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Abstract In this paper, we consider the existence of periodic solutions for
the super quadratic second order Hamiltonian system, and primitive functions
of nonlinearities are allowed to be sign-changing. By using some weaker con-
ditions, our result extends and improves some existed results in the literature.
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1. Introduction and Main Result

We consider the following second order Hamiltonian system

u′′(t) +A(t)u(t) +∇H(t, u(t)) = 0, t ∈ R, (1.1)

where A(·) is a continuous T -periodic symmetric matrix, H : R × RN → R is T -
periodic (T > 0) in its first variable. Moreover, we always assume that H(t, x) is
continuous in t for each x ∈ RN , continuously differentiable in x for each t ∈ [0, T ]
and ∇H(t, x) denotes its gradient with respect to the x variable.

As a special case of dynamical systems, Hamiltonian systems play an important
role in the study of gas dynamics, fluid mechanics, relativistic mechanics and nuclear
physics. Hamiltonian systems are momentum invariant in classical mechanics of
physical systems. They are systems of differential equations which are studied in
Hamiltonian mechanics and can be written in the form of Hamilton’s equations. And
they are usually formulated in terms of Hamiltonian vector fields on a symplectic
manifold or Poisson manifold.

Some authors studied autonomous second order Hamiltonian systems, such as
[9,11], it is different from the problem (1.1) we focus on. Many authors [1–3,5–8,10,
12,13,15–35] have payed their attentions to the study of periodic solutions for (1.1),
which can be divided into the following two cases for H(t, u). The super quadratic
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case [1–3,5–7,10,12,13,15,17,18,20–24,26,27,29–31,34,35]:

lim
|u|→∞

H(t, u)

|u|2
= +∞,

and the asymptotically quadratic case [8, 16,19,21,25,26,28,32–34]:

lim
|u|→∞

H(t, u)

|u|2
= L(t), 0 ≤ L(t) < ∞.

Rabinowitz [17] established the existence of periodic solutions of (1.1) with
A(t) = 0 under the following super quadratic condition (AR-condition): there exist
constants µ > 2 and L > 0 such that

0 < µH(t, u) ≤ (∇H(t, u), u) , ∀ |u| ≥ L, t ∈ [0, T ], (1.2)

where (·, ·) denotes the inner product in RN . It is convenient to check the mountain
pass geometry and verify the Palais-Smale condition (PS-condition) by the above
AR-condition, for the associated Euler functional. For this reason, it has been
applied in many literatures, see [1, 13,18,29] and references therein.

Now the AR-condition also has been replaced by some more general super
quadratic conditions in some papers about second-order Hamiltonian systems re-
cently, such as [2, 3, 5–7, 10, 12, 15, 20–24, 26, 27, 30, 31, 34, 35]. Some of the above
authors in [6, 10, 12, 21, 30, 34] obtained infinitely many periodic solutions of (1.1)
under the even condition H(t,−u) = H(t, u).

Here, we focus our attention on the existence of period solutions of (1.1) by more
general super quadratic conditions than some existed results without the above
even condition. And we shall give some comparisons between our result and the
results [2, 3, 5, 7, 12,15,20,22–24,26,27,30,31,35].

To state our main result, we still need the following assumptions:

(A1) There exist constants c1, c2 > 0 and p > 2 such that

|∇H(t, u)| ≤ c1|u|+ c2|u|p−1, ∀(t, u) ∈ R× RN ,

where c1 < 1
2γ2

2
, γ2 is mentioned in the following Lemma 2.1.

(A2) lim|u|→+∞
H(t,u)
|u|2 = +∞, ∀(t, u) ∈ R× RN .

(A3) (∇H(t, u), u) − 2H(t, u) ≥ 0, ∀(t, u) ∈ R × RN , and there exist c0 > 0 and
ϱ > 1 such that

|H(t, u)|ϱ ≤ c0|u|2ϱ
[
(∇H(t, u), u)− 2H(t, u)

]
, ∀(t, u) ∈ R× RN , |u| ≥ r0.

Now, our main result reads as follows:

Theorem 1.1. If assumptions (A1)–(A3) hold, then (1.1) has at least a T -periodic
solution.
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Example 1.1. Let

H(t, u) = a(t)[u4 + u3 − cos(u)], (t, u) ∈ R× RN ,

where 0 < inft∈[0,T ] a(t) < supt∈[0,T ] a(t) < +∞.

Example 1.2.

