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Abstract Two new binge drinking models incorporating demographics on
different weighted networks are investigated. First, the dynamics of the drink-
ing model with the linear infectivity φ(k) = k on the unweighted network is
investigated. The basic reproduction number R0 and the uniqueness and sta-
bility of all the equilibria are derived. Second, the model with the nonlinear
infectivity φ(k) = ka(0 < a < 1) and two kinds of weights is introduced, and
stability of all the equilibria is studied. At last, some simulations are presented
to illustrate our analytic results. Our results show that the spread of drinking
behaviors on the fixed weighted network is the most easily to break out, and
the infectivity exponent also has a greater effect on the spread of drinking
behaviors than that of the weight exponent.
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1. Introduction

Drinking is an increasingly serious problem, especially among the group of college
students [1]. Injuries and deaths caused by alcohol increased by 6% per 100,000
college students from 1998 to 2001 [11]. There are about 3.8% of global deaths
and 4.6% of global DALY (disability adjusted life years) attributable to alcohol
[29]. Excessive drinking not only harms personal health, but also induces serious
consequences for the family and society.

Nowadays many researchers investigate the drinking behaviors by construct-
ing mathematical models [2, 28,33,34,38]. Mubayi et al. [28] introduced a simple
framework where drinking was modelled as a socially contagious process in low and
high-risk connected environments. Bhunu [2] presented a deterministic model for
the spread of alcoholism. Thomas and Lungu [33] constructed a two-sex model
to analyze the influence of heavy drinking on HIV/AIDS among men and women,
they found that binge drinking was a major driving force for HIV/AIDS. Wang et
al. [34] constructed an alcohol quitting model with distributed time delay, and
derived the optimal control strategies with the help of proposing an objective func-
tional and using classic Pontryagin’s Maximum Principle. Xiang [38] proposed
a drinking model with public health educational campaigns, and concluded that
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the public health educational campaigns of drinking individuals can slow down the
drinking dynamics.

Media coverage plays a crucial role in modern life. It will transmit a lot of health
information when some diseases appear. So many scholars take into account media
coverage in their models to study its impact on the spread of epidemic. Huo and
Wang [15] considered the impact of media coverage on the drinking spread, they
divided the health drinkers into two classes: X(t), who will avoid contacting with
binge drinkers for the reason of media coverage; S(t), who will not be influenced
by media coverage. Ma et al. [24] studied a dynamic alcohol consumption model
with awareness programs and time delay, they found that awareness programs were
effective measures in controlling the alcohol problems and the bifurcation might
appear by increasing the value of time delay. Other related epidemic or population
models, we refer to see [4, 5, 8, 10,13,17,26,27,39,44]

Above alcohol models are all based on the assumption of homogeneous mixing.
A few drinking models are studied on complex networks [3, 16], but the epidemic
spread models on complex networks have been studied extensively in recent years
[7, 12, 18,31,35,37,41] and references cited therein. They constructed models on the
networks, in which each node represents an individual in the real system, and each
edge between two nodes denotes the relationship between individuals. The degree
distribution of the complex networks is defined as p(k) = Nk

N , which means the
probability that a node randomly chosen has k links. Most researches on epidemic
behaviors are all investigated on the scale-free network, since it considers the growth
and connection tendency of the real world. And the degree distribution on the scale-
free network follows a power law p(k) ∼ ck−γ , with 2 < γ ≤ 3, where c satisfies the
equality of

∑n
k=1 p(k) = 1 [23]. Huo and Wang [35] analyzed the impact of media

coverage on the binge drinking model on the heterogeneous network, they assumed
that the social network was a closed group which means that the total number of
individuals in the process of the alcohol spread remained unchanged. But some
behaviors will continue for a long time even until the end of individual life. Thus, it
is necessary to consider the influence of individual birth and death. We will improve
the original drinking model by introducing the empty nodes to maintain the static
stability of the complex networks, this method has been used in many literature
[20–22,43] and references cited therein.

The weight of complex networks is often used to represent the intimacy of nodes,
the greater the weight is, the more the intimacy is. Zhu et al. [45] introduced a
modified SIS model on the adaptive weighted network, they employed a function
ω(i, j) = g(i)g(j) of nodes’ degrees to express the weights of links, where g(i)
was an increasing function of degree i. Chu et al. [6] proposed an SIR model in
weighted scale free networks with the nonlinear infectivity. They found that the
infectivity exponent had a stronger impact on the epidemic prevalence than the
weight exponent. Thus, the expression of infectivity is the key to the model, it
affects the dynamic behavior largely. Various forms of infectivity were proposed to
improve the actuality of models [14,30,36,40,42].

