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Abstract In this paper we study a kind of second-order impulsive stochastic
differential equations with state-dependent delay in a real separable Hilbert
space. Some sufficient conditions for the approximate controllability of this
system are formulated and proved under the assumption that the correspond-
ing deterministic linear system is approximately controllable. The results con-
cerning the existence and approximate controllability of mild solutions have
been addressed by using strongly continuous cosine families of operators and
the contraction mapping principle. At last, an example is given to illustrate
the theory.

Keywords Approximate controllability, state-dependent delay, impulsive stochas-
tic differential equations, resolvent operator.

MSC(2010) 93B05, 34K50, 34A37, 34G20.

1. Introduction

The stochastic differential equations (SDEs) in both finite dimensional and infinite
dimensional spaces have been extensively studied. It has played an important role
in many ways such as option pricing, forecast of the growth of population and so on.
For first-order SDEs, some qualitative properties such as existence, controllability
and stability have been investigated in several papers [5, 12, 19, 25]. In setting of
second-order systems, it is advantages to treat second-order abstract differential
equations directly rather than convert them to first-order systems. The second-
order SDEs are the precise model in continuous time to account for integrated
processes that can be made stationary. For instance, it is useful for engineers
to model mechanical vibrations or charge on a capacitor or condenser subjected
to white noise excitation through second-order SDEs. Recently, the problem of
controllability for second-order SDEs has received considerable attention.

Mahmudov and Mckibben [14] focused on the approximate controllability prob-
lem for the class of abstract neutral semi-linear stochastic evolution equations in
a real separable Hilbert space. Based on the theory of strongly continuous cosine
families and Sadovskii fixed point theorem, Parthasarathy and Arjunan [17] ob-
tained the controllability results of second-order impulsive stochastic differential
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and neutral differential systems with state-dependent delay. By the means of the
Leray-Schauder Alternative fixed point theorem, Arthi et al. [2] proved the existence
and controllability results for second-order impulsive stochastic evolution systems
with state-dependent delay. The approximate controllability of a class of second-
order neutral stochastic differential equations with infinite delay and Poisson jumps
was considered by Muthukumar and Rajivganthi [16]. Das et al. [6] studied the
existence and uniqueness of mild solution and approximate controllability for the
second-order stochastic neutral partial differential equation with state-dependent
delay.

However, in above mentioned papers, the authors didn’t consider the damped
term x′(·) in defining the exact and approximate controllability of the systems. It is
not coincide with the definition of the controllability, because apart from x(t), x′(t)
is also a state variable of a second-order system. Kang et al. [11] studied the exact
controllability for the second-order differential inclusion in Banach spaces. With
the help of a fixed point theorem for condensing maps due to Martelli [15], the
authors found a control u(·) in L2(J, U) such that the solution satisfies x(b) = x1
and x′(b) = y1. Afterwards Balachandran and Kim [3] made some remarks on the
paper [11] and indicated that the result of [11] is true only for finite dimensional
Banach spaces. Very recently, after taking into account the damped term x′(t)
in defining the approximate controllability of the second-order abstract system,
Li and Ma [13] established a new set of sufficient conditions for the approximate
controllability of second-order impulsive functional differential system with infinite
delay in Banach spaces. Inspired by the above mentioned works [2, 13, 17], the
main purpose of this paper is to investigate the approximate controllability for
the following second-order impulsive stochastic differential equations with state-
dependent delay

d[x′(t)] = [Ax(t) +Bu(t)]dt+ f(t, xρ(t,xt), x
′(t))dω(t), t ∈ J = [0, b], t ̸= tk,

x0 = ϕ ∈ B, x′(0) = ζ ∈ H,

∆x|t=tk = I1k(x(tk)), k = 1, 2, ...,m,

∆x′|t=tk = I2k(x(tk)), k = 1, 2, ...,m,

(1.1)

where A is the infinitesimal generator of a strongly continuous cosine family of
bounded linear operator {C(t)}t∈R on a Hilbert space H. The state variable x(·)
takes the values in H with the inner product ⟨·, ·⟩ and the norm ∥ · ∥. The control
function u(·) takes values in LF