H(t, u) =

a(t)[a1|u|6 + a2|u|4], |u|2 ≤ 2,

a(t)[|u|2 ln(1 + |u|2) + sin |u|2 − ln(1 + |u|2)], |u|2 > 2,

where (t, u) ∈ R × RN , 0 < inft∈[0,T ] a(t) < supt∈[0,T ] a(t) < +∞, and a1, a2 > 0
are two suitable constants.

It is not hard to check that the above functions of Example 1.1 and 1.2 satisfy
our conditions (A1)–(A3), and H of Example 1.1 is sign-changing.

Remark 1.1. Our Theorem 1.1 extends some superlinear results [2, 3, 5, 7, 12, 15,
20,22–24,26,27,30,31,35], the reasons are as follows.

1) Our nonlinearities H(t, u) can be sign-changing, which is more general than the
case (H(t, u) ≥ 0, ∀(t, u) ∈ [0, T ]× RN ) in papers [2, 5, 7, 22,26,27,30,35].

2) Papers in [2, 3, 7, 35] all use the condition:
(A′

1) There are d1 > 0 and α > 1 such that |∇H(t, u)| ≤ d1(1 + |u|α) and

|∇H(t, u)| = o(|u|), |u| → 0, ∀(t, u) ∈ [0, T ]× RN , (1.3)

clearly, our condition (A1) is weaker than (A′
1). Besides, the authors in [7, 35]

considered two cases for H: sign-changing case and H(t, u) ≥ 0 case, but the two
cases all used the above condition (A′

1), therefore our result is more general.

3) The papers [3, 12, 15, 20, 23, 24, 30, 31] also allowed H(t, u) being sign-changing,
but papers [23, 24,30] used the condition

lim
|u|→0

H(t, u)

|u|2
= 0, ∀(t, u) ∈ [0, T ]× RN , (1.4)

paper [31] used condition (1.3). And several papers of sign-changing case used
following conditions which we do not need: papers [15,24] used the condition

H(t, u) ≥ 0, ∀|u| ≤ L, t ∈ [0, T ] for some L > 0; (1.5)

author in [3] used the condition

H(t, u) ≥ 1

2
a|u|2, a = sup(σ(B) ∩ (−∞, 0)) < 0, ∀(t, u) ∈ [0, T ]× RN ; (1.6)

and [12,20] all used the condition

2H(t, u) ≥ λl−1|u|2, ∀(t, u) ∈ [0, T ]× RN , (1.7)

where λl is the first positive eigenvalue of B and λl−1 = 0 was allowed.
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Moreover, authors in [12, 15, 22, 24, 30] all used the condition: there exist con-
stants p > 2 and q > p− 2 such that

lim sup
|u|→+∞

H(t, u)

|u|p
< ∞, lim inf

|u|→+∞

(∇H(t, u), u)− 2H(t, u)

|u|q
> 0. (1.8)

It is easy to imply that the function in our Example 1.1 does not satisfy the condi-
tions (1.3)–(1.7), and the function in Example 1.2 does not satisfy (1.8), but they
all satisfy our conditions (A1)–(A3). Thus our result extends and improves the
existing results.

The rest of the present paper is organized as follows. In Section 2, we establish
the variational framework associated with (1.1) and give some preliminary lemmas,
which are useful in the proof of our main result. Then we give the detailed proof of
our result.

2. Variational setting and proof of our result

Throughout this paper we denote by ∥·∥q the usual Lq(0, T ;RN ) norm. Let E := H1
T

be the Sobolev space defined by

H1
T :=

{
u : [0, T ] → RN

∣∣ u(0) = u(T ), and u′ ∈ L2(0, T ;RN )
}

with the norm and the corresponding inner product defined by

(u, u)E = ∥u∥2E :=

∫ T

0

|u(t)|2dt+
∫ T

0

|u′(t)|2dt,

where u is absolutely continuous. By Proposition 1.1 in [14], we know there exists
a constant a0 > 0 such that

∥u∥∞ := max
t∈[0,T ]

|u(t)| ≤ a0∥u∥E , ∀ u ∈ H1
T .

Let B = − d2

dt2 −A(t) be the linearized operator defied by Bx(t) = −x′′(t)−A(t)x(t)
with T -periodic condition. Then B has a sequence of eigenvalues

λ−m ≤ λ−m+1 ≤ · · · ≤ λ−1 < 0 < λ1 ≤ λ2 · · ·λk ≤ · · ·

with λk → +∞ as k → ∞.

