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BIFURCATION OF LIMIT CYCLES FROM
THE GLOBAL CENTER OF A CLASS OF

INTEGRABLE NON-HAMILTON SYSTEMS∗
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Abstract In this paper, we consider the bifurcation of limit cycles for system
ẋ = −y(x2 + a2)m, ẏ = x(x2 + a2)m under perturbations of polynomials with
degree n, where a 6= 0, m ∈ N. By using the averaging method of first order,
we bound the number of limit cycles that can bifurcate from periodic orbits of
the center of the unperturbed system. Particularly, if m = 2, n = 5, the sharp
bound is 5.

Keywords Limit cycle, averaging function, bifurcation.

MSC(2010) 37G15, 34C05.

1. Introduction and statement of the main results

In the qualitative theory of real planar differential systems, one of the main open
problems is the determination of limit cycles. A classical way to produce limit
cycles is to perturb a system, which has a center, so that limit cycles bifurcate in
the perturbed system from some of the periodic orbits surrounding the center of the
unperturbed system ( [3,5]). Recently, many people have considered the number of
limit cycles bifurcating from the period annulus of a system ẋ = −yG(x, y) + εPn(x, y),

ẏ = xG(x, y) + εQn(x, y),
(1.1)

where Pn(x, y), Qn(x, y) are polynomial of degree n, G(0, 0) 6= 0 and ε is a small
parameter.

J. Llibre et al. [13] studied the case of one line (G(x, y) = 1 + x). A. Buica and
J. Llibre [2] studied the case of two orthogonal lines (G(x, y) = (x+ a)(y + b)). B.
Coll et al. [7] studied the case of three lines, two of them parallel and the other
perpendicular (G(x, y) = (x + a)(y + b)(x + c)). A. Atabaigi et al. [1] studied the
case of four lines, two of them parallel and the other perpendicular (G(x, y) =

(x2− a2)(y2− b2)). A. Gasull et al. [8] investigated the case of G(x, y) =
∏k1
j=1(x−

aj)
∏k2
l=1(y−bl) with ai 6= aj and bi 6= bj for i 6= j. J. Giné and J. Llibre [10] studied
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the case of G(x, y) = 0 being a conic in R2 for n = 3. A. Gasull et al. [9] considered
the case of G(x, y) = (1− y)m with m ∈ N. G. Xiang and M. Han [16] studied the
case of G(x, y) = ax2 + bx + 1 with a 6= 0. G. Chang and M. Han [4] considered

the case of G(x, y) =
m∏
i=1

[(x − ai)2 + (y − bi)2]ki . Y. Xiong [17] investigated the

case of G(x, y) =
m∏
i=1

[
(x− ai)2 + y2 − b2i

]ki
. S. Li et al. [12] considered the case of

G(x, y) = y2 + ax2 + bx+ c with c 6= 0.
Most cases of the above, system (1.1)ε=0 has invariant set that is formed by

parallel and/or orthogonal invariant lines. When the center is global, there are few
results ( [16] when b2 − 4a < 0). Motivated by [9], in this paper we will consider
the bifurcation of limit cycles from the center of system ẋ = −y(x2 + a2)m,

ẏ = x(x2 + a2)m,
(1.2)

under perturbations of polynomials with degree n, where a 6= 0, m ∈ N. Let
x1 = 1

ax, y1 = 1
ay, t1 = a2mt. Then system (1.2) is transformed into ẋ = −y(x2 + 1)m,

ẏ = x(x2 + 1)m,

here we omit the subscript 1. Hence, we consider the following system ẋ = −y(x2 + 1)m + εPn(x, y),

ẏ = x(x2 + 1)m + εQn(x, y),
(1.3)

where Pn(x, y) =
n∑

i+j=0

pi,jx
iyj , Qn(x, y) =

n∑
i+j=0

qi,jx
iyj , 0 < |ε| � 1. And the

system (1.3)ε=0 has a global center.
The objective of this paper is to estimate the number of limit cycles that bifur-

cate from the periodic orbits of the periodic annulus D of the origin of system (1.3),
where

D =
{

(x, y) : 0 <
√
x2 + y2 < +∞

}
.

