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A MESHLESS LOCAL GALERKIN METHOD
FOR THE NUMERICAL SOLUTION OF

HAMMERSTEIN INTEGRAL EQUATIONS
BASED ON THE MOVING LEAST SQUARES

TECHNIQUE

Pouria Assari

Abstract In this paper, a computational scheme is proposed to estimate the
solution of one- and two-dimensional Fredholm-Hammerstein integral equa-
tions of the second kind. The method approximates the solution using the
discrete Galerkin method based on the moving least squares (MLS) approach
as a locally weighted least squares polynomial fitting. The discrete Galerkin
technique for integral equations results from the numerical integration of all
integrals in the system corresponding to the Galerkin method. Since the pro-
posed method is constructed on a set of scattered points, it does not require any
background meshes and so we can call it as the meshless local discrete Galerkin
method. The implication of the scheme for solving two-dimensional integral
equations is independent of the geometry of the domain. The new method is
simple, efficient and more flexible for most classes of nonlinear integral equa-
tions. The error analysis of the method is provided. The convergence accuracy
of the new technique is tested over several Hammerstein integral equations and
obtained results confirm the theoretical error estimates.
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1. Introduction
Many problems of mathematical physics, engineering and mechanics can be stated
in the form of nonlinear integral equations [25,44,51]. These types of integral equa-
tions also arise as a reformulation of boundary value problems with a certain nonlin-
ear boundary condition. Consider nonlinear d-dimensional Fredholm-Hammerstein
integral equations of the second kind as follows:

u(x)− λ

∫
D

K(x,y)Φ(y, u(y))dy = f(x), x,y ∈ D ⊂ Rd, (1.1)

where the kernel function K(x,y) and the right-hand side function f(x) are given,
the unknown function u(x) must be determined, λ is a non-zero constant, D is a
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d-dimensional closed domain and the known function Φ is continuous and nonlinear
respect to the variable u.

Several methods have been proposed for the numerical solution of Hammer-
stein integral equations. The discrete collocation-type method [37, 38], the dis-
crete collocation method [16], Walsh-Hybrid functions [46], the collocation method
and positive definite functions [3], the discrete Legendre spectral method [22] the
modified iterated projection method [29], the Adomian decomposition method [51]
and wavelet methods [2, 34] have been investigated to solve one-dimensional Ham-
merstein integral equations. The iterated discrete Galerkin method [31], the it-
erated collocation method [28, 32], the Galerkin method with spline functions as
basis [20], the Nystrom method [13, 30], two-dimensional rationalized Haar (RH)
functions [17], the two-dimensional differential transform (TDDT) method [50],
the degenerate method (DM) [1], fast collocation methods [21], piecewise polyno-
mial projection methods [48], the Nystrom method [13, 30] and the Gauss product
quadrature rules [18] have been applied to solve two-dimensional Hammerstein in-
tegral equations of the second kind.

The MLS scheme as a general case of Shepard’s method has been introduced
by Lancaster and Salkauskas [39]. The MLS consists of a local weighted least
squares fitting, valid on a small neighborhood of a point and only based on the
information provided by its closet points. This approach is recognized as a meshless
method because it is based on a set of scattered points and consequently does
not need any domain elements. The MLS methodology is an effective and simple
technique for approximating unknown functions. A valuable advantage of using
the MLS is that it sets up and solves many small systems, instead of a single, but
large system [26, 52]. The MLS has significant importance applications in different
problems of computational mathematics such as partial differential equations and a
large number of papers have presented many numerical methods for solving them.

We would like to review some of the most recent works for the numerical so-
lution of integral equations utilizing the meshless methods. The meshless discrete
collocation schemes have been investigated using radial basis functions (RBFs) for
solving linear and nonlinear integral equations on non-rectangular domains with
sufficiently smooth kernels [6, 7] and weakly singular kernels [12]. The RBFs have
been applied for the numerical solution of the one-dimensional linear Fredholm and
Volterra integral equations [27] and Volterra-Fredholm-Hammerstein integral equa-
tions [47]. The meshless product integration (MPI) method [10] has been proposed
to solve one-dimensional linear weakly singular integral equations. The MLS col-
location method has been used for solving linear and nonlinear two-dimensional
integral equations on non-rectangular domains [9,45] and integro-differential equa-
tions [23]. Authors of [41] have introduced a meshless Galerkin method for solving
boundary integral equations. An MLS-based meshless method [8] has been utilized
to solve weakly singular linear integral equations of the second kind.

This article presents a numerical method based on the MLS method for solving
one- and two-dimensional Fredholm-Hammerstein integral equations of the second
kind. The scheme is based on the discrete Galerkin method with the shape func-
tions of the MLS approximation constructed on scattered points as a basis. To
apply Galerkin methods for two-dimensional integral equations on non-rectangular
regions, we must divide the solution region into non-overlapping triangular frag-
ments [14, 33]. Therefore by using the MLS scheme as a meshless approach, we
can solve two-dimensional integral equations without any mesh generation on the
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domain. The numerical approach developed on the current paper utilizes the Gauss-
Legendre quadrature rule for approximating integrals. The presented scheme does
not depend on the geometry of the domain and does not increase the difficulties for
higher dimensional problems due to the easy adaption of MLS. The implementation
of the scheme on computers is simple and also obtains accurate results. Moreover,
the approach can be expanded to other classes of integral equations. The error
analysis of the new method is provided. Some numerical examples are given to
illustrate the efficiency and accuracy of the technique.

The outline of the current paper is as follows: In Section 2, we represent some
basic formulations and properties of the MLS approximation. In Section 3, a nu-
merical method is investigated to solve the Hammerstein integral equation (1.1) by
combining the MLS approximation and the discrete Galerkin method. In Section
4, the error bound and the convergence rate of the presented method are obtained.
Numerical examples are considered in Section 5. Finally, the article is concluded in
Section 6.

2. The MLS approximation
Given data values of the function u(x) at certain data sites X = {x1, ...,xN} in the
closed domain D ⊂ Rd. The idea of the MLS method is to approximate u(x) for
every point x ∈ D in a weighted least squares sense. For x ∈ D, the value su,X(x)
of the MLS approximation is given by the solution of

min

{
N∑
i=1

[u(xi)− p(xi)]
2w(x,xi) : p ∈ Πq(Rd)

}
, (2.1)

where w : D × D → [0,+∞) is a continuous weight function and Πq(Rd) is the
linear space of polynomials of total degree less than or equal to q in d variables
with the basis {p1, ..., pQ} [52]. We are mainly interested in local continuous weight
function w which gets smaller as its arguments move away from each other. Ideally,
w vanishes for arguments x,y ∈ D when ∥x−y∥2 is greater than a certain threshold.
Therefore, we can assume that

w(x,y) = Γδ(x− y) = γ

(
∥x− y∥2

δ

)
, δ > 0,

where Γ is a radial function, meaning that Γ(x) = γ(∥x∥2), x ∈ Rd, in which γ is
a univariate and nonnegative function, γ : [0,∞) → R, with the property γ(r) = 0
when r ≥ 1 [52].

In the following theorem, we will find a direct approach to obtain the solution
of the problem (2.1), but prior to that we present the following definition.

Definition 2.1 ( [19, 52]). We call a set of points X = {x1, ...,xN} ⊂ Rd as q-
unisolvent if the only polynomial of total degree at most q, interpolating zero data
on X is the zero polynomial.

Theorem 2.1 ( [52]). Suppose that for every x ∈ D the set {x1, ...,xN} is q-
unisolvent. In this situation, the problem (2.1) is uniquely solvable and the solution
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su,X(x) can be represented as

su,X(x) =

N∑
i=1

ψi(x)u(xi), (2.2)

where the basis functions ψi(x) are determined by

ψi(x) = w(x,xi)

Q∑
k=1

zkpk(xi), (2.3)

in which the coefficients z1, ..., zQ are a unique solution of

Q∑
k=1

zk

N∑
i=1

w(x,xi)pk(xi)pl(xi) = pl(x), 1 ≤ l ≤ Q.

Remark 2.1. It should be noted that the moving least squares approximation
based on a vector of the d-variable complete monomial basis polynomials has the
inherent instability. The shifted and scaled polynomial basis function can be used
to improve stability of the MLS approximation [40]. In practical computations, the
argument x in p(x) is usually replaced by x−xe

σ to shift the origin to a fixed point
xe = [xe1, ..., x

e
d]

t on R(x) with scale factor σ > 0, where R(x) denotes the influence
domain of x [42].

To obtain a general algorithm of the MLS approximation, we formulate the
expansion (2.2) with the matrix form

su,X(x) = U tΨ(x),

where
Ψ(x) = [ψ1(x), ..., ψN (x)]t, U = [u(x1), ..., u(xN )]t.

Now, to determine Ψ(x), we define the matrices P and W(x) as

Pt = [pt(x1),p
t(x2), ...,p

t(xN )]Q×N , W(x) =


w(x,x1) · · · 0

· · ·
. . . · · ·

0 · · · w(x,xN )


N×N

.