Remark 2.1. Obviously, there exists a constant d0 > 0 such that λ−m+d0 > c > 0.
Let ∇H(t, u(t)) = ∇H(t, u(t))+d0u(t), then it is easy to check that H also satisfies
conditions (A1)–(A3). Note that the problem (1.1) is equivalent to the following
problem

u′′(t) +A(t)u(t) +∇H(t, u(t)) = 0, t ∈ R, A(t) = A(t)− d0. (∗)

Thus to prove Theorem 1.1, we only need prove the problem (∗) has at least a
T -periodic solution under the conditions (A1)–(A3).

Lemma 2.1 ( [6]). If E is compactly embedded in Lq([0, T ]; RN ) for all 1 ≤ q ≤
+∞, then by the Sobolev embedding theorem, there exists γq > 0 such that

∥u∥q ≤ γq∥u∥, ∀u ∈ E.
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Let B be defined by Bx(t) = −x′′(t) − A(t)x(t) with T -periodic condition.
According to Remark 2.1, we can introduce the following inner product and norm
on E: for all u, v ∈ E, we can define an equivalent inner product ⟨·, ·⟩ and the
corresponding norm ∥ · ∥ in E by

⟨u, v⟩ = (Bu, v)L2 and ∥u∥ = ⟨u, u⟩ 1
2 ,

respectively. Therefore, the corresponding functional of (∗) can be written as follows

I(u) =
1

2

(∫ T

0

|u′(t)|2dt−
∫ T

0

(
A(t)u(t), u(t)

)
dt

)
−
∫ T

0

H(t, u(t))dt

=
1

2
(Bu, u)L2 −

∫ T

0

H(t, u(t))dt

=
1

2
∥u∥2 −

∫ T

0

H(t, u(t))dt, ∀u ∈ E. (2.1)

Let Ψ(u) :=
∫ T

0
H(t, u(t))dt, the hypotheses on H imply that I and Ψ are continu-

ously differentiable, and for all u, v ∈ E we have

⟨I ′(u), v⟩ = ⟨u, v⟩ − ⟨Ψ′(u), v⟩, ⟨Ψ′(u), v⟩ =
∫ T

0

(
∇H(t, u(t)), v(t)

)
dt. (2.2)

The hypotheses on H imply that I, Ψ ∈ C1(E,R) and a standard argument shows
that nonzero critical points of I are nontrivial solutions of (1.1).

We shall use the following lemma to prove the Theorem 1.1.

Lemma 2.2 (Mountain Pass Theorem, [4]). Let E be a real Banach space with its
dual space E∗, and suppose that I ∈1 (E,R) satisfies

max{I(0), I(e)} ≤ µ ≤ η ≤ inf
∥u∥=ρ

I(u)

for some µ, η, ρ > 0 and e ∈ E with ∥e∥ > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths
joining 0 and e, then there exists a sequence {un} ⊂ E such that

I(un) → c ≥ η, (1 + ∥un∥)∥I ′(un)∥E∗ → 0 as n → ∞. (2.3)

Here, we say that I ∈ C1(X,R) satisfies (C)c-condition if any sequence {un}
(such that (2.3) holds) has a convergent subsequence. Clearly, by the condition
(A1) and Remark 2.1 ,we have

|H(t, u)| ≤ c1
2
|u|2 + c2

p
|u|p, ∀(t, u) ∈ R× RN . (2.4)

Lemma 2.3. If assumptions (A1), (A2) and (A3) hold, then I satisfies (C)c-
condition.
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Proof. We assume that for any sequence {un} ⊂ E, I(un) → c and ∥I ′(un)∥
(
1 +

∥un∥
)
→ 0. Then I ′(un) → 0, and⟨

I ′(un), un

⟩
→ 0. (2.5)

Step 1. We prove the boundedness of {un} by contradiction, if ∥un∥ → ∞, let
vn = un

∥un∥ , then ∥vn∥ = 1. By the definitions of I(u) and I ′(u), for n large, we have∫ T

0

[1
2

(
∇H(t, un), un

)
−H(t, un)

]
dt = I(un)−

1

2

⟨
I ′(un), un

⟩
≤ c+ 1. (2.6)

By (2.1), I(un) → c and ∥un∥ → ∞, we have

lim sup
n→∞

∫ T

0

|H(t, un)|
∥un∥2

dt ≥ 1

2
. (2.7)

Let

Ωn(a, b) = {t ∈ [0, T ] : a ≤ |un(t)| < b}, 0 ≤ a < b. (2.8)

By ∥vn∥ = 1, we could assume that vn ⇀ v = {v(t)}t∈[0,T ] in E passing to a
subsequence, which together with Lemma 2.1 implies vn → v in Lq for 1 ≤ q < ∞,
and vn → v on [0, T ].