Motivated by the above, we set up binge drinking models with demographics and
nonlinear infectivity on weighted networks, and study dynamics of binge drinking
models. Our results show that the drinking behaviors spread on the fixed weighted
network is the most easily to break out and the infectivity exponent has a greater
effect on the drinking threshold than the weight exponent.

The organization of this paper is as follows: In Section 2, we present a binge
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drinking model with demographics and linear infectivity φ(k) = k on unweighted
scale-free network, and analyze the dynamic properties of the model. In Section
3, we modify the model by introducing different weights of networks and nonlin-
ear infectivity φ(k) = ka(0 < a < 1). In Section 4, we perform some numerical
simulations. Some conclusions are also given in last section.

2. The model with demographics and linear infec-
tivity on unweighted networks

2.1. System description

In our model, we divide the total population N into n (n is the maximum degree)
groups according to the degree of nodes. Each group is divided into three subgroups
according to the alcohol consumption: Sk(t) represents the density of nondrinkers
or moderate drinkers, Xk(t) represents the aware population who avoid contacting
with heavy drinkers due to media coverage, Ik(t) represents the heavy drinkers,
respectively. Then Nk(t) = Sk(t) + Xk(t) + Ik(t), k = 1, 2, ..., n. M(t) represents
the cumulative density of awareness programs driven by media, it is proportional
to the total density of binge drinkers. Then there are three kinds of nodes’ states
in our model.

Similar to that of [21] , we take a number set {0, 1, 2, 3} to express the subgroup
in our model, where 0 represents the empty state, 1 represents the nondrinkers or
moderate drinkers state, 2 represents the aware population state, and 3 represents
the heavy drinkers state. Different states can transform from each other. Taking
the empty node as the example, it can change the state to the health drinkers at
rate b, this progress means that there are some new individuals birth. If some
people die, they will turn into the empty state, let the death rate is d. Similarly,
nondrinkers or moderate drinkers turn to heavy drinkers at rate β. Heavy drinkers
recover at rate µ. Awareness disseminates among nondrinkers or moderate drinkers
at rate α. When the awareness of avoiding contacting with alcoholics is gradually
fading, Xk will no longer consciously cut off the contact with alcoholics. Then they
will return to Sk at rate σ. ω represents the growth rate of media coverage. γ
represents the depletion rate of media coverage resulted by ineffective measures.
All the parameters can be found in Table 1, and are positive constants.

Figure 1. Transfer diagram of model (2.1).
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The model’s structure is shown in Figure 1. The transfer diagram leads to the
following system of 3n+ 1 ordinary differential equations

dSk(t)

dt
= b(1− Sk −Xk − Ik)− βkSkθ(t)− αSkM + σXk + µIk − dSk,

dXk(t)

dt
= αSkM − σXk − dXk,

dIk(t)

dt
= βkSkθ(t)− µIk − dIk, k = 1, 2, ..., n,

dM(t)

dt
= ω

n∑
k=1

p(k)Ik − γM.

(2.1)

Table 1. The parameters description of model (2.1).

Parameter Description
b The birth rate of population.
d The death rate of population.
β The transmission coefficient for nondrinkers or moderate

drinkers turning to heavy drinkers.
µ The recovery rate of heavy drinkers.
α The dissemination rate of awareness among nondrinkers or

moderate drinkers.
σ The transformation rate from aware individuals to non-

drinkers or moderate drinkers.
ω The growth rate of media coverage.
γ The depletion rate of media resulted by ineffective mea-

sures.

For the node with degree k, which means that the number of links connected to

the node is k. Let the proportion be φ(k)
k , where φ(k) denotes the infectivity of a

k-degree node and it is less than or equal to k. Then θ(t) =
∑n
k=1 p(k|i)

φ(k)
k Ik(t)

represents the probability that an edge of nondrinkers or moderate drinkers links
to binge drinkers, and it is between 0 and b

b+d . For simplicity, we consider the
uncorrelated networks where the conditional probability satisfies p(k|i) = kp(k)/⟨k⟩
[22], where ⟨k⟩ =

∑n
k=1 kp(k), then θ(t) =

1
⟨k⟩

∑n
k=1 φ(k)p(k)Ik. We first study the

dynamics of the drinking model with linear infectivity φ(k) = k on unweighted
network, i.e., θ(t) = 1

⟨k⟩
∑n
k=1 kp(k)Ik.