As a conclusion from Theorem 2.1, we have

Ψt(x) = pt(x)A−1(x)B(x),

or

ψj(x) =

Q∑
k=1

pk(x)[A
−1(x)B(x)]kj ,

where the matrices A(x) and B(x) are defined by

A(x) = PtWP = B(x)P =

N∑
j=1

w(x,xj)p(xj)p
t(xj),
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and

B(x) = PtW = [w(x,x1)p(x1), w(x,x2)p(x2), ..., w(x,xN )p(xn)].

The Gaussian and spline weight functions are applied in the present work, respec-
tively as

w(x,xj) =


exp[−(dj/α)

2]−exp[−(δ/α)2]
1−exp[−(δ/α)2] , 0 ≤ dj ≤ δ,

0, dj > δ,

and

w(x,xj) =

1− 6(dj/δ)
2 + 8(dj/δ)

3 − 3(dj/δ)
4, 0 ≤ dj ≤ δ,

0, dj > δ,

where dj =∥ x− xj ∥2 (the Euclidean distance between x and xj ), δ is the size of
the support domain and α is a constant controlling the shape of the weight func-
tion w(x,xj) which determines the weights allocated to any points in the support
domain. In fact, if we chose a small value for α then the effect of the point xj

increases in comparison with other points.
In the following, the error analysis of the MLS method is studied which follows

mostly from [26, 52]. Here, we restrict ourselves to domains satisfying an interior
cone condition defined as follows [52]:

Definition 2.2 ( [52]). A set D ⊂ Rd is said to satisfy an interior cone condition
if there exists an angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ D a
unit vector ξ(x) exists such that the cone

C(x, ξ(x), θ, r) = {x+ λy : y ∈ Rd, ∥y∥2 = 1, yT ξ(x) ≥ cos θ, λ ∈ [0, r]},

is contained in D.

Now, we give some definitions from [26, 52] that are important to measure the
quality of data points and to estimate the rates of convergence in the MLS method
and other meshless methods.

Definition 2.3 ( [26]). The fill distance of a set of points X = {x1, ...,xN} ⊆ D
for a bounded domain D is defined by

hX,D = sup
x∈D

min
0≤j≤N

∥x− xj∥2.

Definition 2.4 ( [26]). The separation distance of X = {x1, ...,xN} is defined by

qX =
1

2
min
i ̸=j

∥xi − xj∥2.

The set X is said to be quasi-uniform with respect to a constant c > 0 if

qX ≤ hX,D ≤ cqX .

In the following, we can represent a theorem from [26,52] about the error bound
for approximating a function using the MLS approximation, for every sample point
x ∈ D.
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Theorem 2.2 ( [52]). Define D∗ as the closure of ∪x∈DB(x, 2τh0). Then there
exists a constant C > 0 that can be computed explicitly such that for all u ∈
Cq+1(D∗) and all quasi-uniform X ⊂ D with hX,D ≤ h0, the approximation error
is bounded as follows

∥u− su,X∥∞ ≤ Chq+1
X,D|u|Cq+1(D∗). (2.4)

The semi-norm on the right-hand side is defined by

|u|Cq+1(D∗) = max
|α|=q+1

∥Dαu∥L∞(D∗).

Note that, Armentano and Duran [5] proved error estimates in L∞, for the
function and its derivatives in the one-dimensional case. The error estimates in L∞

and L2 norms for one and higher dimensions are investigated in [4]. Also, Xiaolin
Li [40] obtained the error estimates for the MLS approximation in the Hk norm in
two dimensions when nodes and weight functions satisfy certain conditions. In [43],
error estimation of the MLS is given in the W k,q norm in n dimensions under weaker
regularity assumption that u belongs to W p+1,q. This weaker regularity assumption
can reduce the requirement of u in Theorem 2.2 for the error estimation of the MLS
method.

3. Solving integral equations
In this section, we present a numerical method to solve Fredholm-Hammerstein
integral equations of the second kind (1.1). Let the nonlinear function Φ in the
integral equation (1.1) satisfy the following assumptions [35,37]:
(1) There exists C1 > 0 such that

|Φ(x, u1)− Φ(x, u2)| ≤ C1|u1 − u2|, for all u1, u2 ∈ R.

(2) There is a constant C2 > 0 such that ∂Φ
∂u confirms

|∂Φ
∂u

(x, u1)−
∂Φ

∂u
(x, u2)| ≤ C1|u1 − u2|, for all u1, u2 ∈ R.

(3) Φ(., u(.)), ∂Φ
∂u (., u(.)) ∈ C(D) for u(x) ∈ C(D).

Remark 3.1. It should be noted that if Φ is smooth on D×R (that is, it is several
times continuously differentiable) then it satisfies the conditions (1)–(3).

Suppose X = {x1, ...,xN} is N nodal points randomly selected on the domain
D. We estimate the unknown function u(x) by the MLS approximation as

u(x) ≈ ūN (x) =

N∑
j=1

c̄jψj(x), x ∈ D, (3.1)

where {ψ1(x), ..., ψN (x)} are the shape functions of the MLS method corresponding
to the set X, and the coefficients {c̄1, ..., c̄N} are found by solving the next system.

Assume V is the framework of some complete function space on D, such as
L2(D), with respect to the inner product

⟨f, g⟩ =
∫
D

f(x)g(x)dx, f, g ∈ V.
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By replacing the expansion (3.1) in the integral equation (1.1) instead of u(x) and
taking inner product ⟨., ψi⟩ upon both sides, we obtain

N∑
j=1

c̄j

∫
D

ψj(x)ψi(x)dx− λ

∫
D

∫
D

K(x,y)Φ

y,

N∑
j=1

c̄jψj(y)

ψi(x)dydx

=

∫
D

ψi(x)f(x)dx.

Thus the method reduces the solution of the Hammerstein integral equation to
the solution of a nonlinear system of algebraic equations. The iteration methods,
for example Newton’s method, for solving such cumbersome nonlinear system is
usually sensitive to the selection of initial guess [37]. As a remedy, we recommend
the following new approach based on the use of the method in [37].

Define
z(x) = Ψ(x, u(x)).

Solve the equivalent equation

z(x) = Ψ

(
x, f(x) + λ

∫
D

K(x,y)z(y)dy

)
, x ∈ D, (3.2)

and obtain u(x) from

u(x) = f(x) + λ

∫
D

K(x,y)z(y)dy. (3.3)

Similarly, we estimate the unknown function z(x) by selecting N nodal points such
as X = {x1, ...,xN} using the MLS approximation as follows:

z(x) ≈ z̄N (x) =

N∑
j=1

z̄jψj(x), x ∈ D. (3.4)

We replace the expansion (3.4) with z(x) and take the inner product ⟨., ψi⟩ upon
both sides. Thus the following nonlinear system is obtained

N∑
j=1

z̄j

∫
D

ψj(x)ψi(x)dx =

∫
D

Φ

x, f(x) + λ

N∑
j=1

z̄j

∫
D

K(x,y)ψj(y)dy

ψi(x)dx.

(3.5)
The discrete Galerkin methods result from the numerical integration of all integrals
in the system (3.5) associated with the Galerkin method. The integrals on the
right-side of (3.5) need to be evaluated only once, since they are dependent only
on the basis, not on the unknowns. Let the functions K and Φ be smooth on
D × D and D × (−∞,+∞), respectively, i.e., they are several times continuously
differentiable. Based upon the dimension of the integral equation (1.1), we choose
quadrature formulae to approximate the integrals in the system (3.5).

3.1. One-dimensional integral equations
In this situation, we assume D = [a, b]. To estimate the integrals in the nonlinear
system (3.5), we utilize the composite mN -point Gauss-Legendre rule with M uni-
form subdivisions relative to the coefficients {vk} and weights {wk} in the interval
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[−1, 1]. Suppose PmN
(x) is the well-known Legendre polynomial of order mN with

roots vk, k = 1, ...,mN , and g ∈ C2mN [−1, 1] then [49]∫ b

a

g(x)dx =
∆x

2

mN∑
k=1

wk

M∑
q=1

g(θqk) +O(
1

M2mN
), (3.6)

where

∆x =
b− a

M
, wk =

2

(k + 1)P ′
mN+1(vk)PmN

(vk)
, and θqk =

∆x

2
vk + (q − 1

2
)∆x.

Since the Gaussian and spline weight functions used in the current paper are sev-
eral times continuously differentiable, .i.e., ψj , ψi ∈ C2mN [a, b] for every mN ∈ N.
Therefore, by applying the quadrature rule (3.6) for the integrals emerged from the
left-hand side of (3.5), we obtain∫ b

a

ψj(x)ψi(x)dx ≈ ∆x

2

mN∑
k=1

wk

M∑
q=1

ψj(θ
q
k)ψi(θ

q
k). (3.7)

At first, to approximate the integrals on the right side of (3.5), we apply the quadra-
ture rule (3.6) for computing the internal integrals as follows:∫ b

a

K(x, y)ψj(y)dy ≈ ∆y

2

mN∑
r=1

wk

M∑
p=1

K(x, ηpr )ψj(η
p
r ), (3.8)

where ∆y = b−a
M and ηpr = ∆y

2 vr + (p − 1
2 )∆y. Again using the quadrature rule

(3.6) for external integrals, we obtain∫ b

a

Φ

x, f(x) + λ

N∑
j=1

z̄j

∫ b

a

K(x, y)ψj(y)dy

ψi(x)dx ≈ ∆x

2

mN∑
k=1

wr

×
M∑
q=1

Φ

θpr , f(θpr ) + λ

N∑
j=1

z̄j
∆y

2

mN∑
r=1

wk

M∑
p=1

K(θpr , η
q
k)ψj(η

q
k)

ψi(θ
p
r ), (3.9)

where ∆x = b−a
M and θpr = ∆x

2 vr + (p− 1
2 )∆x.