If v = 0, then vn → 0 in Lq, 1 ≤ q < ∞, and vn → 0 on [0, T ]. It follows from
(2.4) that ∫

Ωn(0,r0)

|H(t, un)|
|un|2

|vn|2dt ≤ (
c1
2

+
c2
p
rp−2
0 )

∫
Ωn(0,r0)

|vn|2dt

≤ (
c1
2

+
c2
p
rp−2
0 )

∫ T

0

|vn|2dt

→ 0. (2.9)

Let ϱ
′
= ϱ/(ϱ − 1). Due to ϱ > 1 (see (A3)), we have that 2ϱ > 2. So by (A3),

(2.6), the Hölder’s inequality and vn → 0 in Lq for 1 ≤ q < ∞, we have∫
Ωn(r0,∞)

|H(t, un)|
|un|2

|vn|2dt

≤
[ ∫

Ωn(r0,∞)

( |H(t, un)|
|un|2

)ϱ
dt

]1/ϱ[ ∫
Ωn(r0,∞)

|vn|2ϱ
′

dt

]1/ϱ′

≤ (2c0)
1/ϱ

[ ∫
Ωn(r0,∞)

(1
2
(∇H(t, un), un)−H(t, un)

)
dt

]1/ϱ[ ∫
Ωn(r0,∞)

|vn|2ϱ
′

dt

]1/ϱ′

≤ [2c0(c+ 1)]1/ϱ∥vn∥22ϱ′ → 0. (2.10)

Combining (2.9) with (2.10), we have∫ T

0

|H(t, un)|
∥un∥2

dt =

∫
Ωn(0,r0)

|H(t, un)|
|un|2

|vn|2dt+
∫
Ωn(r0,∞)

|H(t, un)|
|un|2

|vn|2dt → 0,
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which contradicts with (2.7).
If v ̸= 0, we let A := {t ∈ [0, T ] : v(t) ̸= 0}. For all t ∈ A, by vn = un

∥un∥ and

∥un∥ → ∞, we have limn→∞ |un| = ∞. We define

χt,Ωn(r0,∞) :=

1, t ∈ Ωn(r0,∞),

0, t ̸∈ Ωn(r0,∞),
∀n ∈ N. (2.11)

For large n ∈ N, A ⊂ Ωn(r0,∞) and limn→∞ |un| = ∞ for all t ∈ A, it follows
from (2.1), (2.4), (A2), Remark 2.1, the Fadou’s Lemma, ∥vn∥ = 1, ∥un∥ → ∞,
I(un) → c and ∥vn∥2 ≤ γ2∥vn∥ (see Lemma 2.1) that

0 = lim
n→∞

c+ o(1)

∥un∥2

= lim
n→∞

I(un)

∥un∥2

= lim
n→∞

[
1

2
−
∫ T

0

H(t, un)

(un)2
(vn)

2dt

]
= lim

n→∞

[
1

2
−
∫
Ωn(0,r0)

H(t, un)

(un)2
(vn)

2dt−
∫
Ωn(r0,∞)

H(t, un)

(un)2
(vn)

2dt

]
≤ lim sup

n→∞

[
1

2
+

(
c1
2

+
c2
p
rp−2
0

)∫ T

0

|vn|2dt−
∫
Ωn(r0,∞)

H(t, un)

(un)2
(vn)

2dt

]
≤ 1

2
+
(c1
2

+
c2
p
rp−2
0

)
γ2
2 − lim inf

n→∞

∫
Ωn(r0,∞)

H(t, un)

(un)2
(vn)

2dt

=
1

2
+
(c1
2

+
c2
p
rp−2
0

)
γ2
2 − lim inf

n→∞

∫ T

0

H(t, un)

(un)2
[χt,Ωn(r0,∞)](vn)

2dt

≤ 1

2
+
(c1
2

+
c2
p
rp−2
0

)
γ2
2 −

∫ T

0

lim inf
n→∞

H(t, un)

(un)2
[χt,Ωn(r0,∞)](vn)

2dt

= −∞. (2.12)

