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1. Introduction

For the past few years, researchers have been investigating Galerkin methods based
on fully discontinuous approximating spaces. Weak Galerkin (WG) finite element
method is one of the Galerkin methods that use the discontinuous approximation-
s. Wang and Ye were the first two authors to introduce and analyze the weak
Galerkin method for the second-order elliptic problems in [18]. From then on, weak
Galerkin method is being widely used and developed for other problems including
the Stokes equations [19], Helmholtz equations [15], Maxwell equations [9], and bi-
harmonic equations [11, 13, 14, 20], etc. Weak Galerkin method attributes to finite
element technique to study partial differential equations such that the differential
operators are approximated by weak forms as distributions. The basic idea of weak
Galerkin finite element methods is to use the weak functions and their weak deriva-
tives in algorithm design. The continuity is recouped by the stabilizer through a
suitable boundary integral defined on the boundary of elements. The general elliptic
equation has been studied using standard Galerkin methods [4,6,7], various discon-
tinuous Galerkin methods [1, 2, 5, 16, 17], and the weak Galerkin method [8, 10, 18].
However, the weak Galerkin study was limited to the Dirichlet boundary conditions.

In this paper, we consider the following second-order elliptic equation with mixed
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boundary conditions which seeks an unknown function u = u(x) satisfying,

−∇ · (a∇u) = f in Ω, (1.1)

u = g1 on ΓD, (1.2)

a∇u · n = g2 on ΓN , (1.3)

where Ω is a polygonal or polyhedral domain in Rd (d = 2, 3), a = (aij(x))d×d ∈
[L∞(Ω)]d

2

is a symmetric matrix-valued function and n is the unit outwards normal
vector on ∂Ω. Let ΓD and ΓN be partitions of the boundary of Ω such that ΓD 6= φ,
ΓD ∪ΓN = ∂Ω, and ΓD ∩ΓN = φ. Assume that the matrix a satisfies the following
property: there exists a constant α > 0 such that

αξT ξ ≤ ξTaξ, ∀ξ ∈ Rd,

where ξ is a column vector and ξt is the transpose of ξ.
Second-order elliptic equation (1.1) has been studied in [12] using weak Galerkin

method with Dirichlet boundary conditions and achieved the optimal order of con-
vergence in both H1 and L2 norms. The purpose of this paper is to extend the
results for the second-order elliptic equations in [12] to mixed boundary conditions.
We concentrate on two-dimensional problems only (i.e., d = 2). Using the result-
s given in this paper, one can easily extend to higher-dimensions and it will be
a straightforward generalization of our work. We use weak functions of the form
v = {v0, vb}, where the function v takes the value v0 inside each element and takes
the value vb on the boundary of each element. Both v0 and vb are approximated
by polynomials in Pk(T ) and Pk−1(e) respectively, where T represents an element
and e represents an edge of T , k is non-negative integer. The corresponding weak
Galerkin solution converge with rate of O(hk) and O(hk+1) to the exact solution of
(1.1)-(1.3) in discrete H1 norm and in standard L2 norm respectively, provided that
the exact solution of the original problem is sufficiently smooth. In this paper, the
secondary objective is to study flexibility, reliability, and the accuracy of the pro-
posed WG method by presenting various numerical tests strengthened by examples
of different cases of Dirichlet and Neumann boundary conditions. Our numerical
results show an optimal order of convergence for k = 1 on triangular meshes in
two-dimensions.

This paper is organized as follows. In section 2, we present the definition of the
weak gradient operator and develop the weak Galerkin finite element scheme. Some
technical estimates are presented in section 3 which will be used later. Section 4 is
dedicated to deriving the error equation and the optimal order error estimates of H1

and L2 for the WG finite element approximations. Finally, some numerical results
are presented in section 5 that confirm the theory developed in earlier sections.

2. Weak Galerkin Finite Element Schemes

Let Th be a partition of Ω with elements T and their edges e. For every element
T ∈ Th, let hT be the diameter of T and the mesh size h = maxT∈ThhT . We define
the weak gradient as follows:

Definition 2.1. The discrete weak gradient operator, denoted by ∇wv, is defined
as the unique polynomial ∇wv|T ∈ [Pk−1(T )]2 satisfying the following equation

(∇wv,q)T = −(v0,∇ · q)T + 〈vb,q · n〉∂T , ∀q ∈ [Pk−1(T )]2, (2.1)
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where n is the unit outward normal vector of ∂T .