2 (J, U) of admissible control functions for a separable
Hilbert space U and B is a bounded linear operator from U into H. Let K be
another separable Hilbert space with inner product ⟨·, ·⟩K and norm ∥·∥K . Suppose
{ω(t)}t≥0 is a givenK-valued Brownian motion or Wiener process with a finite trace
nuclear covariance operator Q ≥ 0. Moreover, L(K,H) denotes the space of all
bounded linear operators from K into H endowed with the same norm ∥ · ∥, simply
L(H) if K = H. For t ∈ J, xt represents the function xt : (−∞, 0] → H defined
by xt(θ) = x(t + θ),−∞ < θ ≤ 0 which belongs to some abstract phase space B
defined axiomatically. Assume that f : J×B×H → LQ(K,H), ρ : J×B → (−∞, b],
Iik : H → H, i = 1, 2 are appropriate functions and will be specified later. Moreover,
let 0 = t0 < t1 < · · · < tm < tm+1 = b, x(t+k ) and x(t−k ) denote the right and left
limits of x(t) at t = tk, ∆x|t=tk = x(t+k )− x(t−k ) represents the jump in the state x
at time tk. Similarly x′(t+k ) and x

′(t−k ) denote, respectively, the right and left limits
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of x′(t) at t = tk.
The rest of this paper is organized as follows. In Section 2, we recall some

essential facts. In Section 3, we derive the existence of mild solution to problem
(1.1). In section 4, we present the approximate controllability result. In Section 5,
an example is provided to illustrate our results. We end this article with conclusion
in Section 6.

2. Preliminaries

In this section, we review some concepts, notations and properties necessary to
establish our results. Let (Ω,F , P ) be a complete probability space furnished with
a complete family of right continuous increasing sub σ-algebras {Ft, t ∈ J} satisfying
Ft ⊂ F . An H-valued random variable is an F-measurable function x(t) : Ω → H
and a collection of random variables S = {x(t, ω) : Ω → H | t ∈ J} is called a
stochastic process. Usually we write x(t) instead of x(t, ω) and x(t) : J → H in
the space of S. Let αn(t)(n = 1, 2, · · · ) be a sequence of real-valued independent
one-dimensional standard Brownian motions over (Ω,F , P ). Set

ω(t) =
∞∑

n=1

√
λnαn(t)ηn, t ≥ 0,

where {ηn}(n = 1, 2, · · · ) is a complete orthonormal basis in K and λn ≥ 0(n =
1, 2, · · · ) are nonnegative real numbers.

Let Q ∈ L(K,K) be an operator defined by Qηn = λnηn with Tr(Q) =
∞∑

n=1
λn <

∞, where Tr(Q) denotes trace of Q. The K-valued stochastic process {ω(t), t ≥ 0}
is called a Q-Wiener process. It is assumed that Ft = σ(ω(s) : 0 ≤ s ≤ t) is the
σ-algebra generated by ω and Fb = F . Let ξ ∈ L(K,H) and define

∥ξ∥2Q = Tr(ξQξ∗) =
∞∑

n=1
∥
√
λnξηn∥2.

If ∥ξ∥2Q < ∞, then ξ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) de-
note the space of all Q-Hilbert-Schmidt operators from K into H. The completion
LQ(K,H) of L(K,H) with respect to the topology induced by the norm ∥ · ∥Q,
where ∥ξ∥2Q = ⟨ξ, ξ⟩ is a Hilbert space with the above norm topology. The col-
lection of all strongly-measurable, square-integrable H-valued random variables,
denoted by L2(Ω,H), which is a Banach space when endowed with the norm

∥x∥L2 = (E∥x∥2) 1
2 , where the expectation E is defined by Ex =

∫
Ω
x(ω)dP . Let

C(J, L2(Ω,H)) be the Banach space of all continuous maps from J into L2(Ω,H)
satisfying the conditions sup

t∈J
E∥x(t)∥2 < ∞. An important subspace of L2(Ω,H)

is given by L0
2(Ω, H) = {x ∈ L0

2 : x is F0-adapted}. Further, we denote C = {x ∈
C(J, L2(Ω,H)) | x is Ft-adapted }, which is also a Banach space equipped with the

norm ∥x∥C = sup
t∈J

(E∥x(t)∥2) 1
2 . For more details reader may refer the reference [18].

The theory of cosine functions of operator plays an essential role in investigating
the existence and controllability of mild solutions. Next we introduce the following
definition.

Definition 2.1 (see [20,21]). A one parameter family {C(t)}t∈R, of bounded linear
operators defined on a Banach space H is called a strongly continuous cosine family
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if
(i) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R;
(ii) C(0) = I, I is the identity operators in H;
(iii) C(t)x is strongly continuous in t on R for each fixed x ∈ H.

The strongly continuous sine family {S(t)}t∈R, associated to the given strongly
continuous cosine family {C(t)}t∈R, is defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ H, t ∈ R.