Our results indicate that the upper bound is independent with m when [n+1
2 ] ≥ m.

Our method is the first order averaging method. Denote by H(n) the maximum
number of limit cycles bifurcating from the period annulus D of system (1.3)ε=0 up
to the first order averaging method, then we have the following result:

Theorem 1.1. Consider system (1.3) with 0 < |ε| � 1.
(1) If [n+1

2 ] < m, then H(n) ≤ [n+1
2 ] +m− 2.

(2) If [n+1
2 ] ≥ m, then H(n) ≤ 2[n+1

2 ]− 1.

Corollary 1.1. If in system (1.3) m = 2, n = 5, and 0 < |ε| � 1, then H(5) = 5.

This paper is organized as follows. In Section 2, we introduce the first averaging
method and obtain the expression of averaging function. In Section 3, the main
results is proved. In the last section, we give a conjecture.
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2. The expression of averaging function

In the plane, the method of Abelian integrals and the averaging theory are es-
sentially equivalent, but each has its own advantages. For example, when the as-
sociated Abelian integrals are complicated or we need to study the orbits of the
non-autonomous differential systems, the averaging method displays more flexibil-
ity. Recently, M. Han [11] studied the number of periodic solutions of piecewise
smooth periodic equations by average method.

The following lemma provides a first order approximation in ε for the periodic
differential system, for a proof see Theorem 2.6.1 of Sanders and Verhulst [14]
and Theorem 11.5 of Verhulst [15]. The original theorem is given for a system of
differential equations, but since we will use it only for one differential equation, we
state them in this case.

Lemma 2.1 (Theorem 2.6.1, [14],Theorem 11.5, [15]). Consider the following two
initial value problems

ẋ = εF (t, x) + ε2G(t, x, ε), x(0) = x0, (2.1)

and
ẏ = εf0(y), y(0) = x0, (2.2)

where x, y, x0 ∈ U an open interval of R, t ∈ [0,+∞), F and G are T-periodic in
the variable t, and f0(y) is the averaged function of F (t, y) with respect to t, i.e.,

f0(y) =
1

T

∫ T

0

F (t, y)dt. (2.3)

Suppose: (i) F, ∂F/∂x, ∂2F/∂x2, G and ∂G/∂x are defined, continuous and bounded
by a constant independent on ε in [0,+∞)× U and ε ∈ (0, ε0]; (ii) T is a constant
independent of ε; (iii) y(t) belongs to U on the timescale 1/ε. Then the following
statements hold.

(a) On the time-scale 1/ε we have that x(t)− y(t) = O(ε) as ε→ 0. (b) If p is
an equilibrium point of the averaged system (2.2) such that

∂f0

∂y

∣∣∣∣
y=p

6= 0, (2.4)

then system (2.1) has a T-periodic solution φ(t, ε) → p as ε → 0. (c) If (2.4) is
negative, then the corresponding periodic solution φ(t, ε) of Eq.(2.1) in the space
(t, x) is asymptotically stable for ε sufficiently small. If (2.4) is positive, then it is
unstable.

Since the averaging theory does not tell any information on upper bound of the
maximum number of periodic solution, we need the following results which can be
obtained from Theorem 1.1 of [11].

Lemma 2.2. Under the assumption of Lemma 2.1, if the averaged function f0(y)
has at most k zeros on U , taking into account the multiplicity, then there exist at
most k periodic solutions bifurcating from the period annulus of (2.1)ε=0.