Our weak formulation will use the following vector spaces of functions on Ω. For
a given integer k ≥ 1, we define

Vh = {v = {v0, vb} : v0|T ∈ Pk(T ), vb|e ∈ Pk−1(e), T ∈ Th, e ∈ ∂T},
V 0
h = {v ∈ Vh : vb|e = 0, e ∈ ΓD}.

The notation e ∈ ∂T means that e is an edge of element T . Also note that any
function v ∈ Vh has a single value vb on each edge e.

Next, we introduce two projection operators by using local L2-projections. For
each element T ∈ Th, we denote the L2-projection by Q0 from L2(T ) onto Pk(T ).
Similarly, for each edge face e, let Qb be L2-projection from L2(e) onto Pk−1(e). We
denote Rh be the L2-projection onto [Pk−1(T )]2. Note that Rh is a composition of
locally defined L2-projections into the polynomial space Pk−1(T ) for each element
T ∈ Th.

Now we introduce two bilinear forms on Vh. For all v, w ∈ Vh,

a(v, w) =
∑
T∈Th

(a∇wv,∇ww)T ,

s(v, w) =
∑
T∈Th

h−1
T 〈Qbv0 − vb, Qbw0 − wb〉∂T .

Next, we denote as(., .) be the stabilization of a(., .) given by

as(v, w) = a(v, w) + s(v, w). (2.2)

The weak formulation for boundary value problem (1.1)-(1.3) is given as:

Weak Galerkin Algorithm 1. The numerical approximation for (1.1)-(1.3) can
be obtained by seeking uh = {u0, ub} ∈ Vh such that ub = Qbg1 on ΓD and

as(uh, v) = (f, v0) + 〈g2, vb〉ΓN
, ∀v ∈ V 0

h . (2.3)

Next, for any v ∈ Vh, we define |||v||| as

|||v|||2 :=
∑
T∈Th

(a∇wv,∇wv)T +
∑
T∈Th

h−1
T 〈Qbv0 − vb, Qbv0 − vb〉∂T . (2.4)

The fact that |||.||| defines a norm in finite element space V 0
h can easily be verified.

The following lemma is about the uniqueness of the solution of weak Galerkin
formulation.

Lemma 2.1. The weak Galerkin finite element scheme (2.3) has a unique solution.

Proof. Let u
(1)
h and u

(2)
h be two solutions of (2.3). Then eh = u

(1)
h − u

(2)
h satisfies

the equation

as(eh, v) = 0, ∀v ∈ V 0
h .

Note that eh ∈ V 0
h . Letting v = eh, we get

|||eh|||2 = as(eh, eh) = 0.

Which implies eh = 0, hence u
(1)
h = u

(2)
h . This concludes the proof.
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3. Some Estimates

In this section, we are going to present some technical results that are used in later
sections. In what follows, C denotes a generic constant which is independent of
the mesh size h and the functions in the estimates. For simplicity of analysis, we
assume that the coefficient a in the boundary value problem (1.1)-(1.3) is a piecewise
constant matrix on each element T of Th. The result can be extended to variable
matrices, provided that the matrix a is piecewise sufficiently smooth.

Firstly, we are going to present the trace inequality established in [18] for func-
tions on general shape regular partitions. Let T be an element with e as an edge.
For any function ϕ ∈ H1(T ), the following trace inequality holds true (see [18]):

‖ϕ‖2e ≤ C(h−1
T ‖ϕ‖

2
T + hT ‖∇ϕ‖2T ). (3.1)

The next lemma presents the commutative property of L2 projections Qh and Rh.

Lemma 3.1 (Lemma 5.1 [12]). Let Qh and Rh be the L2 projection operators as
defined earlier. Then, on each element T ∈ Th, we have the following commutative
property

∇w(Qhφ) = Rh(∇φ), ∀φ ∈ H1(T ). (3.2)

The following lemma provides some estimates for the projection operators Qh

and Rh. The proof of lemma can be found in [18].

