1 + 2y2
0)

]
+ lim sup

t→∞

1

t
log

[
1 +

2z2
0

C2
exp{(σ2

3 − 2γ)t}
]

≤ lim sup
t→∞

1

t

(
2z2

0

C2
exp{(σ2

3 − 2γ)t}
)

= 0

(6.12)

where C2 = 2k2(C1 + 2y2
0)/(2γ − σ2

3). Combining (6.5), (6.9) and (6.12), we see
that (6.1) is proved.

Theorem 6.2. Under the same assumption as in Theorem 6.1, for any p > 1, the
p-th moment Lyapunov exponent of the positive solution trajectories of the system
(1.1) is nonpositive,

Λ(p) = lim sup
t→∞

1

t
logE‖X(t,X0)‖pR3

+
≤ 0, (6.13)

where X(t,X0) = (x(t, x0), y(t, y0), z(t, z0)) is the solution with any initial data
X0 ∈ R3

+.

Proof. One can prove (6.13) by the same approach as in the proof of Theorem
6.1 with the fact that the p-th moment of the geometric Brownian motion (6.2) is
given by

E|S(t)|p = |S(0)|p exp

[
p

(
(p− 1)

2
σ2

1 − δ
)
t

]
, t ≥ 0, (6.14)

cf. [22, p. 106]. The detailed proof is omitted here for simplicity.

7. Conclusion

The aim of this paper is to investigate the virus dynamics modeled by the susceptible-
infected-removed (SIR) equations with the Beddington-DeAngelis functional re-
sponse and the stochastic multiplicative and independent white noises. Here we
studied the pathwise, time-averaging, and asymptotic dynamics for the almost sure-
ly positive solutions of this system.

Starting with the proof of global existence of the positive solutions by construc-
tion of a linear-log Lyapunov function and using the stochastic Itô formula, the
existence of a stationary distribution with respect to the positive solutions is es-
tablished by construction of another sophisticated Lyapunov function. Through
conducting sharp estimates, we obtained the asymptotic upper and lower bounds
of the moments of stochastic trajectories.

Based on the asymptotic moment estimation and the stationary distribution as
well as the ergodicity, we further proved the absorbing property in time average for
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the solution trajectories of this stochastic virus model. Finally we made the non-
positive evaluation of the mean-square and any order moment Lyapunov exponents.
These results will be useful for a potential study in regard to prediction of virus
persistence and extinction asymptotically in a long run.

Recently there have been stochastic epidemic models driven with noise of Lévy
processes (sometimes called telephone noise or telegraph noise [2, 11, 23, 25]) pro-
posed and studied. Many good results on epidemic dynamics and prediction of per-
sistence and extinction of diseases or virus for SIR and SIRS type equations with
Markov switching have been reported, cf. [6, 7, 12, 13, 25, 26] and references there-
in. Besides there are researches of longtime dynamics on the budworm growth and
predator-prey models with harvesting and distributed delays also involving stochas-
tic noises of regime-switching, cf. [2,15,20,28]. It is expected that the Beddington-
DeAngelis dynamics with Lévy type noise will also be investigated.
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