Utilizing the numerical integration schemes (3.7) and (3.9) in the system (3.5)
yields the nonlinear system of algebraic equations

N∑
j=1

ẑj
∆x

2

mN∑
k=1

wk

M∑
q=1

K(x, θqk)ψj(θ
q
k) =

∆x

2

mN∑
r=1

wr

×
M∑
p=1

Φ

ηpr , f(ηpr ) + λ

N∑
j=1

ẑj
∆x

2

mN∑
k=1

wk

M∑
q=1

K(ηpr , θ
q
k)ψj(θ

q
k)

ψi(η
p
r ),

for the unknowns Ẑ = [ẑ1, ..., ẑN ]. The solution of this system eventually leads to
the following numerical solution which can be approximated z(x) as:

ẑN (x) =

N∑
j=1

ẑjψj(x), a ≤ x ≤ b.
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Finally, we find the numerical solution of the integral equation (1.1) by

ûN (x) = f(x) + λ
∆x

2

mN∑
k=1

wk

M∑
q=1

K(x, θqk)ẑN (θqk).

3.2. Two-dimensional integral equations
Suppose that D ⊆ [a, b]× [a, b] is a two-dimensional normal domain with a smooth
boundary, so we can assume that

D = {(x1, x2) ∈ R2 : a ≤ x1 ≤ b and α1(x1) ≤ x2 ≤ α2(x1)},

where a, b ∈ R and α1(x1), α2(x1) ∈ C2mN [a, b].
For approximating the integrals in the nonlinear system (3.5), we expand the

Gauss-Legendre rule to two-dimensional normal domains. If f(x1, x2) ∈ C2mN (D),
then the reduction formula for the double integrals gives∫

D

f(x1, x2)dx1dx2 =

∫ b

a

∫ α2(x1)

α1(x1)

f(x1, x2)dx1dx2 =

∫ 1

0

F (x1)dx1.

The integral
∫ b

a
F (x1)dx1 can be approximated by a composite mN -point Gauss-

Legendre quadrature rule using M subintervals relative to the coefficients {νk} and
weights {wk} in the interval [−1, 1]. Thus, in the x1 direction, we can write∫ b

a

F (x1)dx1 =
∆x1
2

M∑
q=1

mN∑
k=1

wkF (θ
q
k) +O(

1

M2mN
),

where ∆x1 = b−a
M and θqk = ∆x1

2 νk+(q− 1
2 )∆x1. For each node θqk, the approximate

evaluation of the integral F (θqk) is carried out by a composite mN -point Gauss-
Legendre quadrature rule using M subintervals relative to the coefficients {τp} and
weights {wp} in the interval [−1, 1]

F (θqk) =

∫ α2(θ
q
k)

α1(θ
q
k)

f(θqk, x2)dx2 =
∆s(θqk)

2

M∑
r=1

mN∑
p=1

wpf(θ
q
k, η

r
p) +O(

1

M2mN
),

where ∆x2(θ
q
k) =

α2(θ
q
k)−α1(θ

q
k)

M and ηrp = ∆x2

2 τp + (r − 1
2 )∆x2.

By choosing a suitable weight function, we find that ψj , ψi ∈ C2mN (D) are
several times continuously differentiable. Therefore, we obtain∫

D

ψj(x1, x2)ψi(x1, x2)dx1dx2 ≈ b− a

2M

M∑
q=1

mN∑
k=1

wkI[i, j, k, q], (3.10)

where

I[i, j, k, q] =
∆x2(θ

q
k)

2

M∑
r=1

mN∑
p=1

wpψj(θ
q
k, η

r
p)ψi(θ

q
k, η

r
p).

Similarly, based on the use of this quadrature rule, we estimate the internal integrals
on the right side of (3.5) as∫

D

K(x1, x2, y1, y2)ψj(y1, y2)dy1dy2 ≈ b− a

2M

M∑
q′=1

mN∑
k′=1

w′
kH1[j, k

′, q′](x1, x2),

(3.11)
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where

H1[j, k
′, q′](x1, x2) =

∆s(θq
′

k′)

2

M∑
r′=1

mN∑
p′=1

wp′K(x1, x2, θ
q′

k′ , η
r′

p′)ψj(θ
q′

k′ , η
r′

p′).

Therefore, replacing the quadrature (3.11) and replicating this scheme for external
integrals, we conclude that

∫
D

Φ

x1, x2, f(x1, x2) + λ

N∑
j=1

z̄j

∫
D

K(x1, x2, y1, y2)ψj(y1, y2)dy1dy2


×ψi(x1, x2)dx1dx2 ≈ b− a

2M

M∑
q=1

mN∑
k=1

wkH2[j, k, q, k
′, q′](z̄1, ..., z̄N ),(3.12)

where

H2[j, k, q, k
′, q′](z̄1, ..., z̄N ) =

∆x2(θ
q
k)

2

M∑
r=1

mN∑
p=1

wpΦ

(
ηpr , η

p
r , f(η

p
r , η

p
r )

+λ

N∑
j=1

z̄j
b− a

2M

M∑
q′=1

mN∑
k′=1

w′
kH1[j, k

′, q′](ηpr , η
p
r )

ψi(η
p
r , η

p
r ),

in which ∆y1 = b−a
M , θq

′

k′ = ∆y1

2 νk + (q − 1
2 )∆y1, ∆y2(θ

q′

k′) =
α2(θ

q′

k′ )−α1(θ
q′

k′ )

M and
ηr

′

p′ =
∆y2

2 τp + (r − 1
2 )∆y2.

To approximate the integrals in the system (3.5) via the numerical integration
rules (3.10) and (3.12), we obtain the following system of algebraic equations

N∑
j=1

ẑj
b− a

2M

M∑
q=1

mN∑
k=1

wkI[i, j, k, q] =
b− a

2M

M∑
q=1

mN∑
k=1

wkH2[j, k, q, k
′, q′](ẑ1, ..., ẑN ),

where

I[i, j, k, q] =
∆x2(θ

q
k)

2

M∑
r=1

mN∑
p=1

wpψj(θ
q
k, η

r
p)ψi(θ

q
k, η

r
p),

and

H2[j, k, q, k
′, q′](ẑ1, ..., ẑN ) =

∆x2(θ
q
k)

2

M∑
r=1

mN∑
p=1

wp

×Φ

ηpr , ηpr , f(ηpr , ηpr ) + λ

N∑
j=1

ẑj
b− a

2M

M∑
q′=1

mN∑
k′=1

w′
kH1[j, k

′, q′](ηpr , η
p
r )

ψi(η
p
r , η

p
r ).

Thus the solution of Eq. (3.2) is

ẑN (x1, x2) =

N∑
j=1

ẑjΦj(x1, x2).
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Now, we can compute the solution of the integral equation (1.1) by

ûN (x1, x2)=f(x1, x2)+
λ

2M

M∑
q=1

mN∑
k=1

wk
∆y2(θ

q
k)

2

M∑
r=1

mN∑
p=1

wpK(x1, x2, θ
q
k, η

r
p)ẑN (θqk, η

r
p).

Suppose D ⊆ [a, b] × [a, b] is a normal domain with a piecewise smooth boundary,
that’s mean

D = D1 ∪D2 ∪ ... ∪DL,

where Dℓ’s are domains of the form

Dℓ = {(x1, x2) ∈ R2 : aℓ ≤ x1 ≤ bℓ and αℓ,1(x1) ≤ x2 ≤ αℓ,2(x1)}, ℓ = 1, 2, ..., L,

where aℓ, bℓ ∈ R and αℓ,1(y), αℓ,2(y) ∈ C2mN [aℓ, bℓ].
For approximating the integrals in the nonlinear system (3.5), we consider∫

D

ψj(x1, x1)ψi(x1, x1)dx1dx2 =

L∑
ℓ=1

∫
Dℓ

ψj(x1, x1)ψi(x1, x1)dx1dx2

=

L∑
ℓ=1

∫ bℓ

aℓ

∫ αℓ,2(x1)

αℓ,1(x1)

ψj(x1, x1)ψi(x1, x1)dx1dx2.

Therefore, by applying the integration rule (3.10), this integral can be computed as∫
D

ψj(x1, x1)ψi(x1, x1)dx1dx2 ≈
L∑

ℓ=1

bℓ − aℓ
2M

M∑
q=1

mN∑
k=1

wkIℓ[i, j, k, q],

where

Iℓ[i, j, k, q] =
∆x2,ℓ(θ

q
k,ℓ)

2

M∑
r=1

mN∑
p=1

wpψj(θ
q
k,ℓ, η

r
p,ℓ)ψi(θ

q
k,ℓ, η

r
p,ℓ),

with
∆x1,ℓ =

bℓ − aℓ

M
, θqk,ℓ =

∆x1,ℓ

2
νk + (q − 1

2
)∆x1,ℓ,

∆x2,ℓ(θ
q
k,ℓ) =

α2,ℓ(θ
q
k,ℓ)− α1,ℓ(θ

q
k,ℓ)

M
and ηr

p,ℓ =
∆x2,ℓ

2
τp + (r − 1

2
)∆x2,ℓ.