It is a contradiction. So {un} is bounded in E.
Step 2. The boundedness of {un} implies that un ⇀ u in E passing to a subse-
quence, where u = {u(t)}t∈[0,T ]. First, we prove∫ T

0

[
∇H(t, un)(un − u)

]
dt → 0, n → ∞. (2.13)

Note that Lemma 2.1 implies that un → u in Lq for all 1 ≤ q < ∞, so we have

∥un − u∥2 → 0, ∥un − u∥p → 0. (2.14)

The boundedness of {un} and Lemma 2.1 imply that ∥un∥q < ∞ for all 1 ≤ q < ∞,
it follows from (A1), (2.14) and the Hölder’s inequality that∣∣∣ ∫ T

0

[
∇H(t, un)(un − u)

]
dt
∣∣∣

≤
∫ T

0

∣∣∇H(t, un)(un − u)
∣∣dt
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≤
∫ T

0

[
(c1|un|+ c2|un|p−1)|un − u|

]
dt

= c1

∫ T

0

[
|un||un − u|

]
dt+ c2

∫ T

0

[
(|un|p−1|un − u|

]
dt

≤ c1∥un∥2∥un − u∥2 + c2∥un∥p−1
p ∥un − u∥p → 0. (2.15)

So (2.13) holds. Therefore, by (2.13), I ′(un) → 0, un ⇀ u in E and the definition
of I ′, we have

0 = lim
n→∞

⟨
I ′(un), un − u

⟩
= lim

n→∞
(un, un − u)− lim

n→∞

∫ T

0

(
∇H(t, un)(un − u)

)
dt

= lim
n→∞

∥un∥2 − ∥u∥2 − 0. (2.16)

That is,

lim
n→∞

∥un∥ = ∥u∥. (2.17)

It follows from un ⇀ u in E that

∥un − u∥2 = (un − u, un − u) → 0,

that is, {un} has a convergent subsequence in E. Thus the proof of I satisfies
(C)c-condition is finished.

Lemma 2.4. If assumption (A1) holds, then there exist ρ, η > 0 such that inf{I(u)|u ∈
E, ∥u∥ = ρ} > η.

Proof. By Lemma 2.1 and (2.4), for u ∈ E we have

∣∣∣ ∫ T

0

H(t, u)dt
∣∣∣ ≤ ∫ T

0

∣∣c1
2
|u|2 + c2

p
|u|p

∣∣dt
=

c1
2
∥u∥22 +

c2
p
∥u∥pp

≤ γ2
2c1
2

∥u∥2 +
γp
pc2

p
∥u∥p. (2.18)

Then from (2.1) and (2.18) we have

I(u) =
1

2
∥u∥2 −

∫ T

0

H(t, u(t))dt

≥ 1

2
∥u∥2 − γ2

2c1
2

∥u∥2 −
γp
pc2

p
∥u∥p, ∀u ∈ E. (2.19)

Let ∥u∥ = ρ > 0, it is easy to imply that there exists η > 0 such that the lemma
holds when ρ small enough. The proof is finished.

Lemma 2.5. If assumption (A2) holds, then there exists v ∈ E with ∥v∥ > ρ such
that I(v) < 0, where ρ is given in lemma 2.4.



1532 L. Jia & G. Chen

Proof. By (2.1) we have

I(su)

s2
=

1

2
∥u∥2 − 1

s2

∫ T

0

H(t, su)dt.

Then it follows from (A2) and the Fatou’s lemma that

lim
s→∞

I(su)

s2
= lim

s→∞

[1
2
∥u∥2 − 1

s2

∫ T

0

H(t, su)dt
]

≤ lim sup
s→∞

[1
2
∥u∥2 − 1

s2

∫ T

0

H(t, su)dt
]

=
1

2
∥u∥2 − lim inf

s→∞

∫ T

0

H(t, su)

s2u2
u2dt

≤ 1

2
∥u∥2 −

∫ T

0

lim inf
s→∞

H(t, su)

s2u2
u2dt

= −∞, as s → ∞. (2.20)

Therefore let v = s0u, the lemma is proved when s0 > 0 large enough.

Proof of Theorem 1.1. Lemmas 2.4 and 2.5 imply all the conditions of Lemma
2.2 hold. Therefore, Lemmas 2.2 and 2.3 imply there exists u0 ∈ E such that
I ′(u0) = 0 and I(u0) = c > 0. The proof is finished.
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