2.2. Positivity and boundedness of solutions

Lemma 2.1. Let (S1(t), X1(t), I1(t), . . . , Sn(t), Xn(t), In(t), M(t)) be the
solution of system (2.1), if Sk(0) > 0, Xk(0) > 0, Ik(0) > 0, M(0) > 0 and
θ(0) > 0, then for k = 1, 2, ..., n, we have Sk(t) > 0, Xk(t) > 0, Ik(t) > 0, M(t) > 0
and θ(t) > 0 for all t > 0.

Proof. Substituting the third equation of system (2.1) into the formula of θ(t),
we get

θ′(t) =
1

⟨k⟩

n∑
k=1

kp(k)I ′k(t) = θ(t)[
1

⟨k⟩

n∑
k=1

kp(k)βkSk(t)−(µ+ d)],
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it implies that

θ(t) = θ(0)exp[−(µ+ d)t+
1

⟨k⟩

∫ t

0

n∑
k=1

kp(k)βkSk(τ)dτ ].

Since θ(0) > 0, we obtain θ(t) > 0 for all t > 0. Using the continuity of Sk(t), since
Sk(0) > 0, we can find a small δ > 0, such that Sk(t) > 0 for 0 < t < δ. Now we
prove that Sk(t) > 0 for all t > 0. If not, we assume a contradiction that there
exists t1 ≥ δ > 0, such that Sk(t1) = 0 and Sk(t) > 0 for all 0 < t < t1. From the
third equation of system (2.1), we have

I ′k(t) + (µ+ d)Ik(t) = βkSk(t)θ(t) > 0, 0 < t < t1,

then

Ik(t) > Ik(0)e
−(µ+d)t > 0, 0 < t < t1.

From the last equation of system (2.1), we have

M ′(t) > 0− γM(t), 0 < t < t1,

it follows that

M(t) > M(0)e−γt > 0, 0 < t < t1.

Similarly, from the second equation of system (2.1), we have

X ′
k(t) + (σ + d)Xk(t) = αSk(t)M(t) > 0, 0 < t < t1,

then

Xk(t) > Xk(0)e
−(σ+d)t > 0, 0 < t < t1.

Using the continuity of Xk(t) and Ik(t), we have Xk(t1) ≥ 0 and Ik(t1) ≥ 0. Adding
the first three equations of system (2.1), for all t ≥ 0, we have

dNk(t)

dt
= b− (b+ d)Nk(t),

since

Nk(0) = Sk(0) +Xk(0) + Ik(0) > 0,

then

Nk(t) =
b

b+ d
+Nk(0)e

−(b+d)t ≤ b

b+ d
,

and

Sk(t1) +Xk(t1) + Ik(t1) ≤
b

b+ d
< 1,

so

S′
k(t1) = b[1− (Sk(t1) +Xk(t1) + Ik(t1))] + σXk(t1) + µIk(t1) > 0.

That is to say, Sk(t) < 0 for 0 < t < t1, which is contradictory. Thus Sk(t) > 0 for
all t > 0. Similarly, we can prove that Xk(t) > 0, Ik(t) > 0 and M(t) > 0 for all
t > 0. Hence the proof is completed.
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Lemma 2.2. All feasible solutions of system (2.1) are in the following bounded
region

Ω =
{
(S1(t), X1(t), I1(t), . . . , Sn(t), Xn(t), In(t),M(t)) ∈ R3n+1

+ |0 ≤ Sk(t), Xk(t),

Ik(t) ≤
b

b+ d
, Sk(t) +Xk(t) + Ik(t) ≤

b

b+ d
, 1 ≤ k ≤ n, 0 ≤M(t) ≤ ω

γ

}
.

(2.2)

Proof. Sk(t) + Xk(t) + Ik(t) ≤ b
b+d and the positivity of solutions have been

proved in lemma 2.1, it implies that 0 ≤ Sk(t), Xk(t), Ik(t) ≤ b
b+d . From the last

equation of system (2.1), we have

0− γM ≤M ′(t) ≤ ω − γM,

it follows that

0 ≤M(0)e−γt ≤M(t) ≤ ω

γ
+M(0)e−γt,

thus

lim
t→∞

supM(t) ≤ ω

γ
.

So the region Ω is a positively invariant set of system (2.1). This completes the
proof of Lemma 2.2.