Lemma 3.2 (Lemma 4.1 [18]). Let Th be a finite element partition of Ω that is
shape regular. For all φ ∈ Hk+1(Ω), we have∑

T∈Th

‖Q0φ− φ‖2T +
∑
T∈Th

h2
T ‖∇(Q0φ− φ)‖2T ≤ Ch2(k+1)‖φ‖2k+1, (3.3)

∑
T∈Th

‖a(Rh∇φ−∇φ)‖2T ≤ Ch2k‖φ‖2k+1. (3.4)

Lemma 3.3. For any φ ∈ H1(T ) and v ∈ Vh, we have∑
T∈Th

(∇v0, a∇φ)T =
∑
T∈Th

(a∇wQhφ,∇wv)T +
∑
T∈Th

〈v0 − vb, (aRh∇φ) · n〉∂T\ΓN

+
∑
T∈Th

〈v0 − vb, (aRh∇φ) · n〉∂T∩ΓN
.

(3.5)

Proof. Using the definition of discrete weak gradient (2.1), Lemma 3.1, and inte-
gration by parts, we get

(∇wv, a∇wQhφ)T

= (∇wv, aRh∇φ)T

= −(v0,∇ · (aRh∇φ))T + 〈vb, (aRh∇φ) · n〉∂T\ΓN
+ 〈vb, (aRh∇φ) · n〉∂T∩ΓN

= (∇v0, aRh∇φ)T − 〈v0 − vb, (aRh∇φ) · n〉∂T\ΓN
− 〈v0 − vb, (aRh∇φ) · n〉∂T∩ΓN

= (∇v0, a∇φ)T − 〈v0 − vb, (aRh∇φ) · n〉∂T\ΓN
− 〈v0 − vb, (aRh∇φ) · n〉∂T∩ΓN

.

Applying summation and solving for
∑

T∈Th(∇v0, a∇φ)T , we obtain∑
T∈Th

(∇v0, a∇φ)T =
∑
T∈Th

(a∇wQhφ,∇wv)T +
∑
T∈Th

〈v0 − vb, (aRh∇φ) · n〉∂T\ΓN
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+
∑
T∈Th

〈v0 − vb, (aRh∇φ) · n〉∂T∩ΓN
.

Which concludes the proof.
Next, We introduce a discrete H1 semi-norm in the finite element space Vh as

follows:

‖v‖1,h =

(∑
T∈Th

(‖∇v0‖2T + h−1
T ‖Qbv0 − vb‖2∂T )

) 1
2

. (3.6)

In the following lemma, we are going to present the equivalence of ‖ · ‖1,h to ||| · |||.
The proof of the lemma can be found in [12].

Lemma 3.4 (Lemma 5.3 [12]). There exists two positive constants C1 and C2 such
that for any v = {v0, vb} ∈ Vh, we have

C1‖v‖1,h ≤ |||v||| ≤ C2‖v‖1,h.

Lemma 3.5 (Lemma 5.4 [12]). Assume that Th is shape regular. Then for any
w ∈ Hk+1(Ω) and v = {v0, vb} ∈ Vh, we have

|s(Qhw, v)| ≤ Chk‖w‖k+1|||v|||, (3.7)∣∣∣∣∣ ∑
T∈Th

〈a(∇w −Rh∇w) · n, v0 − vb〉∂T

∣∣∣∣∣ ≤ Chk‖w‖k+1|||v|||. (3.8)

4. Error Analysis

In this sections, some error estimates for the weak Galerkin finite element method
solution uh will be established. The errors will be measured in two natural norms:
the triple-bar norm as defined in (2.4) and the standard L2 norm. First, we will
present the error equation.

4.1. Error Equation

Let uh = {u0, ub} ∈ Vh be the weak Galerkin finite element solution arising from
(2.3) and u be the exact solution of (1.1)-(1.3). The L2 projection of u on to the
finite element space Vh is given as

Qhu = {Q0u,Qbu}.

Let eh be the error between L2 projection of the exact solution and the weak
Galerkin finite element solution defined as:

eh = {e0, eb} = {Q0u− u0, Qbu− ub}.

In the next theorem, we are going to present the error equation.

Theorem 4.1. Let eh be the error defined as above. Then for any v ∈ V 0
h , we have

as(eh, v) =
∑
T∈Th

〈a(∇u−Rh∇u) · n, v0 − vb〉∂T + s(Qhu, v). (4.1)
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Proof. Testing (1.1) by v0 where v = {v0, vb} ∈ V 0
h and using integration by

parts, we get∑
T∈Th

(a∇u,∇v0)T −
∑
T∈Th

〈a∇u ·n, v0− vb〉∂T\ΓN
−
∑
T∈Th

〈a∇u ·n, v0〉∂T∩ΓN
= (f, v0)

where we have used the fact that
∑

T∈Th(∇u · n, vb)∂T\ΓN
= 0.