Also for the integrals in the right-hand side of the system (3.5), we first consider∫
D

K(x1, x2, y1, y2)ψj(y1, y2)dy1dy2 =

L∑
ℓ=1

∫ bℓ

aℓ

∫ αℓ,2(x1)

αℓ,1(x1)

K(x1, x2, y1, y2)

×ψj(y1, y2)dy1dy2 ≈ b− a

2M

M∑
q′=1

mN∑
k′=1

w′
kH1,ℓ[j, k

′, q′](x1, x2),

where

H1,ℓ[j, k
′, q′](x1, x2) =

∆y2(θ
q′

k′,ℓ)

2

M∑
r′=1

mN∑
p′=1

wp′K(x1, x2, θ
q′

k′,ℓ, η
r′

p′,ℓ)ψj(θ
q′

k′,ℓ, η
r′

p′,ℓ),

with
∆y1,l =

bℓ − aℓ

M
, θq

′

k′,ℓ =
∆y1,ℓ
2

νk + (q − 1

2
)∆y1,ℓ,
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∆y2,ℓ(θ
q′

k′,ℓ) =
α2,ℓ(θ

q′

k′,ℓ)− α1,ℓ(θ
q′

k′,ℓ)

M
and ηr′

p′,ℓ =
∆y2,ℓ
2

τp + (r − 1

2
)∆y2,ℓ.

Next, the use of integration rule (3.12) for every Dℓ yields

∫
D

Φ

x1, x2, f(x1, x2) + λ

N∑
j=1

z̄j

∫
D

K(x1, x2, y1, y2)ψj(y1, y2)dy1dy2


×ψi(x1, x2)dx1dx2 ≈

L∑
ℓ=1

bℓ − aℓ
2M

M∑
q=1

mN∑
k=1

wkH2,ℓ[j, k, q, k
′, q′](z̄1, ..., z̄N ),

where

H2,ℓ[j, k, q, k
′, q′](z̄1, ..., z̄N ) =

∆x2,ℓ(θ
q
k,ℓ)

2

M∑
r=1

mN∑
p=1

wpΦ

(
θqk,ℓ, η

r
p,ℓ, f(θ

q
k,ℓ, η

r
p,ℓ)

+λ
N∑
j=1

z̄j
bℓ − aℓ
2M

M∑
q′=1

mN∑
k′=1

w′
kH1,ℓ[j, k

′, q′](θqk,ℓ, η
r
p,ℓ)

ψi(θ
q
k,ℓ, η

r
p,ℓ).

Then, the nonlinear system (3.13) is converted to

N∑
j=1

ẑj

L∑
ℓ=1

bℓ − aℓ
2M

M∑
q=1

mN∑
k=1

wkIℓ[i, j, k, q]

=

L∑
ℓ=1

bℓ − aℓ
2M

M∑
q=1

mN∑
k=1

wkH2,ℓ[j, k, q, k
′, q′](ẑ1, ..., ẑN ).

Finally, the solution of the integral equation (1.1) is obtained by

ûN (x1, x2) = f(x1, x2) + λ

L∑
ℓ=1

bℓ − aℓ
2M

M∑
q=1

mN∑
k=1

wk

∆y2,ℓ(θ
q
k,ℓ)

2

×
M∑
r=1

mN∑
p=1

wpK(x1, x2, θ
q
k,ℓ, η

r
p,ℓ)ẑN (θqk,ℓ, η

r
p,ℓ).

Remark 3.2. In general form, let D be a bounded closed domain in Rd and a
normal domain with respect to a coordinate axis. To approximate the integral in
(3.5), we require a suitable quadrature formula which depends on the classifica-
tion of the domain D. We can choose a generalized composite mN -point Gauss-
Legendre numerical integration scheme over the domain D relative to the coeffi-
cients {(v1s , ..., vds

)} and the weights {ws} with M subdivisions. Therefore, for
every h ∈ CmN (D), we can assume∫

D

h(x1, ..., xd)dx1...dxd ≈
M∑
q=1

mN∑
s=1

w̄sh
(
θq1s(v1s , ..., vds), ..., θ

q
ds
(v1s , ..., vds)

)
.

Of course, the development of such integration formulae is not really easy for high
dimensional integrals. Generally, the solution of the integral equation (1.1) reduces
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to the solution of a linear system of algebraic equations. As can be seen, the method
could be easily extended to the higher dimensional problems and it does not increase
the difficulty for these problems due to the easy adaption of MLS scheme. Also the
scheme is only independent of the pairwise distances between points and not the
geometry of the domain and so it does not need any domain elements. It should be
noted that solving high dimensional Fredholm integral equations by the proposed
method can be interesting for future researches.

4. Error estimates
This section provides an error bound and the rate of convergence for the method
proposed in this work based on those results obtained in [14,36].

The Hammerstein operator K : L2(D) → L2(D) is introduced as

Ku(x) =
∫
D

K(x,y)Φ(y, u(y))dy, x,y ∈ D ⊂ Rd.

Therefore, we can represent the integral equation (1.1) in operator form as

(I − λK)u = f.

We define the operator R on L2(D) as follows:

Ru(x) = Φ(x, u(x)).

If we let z(x) = Ru(x), then we can solve the equivalent integral equation

z = R(f + λKz),

for unknown z(x). Then the solution of original integral equation (1.1) is obtained
by

u(x) = f + λKz(x).

We define PN : L2(D) → VN as a Galerkin projection operator by

PNz(x) =

N∑
j=1

cjψjx, x ∈ D,

where the space VN = span{ψ1, ..., ψN} ⊂ L2(D) and the coefficients {c1, ..., cN}
determined by solving the linear system

< u,ψj >=

N∑
j=1

cj < ψi, ψj >, i = 1, ..., N,

where ⟨., .⟩ is the inner product on L2(D). To obtain a better understanding of
PN , we give an explicit formula for PNz. We introduce a new basis {ϕ1, ..., ϕN}
for VN by using the Gram-Schmidt process to create an orthonormal basis from
{ψ1, ..., ψN}. The element ϕi is a linear combination of {ψ1, ..., ψN} and moreover

< ϕi, ϕj >= δij , i, j = 1, ..., N.
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With this new basis, it is straightforward to show that

PNz(x) =

N∑
i=1

< z, ϕi > ϕi(x), x ∈ D.

Therefore the operator PN is called an orthogonal projection operator [14]. By this
operator, we can represent the system (3.5) in the operator form as

z̄N = PNR(f + λKz̄N ).

Using the compositemN -point Gauss-Legendre rule withM subdivisions over [−1, 1]
relative to the coefficients {vr} and weights {wk}, we define a discrete semi-definite
inner product for one- and two-dimensional cases respectively as follows:

⟨f, g⟩ ≈ ⟨f, g⟩N =
1

2M

mN∑
k=1

wk

M∑
q=1

f(θqk)g(θ
q
k),

and

⟨f, g⟩ ≈ ⟨f, g⟩N =
1

2M

M∑
q=1

mN∑
k=1

wk
∆s(θqk)

2

M∑
r=1

mN∑
p=1

wpf(θ
q
k, η

r
p)g(θ

q
k, η

r
p),

where θqk = 1
2M yk +

(q− 1
2 )

M , ∆s(θqk) =
α2(θ

q
k)−α1(θ

q
k)

M and ηrp = ∆s
2 sp + (r− 1

2 )∆s(θ
q
k).

Now we can introduce a discrete seminorm as

∥g∥N =
√
< g, g >N , g ∈ L2(D).

As before, we know that

< f, g >=< f, g >N +O(
1

M2mN
), f, g ∈ L2(D).

We present the discrete projection operator as

QNu(x) =

N∑
k=1

ckψk(x), x ∈ D,

where the coefficients {c1, ..., cN} determined by solving the linear system

⟨u, ψj⟩N =

N∑
k=1

ck ⟨ψk, ψj⟩N , j = 1, ..., N.

Now, we present the following theorem about the discrete Galerkin operator with
the MLS shape functions as the basis.

Lemma 4.1 ( [9]). Having in mind the assumptions of Theorem 2.2, suppose that
QN , N ≥ 1 are the discrete orthogonal projections for the shape functions of the
MLS approximation corresponding to nodal points X = {(x1, t1), ..., (xN , tN )} ⊂
D ⊂ Rd. Assume the family {QN : N ≥ 1} is uniformly bounded on L2(D), say
∥QN∥ ≤ m < ∞. If u ∈ Cq+1(D∗) then QNu converges to u as N → ∞ and
moreover

∥QNu− u∥∞ ≤ (1 +m)Chq+1
X,D|u|Cq+1(D∗). (4.1)
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Remark 4.1. The proof of uniformly bounded for the operators {QN} has been
investigated at some length in Atkinson and Bogomolny [15].