2.3. The basic reproduction number

The asymptotic theory of autonomous systems in [32] shows that dynamics of the
original and the limiting system are consistent asymptotically. Then we study the
dynamics of the limiting system of system (2.1), the limiting system can be written
as

dXk(t)

dt
= α(

b

b+ d
−Xk − Ik)M − (σ + d)Xk,

dIk(t)

dt
= βk(

b

b+ d
−Xk − Ik)θ(t)− (µ+ d)Ik, k = 1, 2, ..., n,

dM(t)

dt
= ω

n∑
k=1

p(k)Ik − γM.

(2.3)

Let

Γ =
{
(X1(t), I1(t), · · · , Xn(t), In(t),M(t)) ∈ R2n+1

+

∣∣∣∣0 ≤ Xk(t), Ik(t) ≤
b

b+ d
,

0 ≤ Xk(t) + Ik(t) ≤
b

b+ d
, 1 ≤ k ≤ n, 0 ≤M(t) ≤ ω

γ

}
. (2.4)

It can be verified that region Γ is a positively invariant set of system (2.3). Sys-
tem (2.3) has a unique alcohol free equilibrium E0 = (0, 0, . . . , 0, 0, . . . , 0, 0, 0).
Using the next generation matrix method [9], we calculate the basic reproduction
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number R0 = ρ(FV −1). In our case, the production of new binge drinkers F and
the rate of transfer of individuals V are given by

F =



β( b
b+d −X1 − I1)θ

β2( b
b+d −X2 − I2)θ

...

βn( b
b+d −Xn − In)θ

0

0
...

0

0


2n+1

,V =



(µ+ d)I1

(µ+ d)I2
...

(µ+ d)In

(σ + d)X1 − α( b
b+d −X1 − I1)M

(σ + d)X2 − α( b
b+d −X2 − I2)M
...

(σ + d)Xn − α( b
b+d −Xn − In)M

γM − ω
n∑
k=1

p(k)Ik


2n+1

.

Calculating the Jacobian matrices of F and V at E0 as follows

F = DF (E0) =


F11 0 0

0 0 0

0 0 0


(2n+1)×(2n+1)

,

V = DV (E0) =


V11 0 0

0 V22 V23

V31 0 V33


(2n+1)×(2n+1)

,

where

F11 =
βb

(b+ d)⟨k⟩


p(1) 2p(2) · · · np(n)

2p(1) 22p(2) · · · 2np(n)
...

...
. . .

...

np(1) n2p(2) · · · n2p(n)


n×n

,

V23 = (− αb
b+d − αb

b+d · · · − αb
b+d

)Tn ,

V31 =
(
−ωp(1) −ωp(2) · · · −ωp(n)

)
n
,

V11 = (µ+d)E, V22 = (σ+d)E, V33 = γ, E represents a unit matrix and 0 represents
a zero matrix. We get the basic reproduction number R0 as follows

R0 =
βb⟨k2⟩

(b+ d)(µ+ d)⟨k⟩
.
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2.4. The stability of the alcohol free equilibrium

Using the Theorem 2 of [9], we have the following result on the local stability of
E0.

Theorem 2.1. The alcohol free equilibrium E0 of system (2.3) is locally asymptot-
ically stable when R0 < 1, but unstable when R0 > 1.

We will prove the globally asymptotically stability of E0 of system (2.3) in the
following theorem.

Theorem 2.2. The alcohol free equilibrium E0 of system (2.3) is globally asymp-
totically stable when R0 < 1.

Proof. Let I1 = y1, I2 = y2, . . . , In = yn, X1 = yn+1, X2 = yn+2, . . . , Xn =

y2n,M = y2n+1, y = (y1, y2, . . . , y2n+1)
T , g(j) = jp(j)

⟨k⟩ , then the vectorial form of

system (2.3) can be written as follows

dy

dt
= Ay +N(y), (2.5)

where

A =


A11 0 0

0 A22 A23

A31 0 A33

 ,

A11 =



βb
b+dg(1)− (µ+ d) βb

b+dg(2) · · · βb
b+dg(n)

βb
b+d2g(1)

βb
b+d2g(2)− (µ+ d) · · · βb

b+d2g(n)
...

...
. . .

...