By setting φ = u in (3.5) and substituting in above equation, we obtain∑
T∈Th

(a∇wQhu,∇wv)T =(f, v0)+
∑
T∈Th

〈g2, v0〉∂T∩ΓN
−
∑
T∈Th

〈aRh∇u · n, v0−vb〉∂T∩ΓN

+
∑
T∈Th

〈a(∇u−Rh∇u) · n, v0 − vb〉∂T\ΓN
.

Adding the term s(Qhu, v) to both sides of the above equation gives rise to

as(Qhu, v) =(f, v0) +
∑
T∈Th

〈g2, v0〉∂T∩ΓN
−
∑
T∈Th

〈aRh∇u · n, v0 − vb〉∂T∩ΓN

+ s(Qhu, v) +
∑
T∈Th

〈a(∇u−Rh∇u) · n, v0 − vb〉∂T\ΓN
.

(4.2)

Subtracting (2.3) from (4.2) yields

as(eh, v) =
∑
T∈Th

〈a(∇u−Rh∇u) · n, v0 − vb〉∂T\ΓN
+ s(Qhu, v)

+
∑
T∈Th

〈g2 − aRh∇u · n, v0 − vb〉∂T∩ΓN
.

By combining first and third terms gives the error equation (4.1)

as(eh, v) =
∑
T∈Th

〈a(∇u−Rh∇u) · n, v0 − vb〉∂T + s(Qhu, v),

which completes the proof.

4.2. Error Estimates

In this section, we are going to derive the error estimates for the weak Galerkin
finite element solution.

Theorem 4.2 (H1 error). Let uh ∈ Vh be the weak Galerkin finite element solution
arising from (2.3)and u ∈ Hk+1(Ω) be the exact solution of the problem (1.1)-(1.3).
Then, there exists a constant C such that

|||uh −Qhu||| ≤ Chk‖u‖k+1. (4.3)

Proof. Substituting v = eh in (4.1) and using the equation (2.4), we get

|||eh|||2 = as(eh, eh) =
∑
T∈Th

〈a(∇u−Rh∇u) · n, e0 − eb〉∂T + s(Qhu, eh).
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Using (3.7) and (3.8) gives us

|||eh|||2 ≤ Chk‖u‖k+1|||eh|||,

which gives (4.3). This concludes the proof.
Next, we are going to derive L2 error estimate for the weak Galerkin finite

element scheme. Consider the dual problem that seek w ∈ H1
0 (Ω) satisfying:

−∇ · (a∇w) = e0 in Ω,

w = 0 on ΓD, (4.4)

a∇w · n = 0 on ΓN ,

with the H1+s-regularity assumption ‖w‖1+s ≤ C‖e0‖ where 0 < s ≤ 1. From
Theorem 1.1 in [3], we know w ∈ H2(Th) in many situations, where H2(Th) is a
broken Sobolev space defined as follows:

H2(Th) = {v : v|T ∈ H2(T ),∀T ∈ Th}.

Theorem 4.3 (L2 error). Assume that the exact solution w of the dual problem
(4.4) satisfies w ∈ H1+s(Ω) ∩ H2(Th) with s ∈ (0, 1]. Let u and uh ∈ Vh be the
solutions of the problem (1.1)-(1.3) and (2.3) respectively. Then, there exists a
constant C such that

‖u− u0‖ ≤ Chk+s‖u‖k+1.

Proof. Testing the first equation of (4.4) with e0, we get

‖e0‖2 = (−∇ · (a∇w), e0).

From integration by parts, we get

‖e0‖2 =
∑
T∈Th

(a∇w,∇e0)T −
∑
T∈Th

〈a∇w · n, e0〉∂T\ΓN
,

since
∑

T∈Th〈a∇w · n, eb〉∂T\ΓN
= 0, we can rewrite the above expression as

‖e0‖2 =
∑
T∈Th

(a∇w,∇e0)T −
∑
T∈Th

〈a∇w · n , e0 − eb〉∂T\ΓN
. (4.5)

Setting φ = w and v = eh in (3.5) gives∑
T∈Th

(a∇w,∇e0)T =
∑
T∈Th

(a∇wQhw,∇weh)T +
∑
T∈Th

〈e0 − eb, (aRh∇w) · n〉∂T\ΓN
.