Let x = r cos θ, y = r sin θ and taking θ as the new independent variable, we
transform the differential system (1.3) into the equivalent differential equation

dr

dθ
= εf1(r, θ) + ε2G(r, θ, ε), r ∈ (0,+∞), (2.5)
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where

f1(r, θ) =

n∑
i+j=0

ri+j
pi,j cosi+1 θ sinj θ + qi,j cosi θ sinj+1 θ

(r2 cos2 θ + 1)m
. (2.6)

The averaged function of (2.6) is

f0(r) =
1

2π

∫ 2π

0

f1(r, θ)dθ

=

n∑
i=0

ri
i+1∑
j=0

ωi+1−j,j
1

2π

∫ 2π

0

cosi+1−j θ sinj θ

(r2 cos2 θ + 1)m
dθ,

where ωi,j = pi−1,j + qi,j−1, and 1 ≤ i + j ≤ n + 1. Note that all coefficients
ωi,j remain arbitrary According to Lemma 2.1, every simple zero of the averaged
function f0(r) provides a limit cycle of system (1.3). Note that in (0,+∞) the zeros
of the function f0(r) coincide with the zeros of the function rf0(r). Therefore, in
order to simplify further computation we consider the function F 0(r) = rf0(r).

Denote by

Ii,j(r) =
1

2π

∫ 2π

0

cosi θ sinj θ

(r2 cos2 θ + 1)m
dθ, (2.7)

then we have

Ii,2j+1(r) = I2i+1,2j(r) = 0. (2.8)

By induction, we can obtain

F 0(r) =

n+1∑
i=1

ri
i∑

j=0

ωi−j,jIi−j,j(r) =

n+1∑
i=1

ri
[ i2 ]∑
j=0

ωi−2j,2jIi−2j,2j(r)

=

n+1∑
i=1

ri
[ i2 ]∑
j=0

ωi−2j,2j

(
j∑

k=0

(
j

k

)
(−1)kIi+2k−2j,0(r)

)

=

n+1∑
i=0

riIi,0(r)P
[n+1−i

2 ]
i (r2)

=

[n+1
2 ]∑
i=0

r2iI2i,0(r)P
[n+1−2i

2 ]
2i (r2) (2.9)

where P
[n+1−i

2 ]
i (r2) =

[n+1−i
2 ]∑
j=0

ci,jr
2j with ci,j =

[ i2 ]∑
k=0

(−1)k
(
j+k
k

)
ωi−2k,2j+2k. Note

that ci,j ((i, j) 6= (0, 0)) are independent coefficients with c0,0 = ω0,0 = 0.
Let

J1
k (r2) =

1

2π

∫ 2π

0

(r2 cos2 θ + 1)kdθ, k ≥ 0 (2.10)

J2
k (r2) =

1

2π

∫ 2π

0

1

(r2 cos2 θ + 1)k
dθ, k ≥ 1 (2.11)

then we have the following results.
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Lemma 2.3. For i ≥ 0, let ρ(i) = (2i−1)!!
(2i)!! and ρ(0) , 1, then

J1
k (r2) =

k∑
i=0

(
k

i

)
ρ(i)r2i, k ≥ 0, (2.12)

J2
k (r2) =

k−1∑
i=0

(
k−1
i

)
ρ(i)r2i

(r2 + 1)
2k−1

2

, k ≥ 1. (2.13)

Proof. The statement (2.12) follows from the direct calculation. We will prove
the conclusion (2.13) by induction. For k = 1,

J2
1 (r2) =

1√
r2 + 1

.

By induction, the formula (2.13) holds for k = l, that is

J2
l (r2) =

l−1∑
i=0

(
l−1
i

)
ρ(i)r2i

(r2 + 1)
2l−1

2

. (2.14)

Denote by R = r2, differentiating (2.14) both sides with respect to R, we have

d

dR
J2
l (R) =

1

2π

∫ 2π

0

−l cos2 θ

(R cos2 θ + 1)l+1
dθ

=
1

(R+ 1)
2l+1

2

[
l−1∑
i=0

(
l − 1

i

)
iρ(i)Ri +

l−1∑
i=0

(
l − 1

i

)
iρ(i)Rl−1

−2l − 1

2

l−1∑
i=0

(
l − 1

i

)
ρ(i)Ri

]
.

Multiply −Rl on both sides of the above equation, we get

J2
l (R)− J2

l+1(R) =
1

(R+ 1)
2l+1

2

[
−1

l

l−1∑
i=0

(
l − 1

i

)
iρ(i)Ri+1 − 1

l

l−1∑
i=0

(
l − 1

i

)
iρ(i)Ri

+
2l − 1

2l

l−1∑
i=0

(
l − 1

i

)
ρ(i)Ri+1

]
.