βb
b+dng(1)

βb
b+dng(2) · · · βb

b+dng(n)− (µ+ d)


n×n

,

A23 =
(

αb
b+d

αb
b+d · · · αb

b+d

)T

n
,

A31 =
(
ωp(1) ωp(2) · · · ωp(n)

)
n
,

A22 = −(σ + d)E,A33 = −γ,
and

N(y) = −



βθ(y1 + yn+1)

2βθ(y2 + yn+2)
...

nβθ(yn + y2n)

αy2n+1(y1 + yn+1)

αy2n+1(y2 + yn+2)
...

αy2n+1(yn + y2n)

0


2n+1

.
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Thus
dy

dt
≤ Ay. (2.6)

Considering the following linear system

dy

dt
= Ay. (2.7)

If R0 < 1, all eigenvalues of A have negative real parts [9]. It means that system
(2.7) is stable whenever R0 < 1. Then Ik(t) → 0, Xk(t) → 0,M(t) → 0, when
t→ ∞, for this linear system. Since (2.7) is a quasi monotone system, by citing the
comparison theorem [19], we can get the result is that the nonlinear system (2.3)
satisfies that Ik(t) → 0, Xk(t) → 0,M(t) → 0, as t → ∞, when R0 < 1. So the
alcohol free equilibrium E0 of system (2.3) is globally asymptotically stable. The
proof is complete.

2.5. The uniqueness of the alcohol present equilibrium

Theorem 2.3. If R0 > 1, system (2.3) has a unique alcohol present equilibrium

E∗(X∗
1 , I

∗
1 , ..., X

∗
n, I

∗
n,M

∗).

Proof. Let the right side of system (2.3) be 0, and I∗ =
n∑
k=1

p(k)I∗k > 0.We obtain

the following system

α(
b

b+ d
−X∗

k − I∗k)M
∗ − (σ + d)X∗

k = 0,

βk(
b

b+ d
−X∗

k − I∗k)θ − (µ+ d)I∗k = 0,

ω
n∑
k=1

p(k)I∗k − γM∗ = 0,

(2.8)

From the third equation of system (2.8), we have

M∗ =
ωI∗

γ
. (2.9)

Taking (2.9) into the first equation of system (2.8), we have

X∗
k =

αωbI∗ − αω(b+ d)I∗I∗k
αω(b+ d)I∗ + γ(σ + d)(b+ d)

. (2.10)

Substituting (2.10) into the second equation of system (2.8), we obtain

αω(µ+d)(b+d)I∗I∗k+βkθγ(σ+d)(b+d)I
∗
k+γ(σ+d)(µ+d)(b+d)I

∗
k−βkθbγ(σ+d) = 0.

(2.11)
Multiplying equation (2.11) by p(k) and summing over k, we get

αω(µ+d)(b+d)(I∗)2+γ(σ+d)(µ+d)(b+d)I∗−βγ(σ+d)⟨k⟩θ[b−(b+d)θ] = 0. (2.12)
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According to the definition of I∗, we have

I∗ =
−γ(µ+ d)(b+ d)(σ + d) +

√
∆

2αω(µ+ d)(b+ d)
, (2.13)

where

∆ = [γ(µ+ d)(σ + d)(b+ d)]2 + 4αωβγ⟨k⟩(µ+ d)(σ + d)(b+ d)θ[b− (b+ d)θ] > 0,

since θ ∈ [0, b
b+d ]. On the other hand, we get the following equation from (2.11) is

that

I∗k =
βkθbγ(σ + d)

αω(µ+ d)(b+ d)I∗ + γ(σ + d)(b+ d)(βkθ + µ+ d))
. (2.14)

Substituting (2.13) into (2.14), we have

I∗k =
2βkθbγ(σ + d)

γ(σ + d)(b+ d)(2βkθ + µ+ d) +
√
∆
. (2.15)

Substituting (2.15) into the expression of θ(t) = 1
⟨k⟩

n∑
k=1

kp(k)I∗k , then we obtain a

self-consistency equation as follows

θ(t) =
1

⟨k⟩

n∑
k=1

kp(k)
2βkθbγ(σ + d)

γ(σ + d)(b+ d)(2βkθ + µ+ d) +
√
∆
. (2.16)

If we let

f(θ) = 1− 2

⟨k⟩

n∑
k=1

kp(k)
βkbγ(σ + d)

γ(σ + d)(b+ d)(2βkθ + µ+ d) +
√
∆
, (2.17)

then equation (2.16) is equivalent to the following equation

θf(θ) = 0. (2.18)