(4.6)

Substituting (4.6) in (4.5), we get

‖e0‖2 = a(Qhw, eh) +
∑
T∈Th

〈a(Rh∇w −∇w) · n, e0 − eb〉∂T\ΓN
,

adding and subtracting the term s(Qhw, eh), we obtain

‖e0‖2 = as(Qhw, eh)− s(Qhw, eh) +
∑
T∈Th

〈a(Rh∇w −∇w) · n, e0 − eb〉∂T\ΓN
. (4.7)
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It follows from the error equation (4.1) that

as(Qhw, eh) =
∑
T∈Th

〈a(∇u−Rh∇u) · n, Q0w −Qbw〉∂T + s(Qhu,Qhw). (4.8)

By combining (4.7) with (4.8), we get

‖e0‖2 =
∑
T∈Th

〈a(∇u−Rh∇u) · n, Q0w −Qbw〉∂T + s(Qhu,Qhw)

− s(Qhw, eh) +
∑
T∈Th

〈a(Rh∇w −∇w) · n, e0 − eb〉∂T\ΓN
.

(4.9)

Now we are going to bound the term on the right hand of equation (4.9). Using the
Cauchy-Schwarz inequality and the definition of Qb we get∣∣∣∣∣ ∑

T∈Th

〈a(∇u−Rh∇u) · n, Q0w −Qbw〉∂T

∣∣∣∣∣
≤

(∑
T∈Th

‖a(∇u−Rh∇u)‖2∂T

)1/2(∑
T∈Th

‖Q0w −Qbw‖2∂T

)1/2

≤C

(∑
T∈Th

‖a(∇u−Rh∇u)‖2∂T

)1/2(∑
T∈Th

‖Q0w − w‖2∂T

)1/2

. (4.10)

From the trace inequality (3.1) and the estimate (3.3), we have(∑
T∈Th

‖a(∇u−Rh∇u)‖2∂T

)1/2

≤ Chk−
1
2 ‖u‖k+1, (4.11)

(∑
T∈Th

‖Q0w − w‖2∂T

)1/2

≤ Chs+ 1
2 ‖w‖1+s. (4.12)

Substituting (4.11) and (4.12) into (4.10), we get∣∣∣∣∣ ∑
T∈Th

〈a(∇u−Rh∇u) · n, Q0w −Qbw〉∂T

∣∣∣∣∣ ≤ Chk+s‖u‖k+1‖w‖1+s. (4.13)

Similarly, it follows from the definition of Qb, the trace inequality (3.1), and the
estimate (3.3) that

|s(Qhu,Qhw)| ≤
∑
T∈Th

h−1
T |Q0u−Qbu,Q0w −Qbw|

≤

(∑
T∈Th

h−1
T ‖Q0u− u‖2∂T

)1/2(∑
T∈Th

h−1
T ‖Q0w − w‖2∂T

)1/2

≤ Chk+s‖u‖k+1‖w‖1+s. (4.14)

The estimate (3.7) and (4.3) implies that

|s(Qhw, eh)| ≤ Chs‖w‖1+s|||eh||| ≤ Chk+s‖u‖k+1‖w‖1+s. (4.15)
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For the fourth term, the estimate (3.8) and (4.3) gives∣∣∣∣∣ ∑
T∈Th

〈a(Rh∇w −∇w) · n, e0 − eb〉∂T\ΓN

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
T∈Th

〈a(Rh∇w −∇w) · n, e0 − eb〉∂T

∣∣∣∣∣
≤ Chk+s‖u‖k+1‖w‖1+s. (4.16)

Substituting (4.13)-(4.16) into (4.9) yields

‖e0‖2 ≤ Chk+s‖u‖k+1‖w‖1+s.

By using the regularity assumption ‖w‖2 ≤ C‖e0‖, we arrive at

‖e0‖ ≤ Chk+s‖u‖k+1,

which concludes the proof.

5. Numerical Experiments

In this section, we are going to validate the proposed WG method by presenting
some numerical experiments. Let us consider the second-order elliptic problem
(1.1)-(1.3), with a to be a unit matrix on the unit square Ω = [0, 1] × [0, 1]. We
define the Neumann boundary as ΓN = {(x, 1) ∈ R2 : 0 ≤ x ≤ 1} and the Dirichlet
boundary is defined as ΓD = ∂Ω\ΓN . Let h = 1

n (n = 2, 4, 8, 16, 32, 64, 128) be the
mesh sizes for different triangular meshes. The construction of the triangular mesh:
First to obtain the square mesh, uniformly partition the square domain Ω into n×n
sub-squares. Then divide each square element into two triangles by the diagonal
with a positive slope. This completes the construction of the triangular mesh.