Hence, from (2.14), we can obtain

J2
l+1(R)=

1

(R+1)
2l+1
2

[
l−1∑
i=0

(
l−1

i

)
ρ(i)Ri+1+

l−1∑
i=0

(
l − 1

i

)
ρ(i)Ri+

1

l

l−1∑
i=0

(
l−1

i

)
iρ(i)Ri+1

+
1

l

l−1∑
i=0

(
l − 1

i

)
iρ(i)Ri − 2l − 1

2l

l−1∑
i=0

(
l − 1

i

)
ρ(i)Ri+1

]

=
1

(R+ 1)
2l+1

2

[
l∑
i=1

(
l − 1

i− 1

)
ρ(i− 1)Ri +

l−1∑
i=0

(
l − 1

i

)
ρ(i)Ri
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+
1

l

l∑
i=1

(
l − 1

i− 1

)
(i− 1)ρ(i− 1)Ri +

1

l

l−1∑
i=1

(
l − 1

i

)
iρ(i)Ri

−2l − 1

2l

l∑
i=1

(
l − 1

i− 1

)
ρ(i− 1)Ri

]

=
1

(R+ 1)
2l+1

2

(
R0 +

l−1∑
i=1

σ(i)Ri + σ(l)Rl

)
,

where

σ(i) =

(
l − 1

i− 1

)
ρ(i− 1) +

(
l − 1

i

)
ρ(i) +

1

l

(
l − 1

i− 1

)
(i− 1)ρ(i− 1)

+
1

l

(
l − 1

i

)
iρ(i)− 2l − 1

2l

(
l − 1

i− 1

)
ρ(i− 1)

=

(
l

i

)
ρ(i),

σ(l) =

(
l − 1

l − 1

)
ρ(l − 1) +

1

l

(
l − 1

l − 1

)
(l − 1)ρ(l − 1)− 2l − 1

2l

(
l − 1

l

)
ρ(l − 1) = ρ(l),

which implys (2.13).
Then using Lemma 2.2, we divide the computation of the expression of F 0(r)

into two cases.
Case 1. [n+1

2 ] < m
For i < m, we have

r2iI2i,0(r) =
1

2π

∫ 2π

0

(r2 cos2 θ + 1− 1)i

(r2 cos2 θ + 1)m
dθ =

i∑
k=0

(
i

k

)
(−1)i−kJ2

m−k(r2). (2.15)

Then, by (2.9) and (2.13), we can obtain that

F 0(r) =

[n+1
2 ]∑

k=0

J2
m−k(r2)

[n+1
2 ]∑
i=k

P
[n+1−2i

2 ]
2i (r2)