Obviously, equation (2.18) has a trivial solution θ = 0. For

f ′(θ) =
2

⟨k⟩

n∑
k=1

kp(k)
A

B2
, (2.19)

where

A = 2γ2(σ + d)2β2(b+ d)bk[k + αω(µ+ d)⟨k⟩[b− 2(b+ d)θ]/
√
∆],

B = γ(σ + d)(b+ d)(2βkθ + µ+ d) +
√
∆ > 0,

hence, f ′(0) > 0. Through a similar derivation, we obtain that

f ′′(θ) =
2

⟨k⟩

n∑
k=1

kp(k)
B2 dA

dθ − 2AB dB
dθ

B4
, (2.20)

where
dA

dθ
=

4γ2(σ + d)2β2(b+ d)2(µ+ d)αωbk

∆
C < 0,
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since

C = −⟨k⟩
√
∆− αω(µ+ d)[b− 2(b+ d)θ]

2⟨k⟩2βγ(σ + d)√
∆

< 0.

And
dB

dθ
= 2γ(σ + d)(b+ d)β[k +

αω(µ+ d)⟨k⟩[b− 2(b+ d)θ]√
∆

],

then

A
dB

dθ
= 4γ3β3(σ + d)3(b+ d)2bk[k +

αω(µ+ d)⟨k⟩[b− 2(b+ d)θ]√
∆

]2 > 0,

B2 dA

dθ
− 2AB

dB

dθ
= B(B

dA

dθ
− 2A

dB

dθ
) < 0,

thus f ′′(θ) < 0, that is to say, f(θ) is a convex function for θ ∈ [0, b
b+d ]. Furthermore,

when R0 > 1,

f(
b

b+ d
) = 1− 1

⟨k⟩

n∑
k=1

kp(k)
βkbγ(σ + d)

βkbγ(σ + d) + γ(σ + d)(µ+ d)(b+ d)

> 1−

n∑
k=1

kp(k)

⟨k⟩
= 0,

f(0) = 1− 2

⟨k⟩

n∑
k=1

kp(k)
βkbγ(σ + d)

2γ(σ + d)(µ+ d)(b+ d)
= 1−

βb
n∑
k=1

k2p(k)

(µ+ d)(b+ d)⟨k⟩

= 1−R0 < 0.

So there exists a unique positive equilibrium E∗(X∗
1 , I

∗
1 , ..., X

∗
n, I

∗
n,M

∗) of system
(2.3). The proof is complete.

3. Models with demographics and nonlinear infec-
tivity on weighted networks

In this section, we study the binge drinking model (2.1) with different weights of
the uncorrelated network and nonlinear infectivity φ(k) = ka(0 < a < 1). Firstly,
we introduce the new model on the fixed weighted network, then model (2.1) is
modified as follows

dSk(t)

dt
= b(1− Sk −Xk − Ik)− kSkΘk(t)− αSkM + σXk + µIk − dSk,

dXk(t)

dt
= αSkM − σXk − dXk,

dIk(t)

dt
= kSkΘk(t)− µIk − dIk, k = 1, 2, ..., n,

dM(t)

dt
= ω

n∑
k=1

p(k)Ik − γM.

(3.1)

kSkΘk(t) denotes newly drinkers per unit time, where Θk(t)=
∑
ip(i|k)

φ(i)
i βikIi(t)

=
∑
i
iap(i)
⟨k⟩ βikIi(t) is the probability that the drinking behaviors transmit through
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a link. βik represents the transmission rate from nodes with degree i to nodes with
degree k. Sk, Xk, Ik, M and all other parameters have the same meaning as model
(2.1).

There are many forms of weighted expressions on complex networks. In this
paper, we use nodes’ degrees to express edges’ weight. The edges’ weight between
two nodes with degree i and k can be expressed as a function ω(i, k) = f(i)f(k),
where f(i) is an increasing function of degree i since the individuals whose degree
is large will have great influence on the social network, thus, their weight should be
great. In this paper, we take f(i) = ih [45], h depends on the networks, e.g., for
the Escherichia coli matabolic network h = 0.5, for the US airport network h = 0.8
[25].
ψk is the weight of nodes with degree k, it is the sum of links’ weights connected

with the node, i.e., ψk = k
∑
i p(i|k)ω(i, k) = kh+1

⟨
kh+1

⟩/
⟨k⟩. For the i-degree

node, we assume it has a fixed total transmission rate which is given by βi [6, 45],
and the transmission rate through an edge from the i-degree node to the k-degree
node is measured by the proportion of the edge’s weight accounting for the i-degree

node’s weight, i.e., βik = βiω(i,k)ψi
= βkh ⟨k⟩

/⟨
kh+1

⟩
. It means that the greater

proportion of ψi the weight ω(i, k) of a link accounting for, the greater chance the
k-degree node will be impacted to drinking. Thus Θk = βkh

∑
i i
ap(i)Ii

/⟨
kh+1

⟩
.