All the examples given below use these triangulations of Ω. The lowest order
(k = 1) weak Galerkin element is used to find weak Galerkin solution uh = {u0, ub}
where u0|T ∈ P1(T ), and ub|e ∈ P0(e). Consider the following four exact solutions
of (1.1)-(1.3) defined on Ω = [0, 1]× [0, 1], which are

u1 = x2(1− x)2y2(1− y)2 and u2 = sin(2πx) sin(2πy),

u3 = cos(2πx) cos(2πy) and u4 = x2(1− x)2y2(1− y)2 + x2,

with following types of boundary conditions,

u1|ΓD
= 0 and

∂u1

∂n

∣∣∣
ΓN

= 0,

u2|ΓD
= 0 and

∂u2

∂n

∣∣∣
ΓN

6= 0,

u3|ΓD
6= 0 and

∂u3

∂n

∣∣∣
ΓN

= 0,

u4|ΓD
6= 0 and

∂u4

∂n

∣∣∣
ΓN

6= 0.

The different cases of the boundary conditions of these exact solutions make them
best choice to test for our problem. This enables us to test the effect of different
boundary data on convergence rates. The source term of equation (1.1), Dirichlet,
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Table 1. H1 and L2 norm errors and their convergence rates for u1.

h |||u− uh||| order ‖u− uh‖ order
1/2 1.14E-02 2.44E-03
1/4 8.41E-03 0.44 9.51E-04 1.36
1/8 4.53E-03 0.89 2.61E-04 1.87
1/16 2.31E-03 0.97 6.68E-05 1.97
1/32 1.16E-03 0.99 1.68E-05 1.99
1/64 5.81E-04 1.00 4.21E-06 2.00
1/128 2.91E-04 1.00 1.05E-06 2.00

Table 2. H1 and L2 norm errors and their convergence rates for u2.

h |||u− uh||| order ‖u− uh‖ order
1/2 1.22E+01 2.35E+00
1/4 6.03E+00 1.02 6.45E-01 1.87
1/8 3.13E+00 0.94 1.67E-01 1.95
1/16 1.58E+00 0.98 4.22E-02 1.99
1/32 7.94E-01 0.97 1.06E-02 2.00
1/64 3.97E-01 1.00 2.64E-03 2.00
1/128 1.99E-01 1.00 6.61E-04 2.00

Table 3. H1 and L2 norm errors and their convergence rates for u3.

h |||u− uh||| order ‖u− uh‖ order
1/2 2.83E+00 5.77E-01
1/4 6.02E+00 -1.09 6.267E-01 -0.12
1/8 3.13E+00 0.94 1.62E-01 1.95
1/16 1.58E+00 0.98 4.06E-02 1.99
1/32 7.94E-01 0.97 1.03E-02 2.00
1/64 3.97E-01 1.00 2.57E-03 2.00
1/128 1.99E-01 1.00 6.42E-05 2.00

Table 4. H1 and L2 norm errors and their convergence rates for u4.

h |||u− uh||| order ‖u− uh‖ order
1/2 6.48E-01 1.43E-01
1/4 3.27E-01 0.99 3.63E-02 1.97
1/8 1.64E-01 1.00 9.13E-03 1.99
1/16 8.20E-02 1.00 2.29E-03 2.00
1/32 4.10E-02 1.00 5.72E-04 2.00
1/64 2.05E-02 1.00 1.43E-04 2.00
1/128 1.03E-02 1.00 3.58E-05 2.00
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and Neumann boundary conditions are computed to match the exact solutions.
The results for test problems with exact solutions u1, u2, u3 and u4, are reported in
Tables 1, 2, 3 and 4 respectively.

It can be seen from the above results that u always achieve an optimal order. The
rate of convergence for both H1 and L2 errors are of O(h) and O(h2) respectively.
In Table 3, we can notice that the convergence rate is negative for h = 1/2 but it
improves as the mesh gets refiner. Numerical experiment results confirm the theory
established in earlier sections of this article.
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