Based on the use of composite mN -point Gauss-Legendre quadrature rule using
M subintervals relative to the coefficients {yk} and weights {wk} in the interval
[−1, 1], a sequence of numerical integral operators KN , N ≥ 1, one- and two-
dimensional cases on C2mN (D) is also introduced from the introduced quadrature
rule as

KNu(x) =
1

2M

mN∑
k=1

wk

M∑
q=1

wkK(x, θqk)Φ(θ
q
k, u(θ

q
k)),

and

KNu(x1, x2)=
1

2M

M∑
q=1

mN∑
k=1

wk
∆s(θqk)

2

M∑
r=1

mN∑
p=1

wpK(x1, x2, θ
q
k, η

r
p)Φ(θ

q
k, η

r
p, u(θ

q
k, η

r
p)),

where θqk = 1
2M yk+(q− 1

2 )
1
M , ∆s(θqk) =

α2(θ
q
k)−α1(θ

q
k)

M and ηrp = ∆s
2 sp+(r− 1

2 )∆s(θ
q
k).

It should be noted that {KN} is a collectively compact set and converges point-
wise [24, 34], moreover for every u ∈ C(2mN )(D) and K ∈ C(2mN )(D × D), we
have [24]

∥Ku−KNu∥∞ ≤ CN

M2mN
sup
x∈D

|u(2mN )(x)|. (4.2)

We can represent the final systems in the abstract form as

ẑN = QNR(f + λKN ẑN ),

and so the solution of the proposed scheme in the current paper is gotten by

ûN = f + λKN ẑN .

Let Fu = u be a fixed point problem on V where V is the framework of some
complete function space on D, F is a nonlinear compact operator on V . Define
the approximating operator FN on V to estimate the operator F . The required
hypotheses on F and FN , N ≥ 1 are listed and labeled in the following [13,16]:

Hypothesis H1. F and FN , N ≥ 1, are completely continuous nonlinear operators
on V .
Hypothesis H2. FN , N ≥ 1 is a collectively compact family on V .
Hypothesis H3. FN is pointwise convergent to F on V , i.e, FN (u) → F(u), u ∈
V .
Hypothesis H4. At each point of V , {FN} is an equicontinuous family.
Hypothesis H5. F and FN , N ≥ 1 are twice Frechet differential on the ball
B(u0, r), r > 0 and moreover

∥F
′′

N∥ ≤ α <∞, N ≥ 1, u ∈ B(u0, r).

Theorem 4.1 ( [15]). Suppose H1-H4. Let z0 be a fixed point of F , and assume
that 1 is not an eigenvalue of F ′(z0), where F ′(z0) denotes the Frechet derivative of
F at z0. If H5 is satisfied on B(z0, r) ⊆ V , then u0 is a fixed point, of the nonzero
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index. Moreover, there are ε,M > 0 such that for every N > M , FN has a unique
fixed point zN in B(u0, ε). Also, there is a constant γ1 > 0 such that

∥zN − z0∥∞ ≤ γ1∥Fz0 −FNz0∥∞, N ≥M. (4.3)

This gives a bound on the rate of convergence of the iterated solution ūN to u0.

Consider the nonlinear operators Fz and FNz on L2(D) as follows:

Fz ≡ R(Kz + f),

and
FNz ≡ QNR(KNz + f).

Assuming that K and KN satisfies H1-H5, it is shown in [16] that F and FN also
satisfies H1-H5.

We are ready to consider the convergence theorem about the presented method.

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 and Lemma 4.1 hold.
Let the nonlinear integral equation (1.1) have a unique solution u0 ∈ Cq+1(D∗) ∩
C2mN (D). Assume that 1 is not an eigenvalue of R′(Kz0 + f)K′, where K′ and
R′ indicates the Frechet derivatives at z0 = R(u0). Thus there are ε, M̄ > 0 such
that the proposed method has a unique solution ūN in the ball B(u0, ε) for every
N > M̄ . Moreover there exist constants C,C1, C2,m, γ1, h0 provided that hX,D ≤ h0
such that

∥uN − u0∥∞ ≤ |λ|C2γ1(1 +m)Chq+1
X,D|g0|Cq+1(D∗)

+
|λ|(C2γ1mC1 + 1)CN

M2mN
sup
x∈D

|z(2mN )
0 (x)|, (4.4)

where g0 ≡ R(Kz0 + f).
Proof. Since 1 is not an eigenvalue of F ′ ≡ R′(Kz0+f)K′, this can be immediately
obtained from Theorem 4.1 that there exists a unique solution zN ∈ B(z0, ε) such
that

∥zN − z0∥∞ ≤ γ1∥Fz0 −FNz0∥∞ = γ1∥R(Kz0 + f)−QNR(KNz0 + f)∥∞
≤ γ1∥R(Kz0 + f)−QNR(Kz0 + f)∥∞ + γ1∥QNR(Kz0 + f)−QNR(KNz0 + f)∥∞.

Thus, there is a constant M1 > 0 such that for every N > M1, we have ∥zN−z0∥∞ <
ε. As before we know that the family QN , N ≥ 1 is uniformly bounded, say
∥QN∥ ≤ m <∞. Therefore

∥zN − z0∥∞ ≤ γ1∥R(Kz0+f)−QNR(Kz0+f)∥∞+γ1m∥R(Kz0+f)−R(KNz0 + f)∥∞.

Based on the assumption (1), we obtain

∥zN − z0∥∞ ≤ γ1∥R(Kz0 + f)−QNR(Kz0 + f)∥∞ + γ1mC1∥Kz0 −KNz0∥∞.

In other words, by considering uN = f + λKNzN , we have

∥uN − u0∥∞ ≤ ∥(f + λKNzN )− (f + λKz0)∥∞ = |λ|∥KNzN −Kz0∥∞
≤ |λ|∥KNzN −KNz0∥∞ + |λ|∥KNz0 −Kz0∥∞, (4.5)
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so it is concluded that

∥uN − u0∥∞ ≤ |λ|∥KN∥∥zN − z0∥∞ + |λ|∥KNz0 −Kz0∥∞. (4.6)

Since the family KN is the pointwise convergence to K, there exists a constant
M2 > 0 such that for every N > M2 we have ∥KNz0 − Kz0∥∞ < ε and from the
principle of uniform boundedness [14], it can be supposed that ∥KN∥ ≤ C2. By
substituting (4.5) in (4.6), we obtain

∥uN − u0∥∞ ≤ |λ|C2∥zN − z0∥∞ + |λ|∥KNz0 −Kz0∥∞
≤ |λ|C2γ1∥R(Kz0 + f)−QNR(Kz0 + f)∥∞ + |λ|(C2γ1mC1 + 1)∥Kz0 −KNz0∥∞.

Choosing M̂ = max{M1,M2}, we deduce that ûN , for N > M , within B(u0, ε̂), is
the unique solution of the proposed method, because

∥uN − u0∥∞ ≤ |λ|(C2ε+ ε) = ε̂.

It is seen z0(x) = Φ(x, u0(x)) in Cq+1(D∗)∩C2mN (D), because Φ is a well-behaved
function on D × R and u0 ∈ Cq+1(D∗) ∩ C2mN (D). Finally using Lemma 4.1 and
the error bound (4.2), we give

∥uN − u0∥∞ ≤ |λ|C2γ1(1 +m)Chq+1
X,D|g0|Cq+1(D∗)

+
|λ|(C2γ1mC1 + 1)CN

M2mN
sup
x∈D

|z(2mN )
0 (x)|,

where g0 ≡ R(Kz0+f). Since, hX,D → 0 as N → ∞ (justified by the quasi-uniform
condition on X), yields uN → u0. This completes the proof.

5. Numerical examples
To test the efficiency and accuracy of the proposed method, four Hammerstein in-
tegral equations are solved. We utilize the Gaussian and spline weight functions
via the linear (q = 1) and quadratic (q = 2) basis functions. We employ 10-points
composite dual Gauss-Legendre quadrature rule with M = 10 for approximating
integrals in the scheme. Theorem 4.2 confirms that by choosing a sufficiently ac-
curate quadrature rule, the error of the MLS approximation is dominated over the
global error and so, increasing the number of the integration nodes mN or the
subintervals M has no significant effect on the error of the proposed method. In
all computations, we put δ = 2 × h and δ = 3 × h for the linear and quadratic
cases, respectively [45, 52]. In Gaussian weight function, we chose α = 0.5 × h. It
should be noted that we have used h ≡ hX,D for simplicity in notations. The results
obtained in Examples 5.2 and 5.4 are compared with the method based on the use
of thin plate splines of order k = 1, 2 as a type of the free shape parameter radial
basis functions [6, 11].

We have measured the accuracy of the presented technique by the maximum
error ∥eN∥∞ and the mean error ∥eN∥2 which can be defined for D ⊂ Rd as follows:

∥eN∥∞ = max
x∈D

{|uex(x)− ûN (x)|}, ∥eN∥2 =

(∫
D

|uex(x)− ûN (x)|2dx
) 1

2

,
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where the exact solution uex(x) is estimated by the numerical solution ûN (x). The
convergence rates of the presented scheme have been also reported by

Ratio =
ln(∥eN∥∞)− ln(∥eN ′∥∞)

ln(h)− ln(h′)
.