Using the F -V method [9], we get the production of new binge drinkers F and
the rate of transfer of individuals V as follows

F =



( b
b+d −X1 − I1)Θ1

2( b
b+d −X2 − I2)Θ2

...

n( b
b+d −Xn − In)Θn

0

0
...

0

0


2n+1

,V =



(µ+ d)I1

(µ+ d)I2
...

(µ+ d)In

(σ + d)X1 − α( b
b+d −X1 − I1)M

(σ + d)X2 − α( b
b+d −X2 − I2)M
...

(σ + d)Xn − α( b
b+d −Xn − In)M

γM − ω
n∑
k=1

p(k)Ik


2n+1

.

Calculating the Jacobian matrices of F and V at E1 = (0, 0, . . . , 0, 0, 0) as
follows

F = DF (E0) =


F11 0 0

0 0 0

0 0 0


(2n+1)×(2n+1)

,

V = DV (E0) =


V11 0 0

0 V22 V23

V31 0 V33


(2n+1)×(2n+1)

,



Analysis of the binge drinking models . . . 1547

where

F11 =
βb

(b+ d)⟨kh+1⟩


p(1) 2ap(2) · · · nap(n)

2h+1p(1) 2h+12ap(2) · · · 2h+1nap(n)
...

...
. . .

...

nh+1p(1) nh+12ap(2) · · · nh+1nap(n)


n×n

,

V23 = (− αb
b+d − αb

b+d · · · − αb
b+d

)Tn ,

V31 =
(
−ωp(1) −ωp(2) · · · −ωp(n)

)
n
,

V11 = (µ+d)E, V22 = (σ+d)E, V33 = γ, E represents a unit matrix and 0 represents
a zero matrix. The basic reproduction number R1 of model (3.1) is calculated as
follows

R1 =
βb

⟨
ka+h+1

⟩
(b+ d)(µ+ d) ⟨kh+1⟩

.

Theorem 3.1. The alcohol free equilibrium E1 of system (3.1) is locally asymptot-
ically stable if R1 < 1, but unstable if R1 > 1.

Secondly, we investigate the drinking model on the adaptive weighted network
which considers the action of individuals’ health conscious. When the phenomenon
of alcoholism has become more and more serious, individuals will take some mea-
sures to avoid being infected to drink. Then the weight functions represented by
the density of binge drinkers at time t becomes more significantly [45]. The edges’
weight ω′(i, k) between two nodes with degree i and k on the adaptive weighted
networks can be expressed as

ω′(i, k) = ω0i
h exp(−c(i)I(t))kh exp(−c(k)I(t)),

where c(k) = kρ is a non-decreasing function of k.
The node’s weight with degree k on the adaptive weighted networks is improved

as follows

ψ′
i = ω0i

h+1 [exp(−c(i)I(t))]
⟨
kh+1exp(−c(k)I(t))

⟩/
⟨k⟩.

The corresponding transmission rate β′
ik on the adaptive weighted networks

becomes

β′
ik =

βkh ⟨k⟩ exp(−c(k)I(t))
⟨kh+1 exp(−c(k)I(t))⟩

.

Substituting β′
ik into the expression of the probability Θ′

k that the drinking
behaviors transmit through a link on the adaptive networks, then we have that

Θ′
k =

βkh exp(−c(k)I(t))
⟨kh+1 exp(−c(k)I(t))⟩

⟨kaIk(t)⟩ .

When c(k) ̸= 0, h ̸= 0, the network is the adaptive weighted network. When
c(k) = 0, h ̸= 0, then Θ′

k = Θk, the network is the fixed weighted network. When
c(k) = 0, h = 0, the network is the unweighted network. The adaptive factor can
not change the value of the basic reproduction number, but it brings a great effect
to the drinking behavior [45].
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4. Numerical simulation and sensitivity analysis

In this section, we will simulate the drinking behaviors on the unweighted, fixed and
adaptive networks, respectively, and compare the impact of infectivity exponent a
on the binge drinking models. In the scale-free networks, we take 100 nodes to
simulate the drinking model, p(k) = 18k−3, other parameters are chosen in Table
2.