(
i

k

)
(−1)i−k

=

[n+1
2 ]∑

k=0

1

(r2 + 1)
2m−2k−1

2

[n+1
2 ]∑
i=k

( i
k

)
(−1)i−k

m−k−1∑
j=0

(
m− k − 1

j

)
ρ(j)r2j


×

[n+1−2i
2 ]∑
l=0

c2i,lr
2l


=

[n+1
2 ]∑

k=0

1

(r2 + 1)
2m−2k−1

2

[n+1
2 ]∑
i=k

(
i

k

)
(−1)i−k

m−k−1+[n+1−2i
2 ]∑

s=0

di,sr
2s

=

[n+1
2 ]∑

k=0

1

(r2 + 1)
2m−2k−1

2

m−k−1+[n+1−2k
2 ]∑

j=0

ek,jr
2j

=
1

(r2 + 1)
2m−1

2

[n+1
2 ]∑

k=0

(r2 + 1)k
m−k−1+[n+1−2k

2 ]∑
j=0

ek,jr
2j
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=
1

(r2 + 1)
2m−1

2

[n+1
2 ]∑

k=0

[n+1−2k
2 ]+m−1∑
l=0

sk,lr
2l

=
1

(r2 + 1)
2m−1

2

[n+1
2 ]+m−1∑
i=0

tir
2i

where

di,s =
∑
j+l=s

(
m− k − 1

j

)
ρ(j)c2i,l, j ≤ m− k − 1, l ≤ [

n+ 1− 2i

2
],

ek,j =

[n+1
2 ]∑
i=k

(
i

k

)
(−1)i−kdi,j , if j > m− k − 1 + [

n+ 1− 2i

2
], di,j = 0,

sk,l =
∑
i+j=l

(
k

i

)
ek,j , i ≤ k, j ≤ m− k − 1 + [

n+ 1− 2k

2
],

ti =

[n+1
2 ]∑

k=0

sk,i, if i > [
n+ 1− 2k

2
] +m− 1, sk,i = 0.

Case 2. [n+1
2 ] ≥ m

If i > m, similar to (2.15), we have

r2iI2i,0(r) =

m−1∑
k=0

(
i

k

)
(−1)i−kJ2

m−k(r2) +

i∑
k=m

(
i

k

)
(−1)i−kJ1

k−m(r2). (2.16)

Hence, by (2.9) and Lemma 2.2, we can obtain that

M0(r) =

m−1∑
k=0

J2
m−k(r2)

[n+1
2 ]∑
i=k

P
[n+1−2i

2 ]
2i (r2)

(
i

k

)
(−1)i−k

+

[n+1
2 ]∑

k=m

J1
k−m(r2)

[n+1
2 ]∑
i=k

P
[n+1−2i

2 ]
2i (r2)

(
i

k

)
(−1)i−k

,M01(r) +M02(r).

From Case 1, we have

M01(r) =
1

(r2 + 1)
2m−1

2

[n+1
2 ]+m−1∑
i=0

t̃ir
2i,

where t̃i are real constants which can be obtain similar to Case 1.

By (2.12), we can get that

M02(r) =

[n+1
2 ]∑

k=m

[n+1
2 ]∑
i=k

k−m∑
j=0

(
k −m
j

)
ρ(j)r2j

[n+1−2i
2 ]∑
l=0

c2i,lr
2l

( i
k

)
(−1)i−k
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=

[n+1
2 ]∑

k=m

[n+1
2 ]∑
i=k

(
i

k

)
(−1)i−k

k−m+[n+1−2i
2 ]∑

s=0

Di,sr
2s

=

[n+1
2 ]∑

k=m

k−m+[n+1−2k
2 ]∑

j=0

Ek,jr
2j

=

[n+1
2 ]∑

k=m

[n+1
2 ]−m∑
j=0

Ek,jr
2j

=

[n+1
2 ]−m∑
i=0

Tir
2i

where

Di,s =
∑
j+l=s

(
k −m
j

)
ρ(j)c2i,l, j ≤ k −m, l ≤ [

n+ 1− 2i

2
],

Ek,j =

[n+1
2 ]∑
i=k

(
i

k

)
(−1)i−kDi,j , if j > k −m+ [

n+ 1− 2i

2
], Di,j = 0,

Ti =

[n+1
2 ]−i∑
k=m

Ek,i.

Therefore,

M0(r) =

[n+1
2 ]−m∑
i=0

Tir
2i +

1

(r2 + 1)
2m−1

2

[n+1
2 ]+m−1∑
i=0

t̃ir
2i.

From the above analysis, we have the following results.

Lemma 2.4. If [n+1
2 ] < m, then

M0(r) =
P [n+1

2 ]+m−1(r2)

(r2 + 1)
2m−1

2

, (2.17)

if [n+1
2 ] ≥ m, then

M0(r) = P [n+1
2 ]−m(r2) +

P [n+1
2 ]+m−1(r2)

(r2 + 1)
2m−1

2

, (2.18)

where P k(r2) are polynomials in variable r2 with degree k.