All calculations are run on a Laptop with 2.10 GHz of Core 2 CPU and 4 GB of
RAM with the Digits environment variable assigned to be 20. To solve the final
nonlinear system of algebraic equations, the FSOLVE command has been employed
based on the floating-point arithmetic as an iterative process. In this command,
the selection of initial guesses is important for convergence issue. Here, for N ≤ 10,
we choose the zero vector of length N for initial guesses [6]. To select the initial
guesses for N > 10, we apply the obtained solutions corresponding to the nodal
points whose number is less than N . In other words, we assume that ûτ is the
approximate solution which is obtained by the presented method for τ < N , then
consider the following linear system of algebraic equations

N∑
j=1

c
(0)
k ψk(xi) = ûτ (xi), i = 1, ..., N, (5.1)

The initial value may be chosen as the solution of system (5.1). We can increase
the value of τ until a satisfactory convergence is achieved [6].

Figure 1. The consideration of nodes for Example 5.1

Example 5.1. Consider the following Fredholm-Hammerstein integral equation:

u(x)−
∫ π

2

0

cos(x+ y + π)

x2 + 2

ey
2+u(y)√
y + e2

dy = f(x), x, y ∈ [0,
π

2
], (5.2)

where the function f(x) has been so chosen that the exact solution is

uex(x) =
sin(x+ 1)√
x2 + 2

.

The distribution of the nodes, selected randomly on the interval [0, π2 ], is depicted
in Figure 1. The numerical results in terms of ∥eN∥2 and ∥eN∥∞ at different num-
bers of N and the rate of convergence for the linear and quadratic basis functions
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Figure 2. Absolute error distributions of Example 5.1

utilizing the Gaussian and spline weight functions are presented in Tables 1 and 2,
respectively. We have compared the obtained errors for different numbers of N in
the logarithmic mode in Figure 2. We see that the results gradually converge to
the exact values as the number of data nodes increases and the ratio stays nearly
constant (≈ 2) for q = 1 and (≈ 3) for q = 2 so, the numerical results verify the
theoretical error estimates in Theorem 4.2.

Table 1. Some numerical results for Example 5.1 with Gaussian weight functions
N h ∥eN∥2 ∥eN∥∞

q = 1 q = 2 q = 1 Ratio q = 2 Ratio
2 0.250 3.23× 10−4 2.09× 10−5 4.49× 10−4 − 4.59× 10−5 −
4 0.125 7.15× 10−5 2.37× 10−6 1.11× 10−4 2.00 6.71× 10−6 2.77
8 0.062 1.64× 10−5 2.35× 10−7 2.78× 10−5 2.01 8.95× 10−7 2.90
16 0.031 3.90× 10−6 2.20× 10−8 6.83× 10−6 2.02 1.15× 10−7 2.95
32 0.015 9.53× 10−7 2.17× 10−9 1.73× 10−6 1.97 1.58× 10−8 2.86
64 0.007 2.77× 10−7 4.09× 10−10 4.48× 10−7 1.95 1.88× 10−9 3.06

Table 2. Some numerical results for Example 5.1 with spline weight functions
N h ∥eN∥2 ∥eN∥∞

q = 1 q = 2 q = 1 Ratio q = 2 Ratio
2 0.250 2.91× 10−3 9.01× 10−5 5.25× 10−3 − 1.95× 10−4 −
4 0.125 1.01× 10−3 1.47× 10−5 1.35× 10−3 1.95 3.07× 10−5 2.66
8 0.062 2.87× 10−4 1.61× 10−6 3.38× 10−4 2.00 4.14× 10−6 2.88
16 0.031 7.58× 10−5 2.71× 10−7 8.46× 10−5 1.99 5.28× 10−7 2.97
32 0.015 1.94× 10−5 1.62× 10−8 2.13× 10−5 1.98 7.20× 10−8 2.87
64 0.007 4.91× 10−6 2.40× 10−9 5.38× 10−6 1.98 9.61× 10−9 2.90

Example 5.2. Consider the following Fredholm-Hammerstein integral equation:

u(x)−
∫ 1

0

exy+1

√
x+ y + 1

y2 + 1

1 + u2(y)
dy = f(x), x, y ∈ [0, 1], (5.3)
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Figure 3. The consideration of nodes for Example 5.2

Figure 4. Absolute error distributions of Example 5.2
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Figure 5. CPU times for Example 5.2

Table 3. Some numerical results for Example 5.2 with Gaussian weight functions
N h ∥eN∥2 ∥eN∥∞

q = 1 q = 2 q = 1 Ratio q = 2 Ratio
2 0.250 7.85× 10−5 8.59× 10−6 1.33× 10−4 − 1.89× 10−5 −
4 0.125 1.91× 10−5 1.16× 10−6 3.99× 10−5 1.73 3.45× 10−6 2.45
8 0.062 4.30× 10−6 1.29× 10−7 1.29× 10−5 1.82 5.28× 10−7 2.71
16 0.031 9.26× 10−7 1.32× 10−8 2.98× 10−6 1.92 7.35× 10−8 2.84
32 0.015 2.02× 10−7 1.31× 10−9 7.63× 10−7 2.96 9.76× 10−9 2.91
64 0.007 4.60× 10−8 1.99× 10−10 1.94× 10−7 1.97 1.27× 10−9 2.94

Table 4. Some numerical results for Example 5.2 with spline weight functions
N h ∥eN∥2 ∥eN∥∞

q = 1 q = 2 q = 1 Ratio q = 2 Ratio
2 0.250 3.61× 10−4 2.75× 10−5 4.16× 10−4 − 4.28× 10−5 −
4 0.125 8.60× 10−5 4.34× 10−6 1.32× 10−4 1.65 9.19× 10−6 2.21
8 0.062 1.68× 10−5 6.12× 10−7 3.75× 10−5 1.81 1.28× 10−6 2.83
16 0.031 3.92× 10−6 7.71× 10−8 9.86× 10−6 1.93 1.67× 10−7 2.93
32 0.015 8.83× 10−7 9.37× 10−9 2.54× 10−6 1.95 2.27× 10−8 2.88
64 0.007 1.72× 10−7 1.22× 10−9 6.35× 10−7 1.99 2.15× 10−9 2.95

Table 5. Some numerical results for Example 5.2 with thin plate splines
N h ∥eN∥2 ∥eN∥∞

k = 1 k = 2 k = 1 Ratio k = 2 Ratio
2 0.250 1.69× 10−4 3.51× 10−5 2.76× 10−4 − 6.65× 10−5 −
4 0.125 5.84× 10−5 6.42× 10−6 9.83× 10−5 1.48 1.23× 10−5 2.43
8 0.062 2.05× 10−5 1.18× 10−6 3.49× 10−5 1.49 2.18× 10−6 2.49
16 0.031 7.35× 10−6 2.12× 10−7 1.25× 10−5 1.48 3.88× 10−7 2.49
32 0.015 2.63× 10−6 3.84× 10−8 4.49× 10−6 1.47 6.83× 10−8 2.51
64 0.007 1.03× 10−6 6.89× 10−9 1.58× 10−6 1.51 1.22× 10−8 2.48

where the function f(x) has been so chosen that the exact solution is

uex(x) =
ex

2−x−π

x+ 1
.

Previous numerical methods have difficulties to solve these types of integral equa-
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tions, but we can easily compute the approximate solution for this problem utilizing
the meshless method presented in this work based on some random nodes over the
[0, 1] depicted in Figure 3. The numerical results in terms of ∥eN∥2 and ∥eN∥∞
at different numbers of N and the rate of convergence for the linear and quadratic
basis functions utilizing the Gaussian and spline weight functions are presented in
Tables 3 and 4, respectively. To compare the presented method, we also solve the
integral equation (5.3) utilizing the thin plate splines and the numerical results are
given in Table 5. The obtained errors for different numbers of N using the presented
method and the thin plate splines are drawn in the logarithmic mode in Figure 4.
We have also compared the CPU times for solving this integral equation using the
presented method (q = 2) and the thin plate splines (k = 2) for different numbers
of N in Figure 5. It is seen that the CPU times of the proposed method are much
lower than the thin plate splines which it confirms that the new approach is very
fast in comparison to thin plate splines.