Table 2. The parameter values of the model.

Parameter Data estimated Data sources
b 0.2 year−1 estimate
d 0.02 year−1 estimate
β 0.02 year−1 [16]
µ 0.4 year−1 [16]
α 0.1 year−1 [16]
σ 0.2 year−1 [16]
ω 0.5 year−1 [43]
γ 0.05 year−1 [43]

Figure 2 simulates the trend of compartments’ density of Sk, Xk, Ik,M changing
with time on the unweighted networks with the linear infectivity. When β = 0.02,
we have R0 = 0.4146 < 1, and Ik(t) → 0, which means the phenomenon of alcohol
abuse will disappear (figure 2(a)). When β = 0.05, we get R0 = 1.0366 > 1, and
Sk, Xk, Ik, M all tend to a nonzero constant when t → +∞ (figure 2(b)), i.e., the
phenomenon of alcohol abuse will be permanent, and eventually reaches a steady
state.
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Figure 2. The trend of Sk, Xk, Ik,M on the unweighted networks with the linear infectivity.

The basic reproduction number is small than one (R0 = 0.4146 in the unweighted
networks; R1 = 0.9457 in the fixed and adaptive weighted networks), a = 1 and
β = 0.02 in figure 3. It simulates the trend of Ik (k = 10, 40, 80) changing with time
on different networks. We find that Ik all tend to 0, but the peak of Ik with the
same degree is the highest in the fixed weighted networks (figure 3(b)) and is the
lowest in the adaptive weighted networks (figure 3(c)). It means that the drinking
behavior is the most easily to spread in the fixed weighted networks, furthermore,
the self-protection awareness of health drinkers guides them to reduce the contact
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with alcoholics, then the risk of be infected will become low in the adaptive weighted
networks.
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Figure 3. The trend of Ik (k = 10, 40, 80) on different networks, when the basic reproduction number
is small than one.

Figure 4 simulates the trend of Ik (k = 10, 40, 80) changing with time on different
networks in the case of a = 1, β = 0.05 and the basic reproduction number is great
than one (R0 = 1.0366 in the unweighted networks; R1 = 2.3643 in the fixed and
adaptive weighted networks). When t → +∞, Ik all tend to a nonzero positive
constant, then the binge drinking will form the endemic disease. But the drinking
behavior is the most easily to break out in the fixed weighted networks, the result
is accordant with figure 3.
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Figure 4. The trend of Ik (k = 10, 40, 80) on different networks, when the basic reproduction number
is great than one.
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Next, we give the sensitivity analysis of R0 and R1 with models’ parameters.
Figure 5 shows the relationship among R0, birth rate b and death rate d. By Figure
5, we know that R0 increases with the increasing of the value of b, and increases
with the decreasing of the value of d.

The relationship among R1, infectivity exponent a and weighted exponent h is
shown in figure 6. The result shows that R1 increases with the increasing of the
value of a and h, but it is more sensitivity on a. It implies that the infectivity
exponent has a greater effect on the spread of drinking than that of the weighted
exponent.
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Figure 6. The relationship among R1, infectivity exponent a and weighted exponent h.

We show the influence of the fixed and adaptive weight on the total density
of heavy drinkers I(t) in figures (7(a)) and (7(b)), where β = 0.04, a = 1. The
results display that I(t) is greater when the fixed weighted exponent is greater,
and the phenomenon of alcoholism is more serious. On the contrary, the adaptive
weight exponent is greater, the rate of be infected will be smaller. It means that the
self-protection consciousness plays a good role in reducing the drinking behavior.
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Figure 7. The influence of the fixed and adaptive weight on the total density of heavy drinkers I(t),
respectively.
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5. Conclusions and discussions

In this paper, we investigate binge drinking models incorporating the population
factor on different weighted networks. Firstly, we analyze the dynamics of the
drinking model with the linear infectivity φ(k) = k on the unweighted network.
The basic reproduction number R0, the uniqueness and stability of equilibria are
obtained. Secondly, we modify the model by introducing the nonlinear infectivity
φ(k) = ka(0 < a < 1) and two kinds of weights. Finally, we simulate the theoretical
results and discuss the spread of drinking behaviors on different networks. We also
study the impact of infectivity exponent.

Our results show that the spread of drinking behaviors on the fixed weighted
network is the most easily to break out and the infectivity exponent has a greater
effect on the drinking behaviors than that of the weight exponent.
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