3. Proof of main results

Based on the expression of averaged function obtained in Section 2, we give the proof
of our main results. In the following discussion, we denote by #{ϕ(r) = 0, r ∈ (a, b)}
the number of isolated zeros of ϕ(r) on (a, b) (taking into account the multiplicity).
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Lemma 3.1 ( [8]). Consider a function of the form

F (x) = Pn0(x) +

K∑
j=1

Pnj (x)
1

√
x+ cj

,

where Pnj (x) are polynomials in variable x with degree nj and cj, j = 1, . . . ,K, are
real constants. Then its number of real zeros, taking into account their multiplicities,
#{F (x) = 0, x ∈ (max{−cj},+∞)}, satisfies

#{F (x) = 0, x ∈ (max{−cj},+∞)} ≤ K
(

max
j=1,...,K

(nj) + 1

)
+ n0.

Here, if Pn0(x) = 0, then n0 = −1.

Lemma 3.2 ( [12]). Consider p + 1 linearly independent analytical functions fi :
U → R, i = 0, 1, . . . , p, where U ∈ R is an interval. Suppose that there exists
j ∈ {0, 1, . . . , p} such that fj has constant sign. Then there exist p + 1 constants
Ci, i = 0, . . . , p such that f(x) =

∑p
i=0 Cifi(x) has at least p simple zeros in U .

Proof of Theorem 1.1. From Lemma 2.4 and Lemma 3.1, if [n+1
2 ] < m, we have

#{F 0(r) = 0, r ∈ [0,+∞)} ≤
[
n+ 1

2

]
+m− 1,

if [n+1
2 ] ≥ m, we have

#{F 0(r) = 0, r ∈ [0,+∞)} ≤ 2

[
n+ 1

2

]
.

Since F 0(0) = 0, by Lemma 2.2, we finish the proof.

Proof of Corollary 1.1. When m = 2, n = 5, from the Case 2 of Section 2, we
can get that

F 0(r) = λ1

(
1− 1

(r2 + 1)
3
2

)
+ λ2r

2 +
1

(r2 + 1)
3
2

(
λ3r

2 + λ4r
4 + λ5r

6 + λ6r
8
)
,

where 

λ1 = c4,0 − 2c6,0,

λ2 = c4,1 + 1
2c6,0,

λ3 = c0,1 + 1
2c2,0 −

3
2c4,0 + 3c6,0,

λ4 = 1
2c0,1 + 1

2c2,1 −
3
2c4,1 + c0,2,

λ5 = 1
2c0,2 + 1

2c2,2 + c0,3,

λ6 = 1
2c0,3.

Since ci,j are arbitrary real constants and

det
∂(λ1, λ2, λ3, λ4, λ5, λ6)

∂(c4,0, c6,0, c0,1, c4,1, c2,2, c0,3)
= − 3

16
6= 0,

we have that λi (i = 1, . . . , 6) are arbitrary real constants. By Lemma 3.2, noting
that r2 does’t change sign in r ∈ (0,+∞), we get that M0(r) can have at least 5
zeros in (0,+∞). In addition, from Theorem 1.1, M0(r) has at most 5 zeros in
(0,+∞). By Lemma 2.1 and Lemma2.2, the conclusion is proved.
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4. Conjecture

From Section 2, noting that ci,j ((i, j) 6= 0) are arbitrary constants, we can ob-

tain that the coefficients of F 0(r) have
([n+1

2 ]+1)([n+1
2 ]+2)

2 − 1 = 1
2 [n+1

2 ]
(
[n+1

2 ] + 3
)

arbitrary constants. From our conclusion, it seems to have the following results.

Conjecture. (i) If [n+1
2 ] < m and 1

2 [n+1
2 ]([n+1

2 ] + 1) ≥ m − 1, then H(n) =
[n+1

2 ] +m− 2.
(ii) If [n+1

2 ] < m and 1
2 [n+1

2 ]([n+1
2 ] + 1) < m− 1, then

1

2

[
n+ 1

2

]([
n+ 1

2

]
+ 3

)
− 1 ≤ H(n) ≤

[
n+ 1

2

]
+m− 2.

(iii) If [n+1
2 ] ≥ m, then H(n) = 2[n+1

2 ]− 1.
Unfortunately, due to the complexity of the coefficients of F 0(r), we can’t prove

that they are independent. So we can’t give the lower bounds for general n degree
perturbation.
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