Table 6. Some numerical results for Example 5.3 with Gaussian weight functions
N h ∥eN∥2 ∥eN∥∞

q = 1 q = 2 q = 1 Ratio q = 2 Ratio
11 0.3111 9.17× 10−5 1.23× 10−6 1.12× 10−4 − 2.86× 10−6 −
21 0.2180 4.52× 10−5 9.08× 10−7 6.21× 10−5 1.65 1.26× 10−6 2.30
39 0.1601 2.22× 10−5 2.82× 10−7 3.47× 10−5 1.88 5.14× 10−7 2.91
58 0.1313 1.08× 10−5 1.19× 10−7 2.36× 10−5 1.94 2.87× 10−7 2.93
88 0.1066 8.51× 10−6 8.11× 10−8 1.57× 10−5 1.95 1.29× 10−7 3.83
105 0.0975 5.14× 10−6 3.78× 10−8 1.25× 10−5 1.98 9.14× 10−8 2.53

Table 7. Some numerical results for Example 5.3 with spline weight functions
N h ∥eN∥2 ∥eN∥∞

q = 1 q = 2 q = 1 Ratio q = 2 Ratio
11 0.3111 4.89× 10−5 8.92× 10−7 8.35× 10−5 − 1.41× 10−6 −
21 0.2180 2.70× 10−5 2.91× 10−7 4.61× 10−5 1.67 5.87× 10−7 2.46
39 0.1601 1.21× 10−5 1.21× 10−7 2.57× 10−5 1.89 2.38× 10−7 2.92
58 0.1313 9.57× 10−6 9.11× 10−8 1.75× 10−5 1.93 1.35× 10−7 2.85
88 0.1066 7.89× 10−6 3.82× 10−8 1.16× 10−5 1.97 6.21× 10−8 3.72
105 0.0975 4.79× 10−6 2.51× 10−8 8.52× 10−6 1.94 4.25× 10−8 2.63

Example 5.3. Consider the following Fredholm-Hammerstein integral equation:

u(x, t)−
∫
D

ln(x2 + s2 + 1)

t2 + y2 + e

√
u(y, s) + y + πdsdy = f(x, t), (x, t) ∈ D,

where the function f(x, t) has been so chosen that the exact solution is

uex(x, t) = ln

(
10 +

xt+ t

x+ t2 + 1

)
,

and D is the tear domain drawn in Figure 6. Here we separate the domain D as
D = D1 ∪D2, where

D1 =
{
(x, t) ∈ R2 : 0 < x < 1, 0.5 < t < 0.5 + 0.25

√
3x(3x− 3)2

}
,

D2 =
{
(x, t) ∈ R2 : 0 < x < 1, 0.5− 0.25

√
3x(3x− 3)2 < t < 0.5

}
.
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The distribution of the nodes, selected randomly on the domain D, is depicted in
Figure 7. The numerical results in terms of ∥eN∥2 and ∥eN∥∞ at different num-
bers of N and the rate of convergence for the linear and quadratic basis functions
utilizing the Gaussian and spline weight functions are presented in Tables 6 and
7, respectively. The obtained errors for different numbers of N are drawn in the
logarithmic mode in Figure 8. Theorem 4.2 concludes that the results gradually
converge to the exact values along with the increase of the nodes .i.e., for the linear
basis ∥uex − ûN∥ ≈ O(h2) and for the quadratic basis ∥uex − ûN∥ ≈ O(h3). Note
that for the quadratic basis, for large N , the error near the boundary increases
which consequently effects on the global error [45].

Example 5.4. As final example, we solve the following two-dimensional Fredholm
integral equation:

u(x, t)−
∫
D

1 + t+ y

ets cosh(x+ y)
sin(

u(y, s)√
y + s+ 6

)dsdy = g(x, t), (x, t) ∈ D,

where the function g(x, t) has been so chosen that the exact solution is

uex(x, t) =
x2 + 1√
x+ t+ 10

,

and D is the fish-like domain drawn in Figure 9. Here we can separate the domain
D as D = D1 ∪D2, where

D1 = {(x, t) ∈ R2 : 0 ≤ x ≤ 1, 0.5 ≤ t ≤ 0.5 +
√
0.25− (x− 0.5)2},

D2 = {(x, t) ∈ R2 : 0.3 ≤ x ≤ 0.7, 0 ≤ t ≤ 0.5}.

The distribution of the nodes, selected randomly on the domain D, is depicted in
Figure 10. The numerical results in terms of ∥eN∥2 and ∥eN∥∞ at different num-
bers of N and the rate of convergence for the linear and quadratic basis functions
utilizing the Gaussian and spline weight functions are presented in Tables 8 and 9,
respectively. To compare the presented method, we also solve the integral equation
(5.4) utilizing the thin plate splines and the numerical results are given in Table
10. The obtained errors for different numbers of N using the presented method
and the thin plate splines are drawn in the logarithmic mode in Figure 11. We
have also compared the CPU times for solving this integral equation using the pre-
sented method (q = 2) and the thin plate splines (k = 2) for different numbers of
N in Figure 12. These results show the presented method in the current paper,
in comparison with the method based on the thin plate splines for solving integral
equations, uses much less computer memory and times. Moreover, the convergence
rates of the new method are higher than the convergence rates of the thin plate
splines.
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Figure 6. The consideration domain D for Example 5.3

Figure 7. Node distribution for Example 5.3

Figure 9. The consideration domain D for Example 5.4

Figure 10. Node distribution for Example 5.4
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Figure 8. Absolute error distributions of Example 5.3

Figure 11. Absolute error distributions of Example 5.4

Figure 12. CPU times for Example 5.4
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Table 8. Some numerical results for Example 5.4 with Gaussian weight functions
N h ∥eN∥2 ∥eN∥∞

q = 1 q = 2 q = 1 Ratio q = 2 Ratio
10 0.3360 1.13× 10−5 8.76× 10−7 2.56× 10−5 − 1.37× 10−6 −
20 0.1997 7.42× 10−6 2.11× 10−7 1.14× 10−5 1.87 4.25× 10−7 2.24
32 0.1428 3.71× 10−6 9.39× 10−8 6.06× 10−6 1.95 1.61× 10−7 2.89
53 0.1111 1.66× 10−6 4.51× 10−8 3.71× 10−6 1.98 7.56× 10−8 3.01
78 0.0909 1.07× 10−6 2.32× 10−8 2.49× 10−6 1.88 3.59× 10−8 3.71
102 0.0769 7.36× 10−7 1.21× 10−8 1.80× 10−6 1.94 2.41× 10−8 2.38

Table 9. Some numerical results for Example 5.4 with spline weight functions
N h ∥eN∥2 ∥eN∥∞

q = 1 q = 2 q = 1 Ratio q = 2 Ratio
10 0.3360 9.17× 10−7 5.22× 10−7 1.22× 10−6 − 8.54× 10−7 −
20 0.1997 3.21× 10−7 1.19× 10−7 5.34× 10−7 1.58 2.82× 10−7 2.13
32 0.1428 1.23× 10−7 7.21× 10−8 2.81× 10−7 1.91 1.05× 10−7 2.94
53 0.1111 9.82× 10−8 2.37× 10−8 1.74× 10−7 1.90 4.99× 10−8 2.96
78 0.0909 8.32× 10−8 1.12× 10−8 1.19× 10−7 1.89 2.47× 10−8 3.50
102 0.0769 5.94× 10−8 8.15× 10−9 8.64× 10−8 1.91 1.63× 10−8 2.49

Table 10. Some numerical results for Example 5.4 with thin plate splines
N h ∥eN∥2 ∥eN∥∞

q = 1 q = 2 q = 1 Ratio q = 2 Ratio
10 0.3360 4.27× 10−6 6.32× 10−7 5.74× 10−6 − 9.87× 10−7 −
20 0.1997 1.83× 10−6 3.24× 10−7 2.49× 10−6 1.93 4.12× 10−7 2.52
32 0.1428 1.59× 10−6 1.19× 10−7 2.07× 10−6 1.48 2.06× 10−7 2.95
53 0.1111 9.37× 10−7 7.48× 10−8 1.51× 10−6 1.25 1.21× 10−7 2.10
78 0.0909 8.15× 10−7 5.56× 10−8 1.23× 10−6 1.06 8.96× 10−8 1.55
102 0.0769 6.84× 10−7 4.21× 10−8 1.08× 10−6 0.96 7.68× 10−8 1.14

6. Conclusion
The main intention of the current paper has been to describe a scheme for the
numerical solution of one- and two-dimensional Fredholm-Hammerstein integral
equations of the second kind. These types of integral equations have been used
as a mathematical model in various branches of applied science and engineering.
The method is based on the discrete Galerkin method with the shape functions of
the MLS approximation constructed on scattered points as a basis. The integrals
appeared in this method have been approximated by a composite Gauss-Legendre
integration rule. The proposed method does not require any domain element, so it
is meshless and independent of the geometry of the domain. The numerical results
for different examples have been reported to show the efficiency of the new method
for solving various types of Hammerstein integral equations. All numerical results
have confirmed the theoretical error estimates.

Acknowledgements. The authors are very grateful to both anonymous reviewers
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A meshless local Galerkin method. . . 101

References
[1] M. A. Abdou, A. A. Badr and M. B. Soliman, On a method for solving a two-

dimensional nonlinear integral equation of the second kind, J. Comput. Appl.
Math., 2011, 235(12), 3589–3598.

[2] H. Adibi and P. Assari, On the numerical solution of weakly singular Fredholm
integral equations of the second kind using Legendre wavelets, J. Vib. Control.,
2011, 17(5), 689–698.

[3] A. Alipanah and S. Esmaeili, Numerical solution of the two-dimensional Fred-
holm integral equations using Gaussian radial basis function, J. Comput. Appl.
Math., 2011, 235(18), 5342–5347.

[4] M. G. Armentano, Error estimates in Sobolev spaces for moving least square
approximations, SIAM J. Numer. Anal., 2002, 39(1), 38–51.

[5] M. G. Armentano and R. G. Duron, Error estimates for moving least square
approximations, Appl. Numer. Math., 2001, 37(3), 397–416.

[6] P. Assari, H. Adibi and M. Dehghan, A meshless method for solving nonlin-
ear two-dimensional integral equations of the second kind on non-rectangular
domains using radial basis functions with error analysis., J. Comput. Appl.
Math., 2013, 239(1), 72–92.

[7] P. Assari, H. Adibi and M. Dehghan, A numerical method for solving linear
integral equations of the second kind on the non-rectangular domains based on
the meshless method, Appl. Math. Model., 2013, 37(22), 9269–9294.

[8] P. Assari, H. Adibi and M. Dehghan, A meshless discrete Galerkin (MDG)
method for the numerical solution of integral equations with logarithmic kernels,
J. Comput. Appl. Math., 2014, 267, 160–181.

[9] P. Assari, H. Adibi and M. Dehghan, A meshless method based on the mov-
ing least squares (MLS) approximation for the numerical solution of two-
dimensional nonlinear integral equations of the second kind on non-rectangular
domains, Numer. Algor., 2014, 67(2), 423–455.

[10] P. Assari, H. Adibi and M. Dehghan, The numerical solution of weakly singular
integral equations based on the meshless product integration (MPI) method with
error analysis, Appl. Numer. Math., 2014, 81, 76–93.

[11] P. Assari and M. Dehghan, A meshless discrete Galerkin method based on the
free shape parameter radial basis functions for solving Hammerstein integral
equations, Numer. Math. Theor. Meth. Appl., 2018, 11, 541–569.

[12] P. Assari and M. Dehghan, The numerical solution of two-dimensional loga-
rithmic integral equations on normal domains using radial basis functions with
polynomial precision, Eng. Comput., 2017. DOI: 10.1007/s00366-017-0502-5.

[13] K. E. Atkinson, The numerical evaluation of fixed points for completely con-
tinuous operators, SIAM J. Numer. Anal., 1973, 10, 799–807.

[14] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second
Kind, Cambridge University Press, Cambridge, 1997.

[15] K. E. Atkinson and A. Bogomolny, The discrete Galerkin method for integral
equations, Math. Comp., 1987, 48, 595–616.



102 P. Assari

[16] K. E. Atkinson and J. Flores, The discrete collocation method for nonlinear
integral equations, IMA J. Numer. Anal., 1993, 13(2), 195–213.

[17] E. Babolian, S. Bazm and P. Lima, Numerical solution of nonlinear two-
dimensional integral equations using rationalized Haar functions, Commun.
Nonlinear. Sci. Numer. Simulat., 2011, 16(3), 1164–1175.

[18] S. Bazm and E. Babolian, Numerical solution of nonlinear two-dimensional
Fredholm integral equations of the second kind using gauss product quadrature
rules, Commun. Nonlinear. Sci. Numer. Simulat., 2012, 17(3), 1215–1223.

[19] M. D. Buhmann, Radial Basis Functions: Theory and Implementations, Cam-
bridge University Press, Cambridge, 2003.

[20] V. Carutasu, Numerical solution of two-dimensional nonlinear Fredholm inte-
gral equations of the second kind by spline functions, General. Math., 2001, 9,
31–48.

[21] W. Chen and W. Lin, Galerkin trigonometric wavelet methods for the natural
boundary integral equations, Appl. Math. Comput., 2001, 121(1), 75–92.

[22] P. Dasa, G. Nelakantia and G. Longb, Discrete Legendre spectral projec-
tion methods for Fredholm-Hammerstein integral equations, J. Comput. Appl.
Math., 2015, 278, 293–305.

[23] M. Dehghan and R. Salehi, The numerical solution of the non-linear integro-
differential equations based on the meshless method, J. Comput. Appl. Math.,
2012, 236(9), 2367–2377.

[24] W. Fang, Y. Wang and Y. Xu, An implementation of fast wavelet Galerkin
methods for integral equations of the second kind, J. Sci. Comput., 2004, 20(2),
277–302.

[25] R. Farengo, Y.C. Lee and P.N. Guzdar, An electromagnetic integral equation:
Application to microtearing modes, Phys. Fluids, 1983, 26(12), 3515–3523.

[26] G. E. Fasshauer, Meshfree methods, In: Handbook of Theoretical and Compu-
tational Nanotechnology, American Scientific Publishers, 2005.

[27] A. Golbabai and S. Seifollahi, Numerical solution of the second kind integral
equations using radial basis function networks, Appl. Math. Comput., 2006,
174(2), 877–883.

[28] I. G. Graham, Collocation methods for two dimensional weakly singular integral
equations, J. Austral. Math. Soc. (Series B), 1993, 22, 456–473.

[29] L. Grammonta, P. B. Vasconcelos and M. Ahuesa, A modified iterated projection
method adapted to a nonlinear integral equation, Appl. Math. Comput., 2016,
276, 432–441.

[30] H. Guoqiang and W. Jiong, Extrapolation of Nystrom solution for two dimen-
sional nonlinear Fredholm integral equations, J. Comput. Appl. Math., 2001,
134(1–2), 259–268.

[31] H. Guoqiang and W. Jiong., Richardson extrapolation of iterated discrete
Galerkin solution for two-dimensional Fredholm integral equations, J. Com-
put. Appl. Math., 2002, 139, 49–63.

[32] H. Guoqiang, W. Jiong, K. Hayami and X. Yuesheng, Correction method and
extrapolation method for singular two-point boundary value problems, J. Com-
put. Appl. Math., 2000, 126(1–2), 145–157.



A meshless local Galerkin method. . . 103

[33] R. Hanson and J. Phillips, Numerical solution of two-dimensional integral equa-
tions using linear elements source, SIAM J. Numer. Anal., 1978, 15, 113–121.

[34] H. Kaneko and Y. Xu, Gauss-type quadratures for weakly singular integrals
and their application to Fredholm integral equations of the second kind, Math.
Comp., 1994, 62(206), 739–753.

[35] H. Kaneko and Y. Xu, Superconvergence of the iterated Galerkin methods for
Hammerstein equations, SIAM J. Numer. Anal., 1996, 33(3), 1048–1064.

[36] B. Kress, Linear Integral Equations, Springer-Verlag, Berlin, 1989.
[37] S. Kumar, A discrete collocation-type method for Hammerstein equations,

SIAM J. Numer. Anal., 1998, 25(2), 328–341.
[38] S. Kumar and I. H. Sloan, A new collocation type method for Hammerstein

integral equations, Math. Comput., 1987, 48(178), 585–593.
[39] P. Lancaster and K. Salkauskas, Surfaces generated by moving least squares

methods, Math. Comput., 1981, 37(155), 141–158.
[40] X. Li, Meshless Galerkin algorithms for boundary integral equations with moving

least square approximations, Appl. Numer. Math., 2011, 61(12), 1237–1256.
[41] X. Li and J. Zhu, A Galerkin boundary node method and its convergence anal-

ysis, J. Comput. Appl. Math., 2009, 230(1), 314–328.
[42] X. Li and Q. Wang, Analysis of the inherent instability of the interpolating

moving least squares method when using improper polynomial bases, Eng. Anal.
Bound. Elem., 20169, 73, 21–34.

[43] X. Li, H. Chen and Y. Wang, Error analysis in Sobolev spaces for the improved
moving least-square approximation and the improved element-free Galerkin
method, Appl. Math. Comput., 2015, 262, 56–78.

[44] A. V. Manzhirov, On a method of solving two-dimensional integral equations
of axisymmetric contact problems for bodies with complex rheology, J. Appl.
Math. Mech., 1985, 49(6), 777–782.

[45] D. Mirzaei and M. Dehghan, A meshless based method for solution of integral
equations, Appl. Numer. Math., 2010, 60(3), 245–262.

[46] Y. Ordokhani, Solution of Fredholm-Hammerstein integral equations with
walsh-hybrid functions, Int. Math. Forum., 2009, 4, 969–976.

[47] K. Parand and J. A. Rad, Numerical solution of nonlinear Volterra-Fredholm-
Hammerstein integral equations via collocation method based on radial basis
functions, Appl. Math. Comput., 2012, 218(9), 5292–5309.

[48] A. Pedas and G. Vainikko, Product integration for weakly singular integral
equations in m dimensional space, In: B.Bertram, C.Constanda, A.Struthers
(Ed.), Integral Methods in Science and Engineering, 280–285, Chapman and
Hall/CRC, 2000.

[49] A. Quarteroni, R. Sacco and F. Saleri, Numerical Analysis for Electromagnetic
Integral Equations, Artech House, Boston, 2008.

[50] A. Tari, M. Y. Rahimi, S. Shahmorad and F. Talati, Solving a class of two-
dimensional linear and nonlinear Volterra integral equations by the differential
transform method, J. Comput. Appl. Math., 2009, 228(1), 70–76.



104 P. Assari

[51] A. M. Wazwaz, Linear and Nonlinear Integral equations: Methods and Appli-
cations, Higher Education Press and Springer Verlag, Heidelberg, 2011.

[52] H. Wendland, Scattered Data Approximation, Cambridge University Press,
New York, 2005.


	Introduction
	The MLS approximation
	Solving integral equations
	One-dimensional integral equations
	Two-dimensional integral equations

	Error estimates
	Numerical examples
	Conclusion