Moreover, M and N are positive constants such that ∥C(t)∥ ≤M and ∥S(t)∥ ≤ N
for every t ∈ J .

The infinitesimal generator of a strongly continuous cosine family {C(t)}t∈R is
the operator A : H → H defined by

Ax =
d2

dt2
C(t)x |t=0, x ∈ D(A),

where D(A) ={x ∈ H : C(t)x is twice continuously differentiable in t}, endowed
with the norm ∥x∥A = ∥x∥+ ∥Ax∥, x ∈ D(A).

Define E ={x ∈ H : C(t)x is once continuously differentiable in t}, endowed
with the norm ∥x∥E = ∥x∥ + sup

0≤t≤1
∥AS(t)x∥, x ∈ E, then E is a Banach space. It

follows that AS(t) : E → H is a bounded linear operator and AS(t)x→ 0 as t→ 0
for each x ∈ E. The following properties are well known [22]:

S(t+ s) = C(t)S(s) + C(s)S(t), (2.1)

C(t+ s) = C(t)C(s) +AS(s)S(t), (2.2)

AS(s)S(t) =
1

2
[C(t+ s)− C(t− s)]. (2.3)

The existence of solutions of the second order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), t ∈ J,

x(0) = ϵ0,

x′(0) = ϵ1,

(2.4)

where h : J → H is an integral function, has been discussed in [20]. While, the
existence of solutions for semilinear second order abstract Cauchy problem has been
studied in [21]. In addition, the solution of (2.4) is introduced in [21] as follows.
When t ∈ J , the function x(·) given by

x(t) = C(t)ϵ0 + S(t)ϵ1 +
∫ t

0
S(t− s)h(s)ds, t ∈ J (2.5)

is called a mild solution of (2.4), and that when ϵ1 ∈ E the function x(·) is contin-
uously differentiable and

x′(t) = AS(t)ϵ0 + C(t)ϵ1 +

∫ t

0

C(t− s)h(s)ds, t ∈ J.

In what follows, we put t0 = 0, tm+1 = b and a function x : [σ, τ ] → H is
said to be a normalized piecewise continuous function on [σ, τ ] if x is piecewise
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continuous and left continuous on (σ, τ ]. We denote by PC([σ, τ ],H) the space
formed by the normalized piecewise continuous, Ft-adapted measurable process
from [σ, τ ] into H. In particular, we introduce the space PC formed by all Ft-
adapted measurable, H-valued stochastic process x : J → H such that x(·) is
continuous at t ̸= tk, x(t

−
k ) = x(tk) and x(t

+
k ) exists, for k = 1, 2, · · · ,m. It is clear

that PC endowed with the norm ∥x∥PC = sup
s∈J

(E∥x(s)∥2) 1
2 is a Banach space, where

∥ · ∥ is any norm of H.
For x ∈ PC,we denote the function x̃k ∈ C([tk, tk+1];L2(Ω,H)) for k = 0, 1, 2, · · · ,

m, by

x̃k(t) =

x(t) for t ∈ (tk, tk+1],

x(t+k ) for t = tk.

A normalized piecewise continuous function x : [σ, τ ] → H is said to be normal-
ized piecewise smooth on [σ, τ ] if x is continuously differentiable except on a finite
set S, the left derivative exists on (σ, τ ] and the right derivative exists on [σ, τ).
In this case, we present by x′(t) the left derivative at t ∈ (σ, τ ] and by x′(σ) the
right derivative at σ. We denote by PC1([σ, τ ],H) the space of normalized piecewise
smooth functions from [σ, τ ] intoH and by PC1 the space of Ft-adapted measurable,
H-valued stochastic process x : J → H such that x(·) is piecewise smooth. Obvi-
ously, PC1 is also a Banach space with the norm ∥x∥PC1 = max{∥x∥PC , ∥x′∥PC}.

In this paper, the phase space (B, ∥ · ∥B) denotes a seminormed linear space of
F0-measurable functions mapping from (−∞, 0] into H and such that the following
axioms hold (Hale and Kato [9]).

(A) if x : (−∞, σ+ b] → H, b > 0, is such that xσ ∈ B and x |[σ,σ+b]∈ PC([σ, σ+
b],H), then for every t ∈ [σ, σ + b) the following conditions hold:
(i) xt is in B;
(ii) ∥x(t)∥ ≤ H̃∥xt∥B;
(iii) ∥xt∥B ≤ K(t− σ) sup{∥x(s)∥ : σ ≤ s ≤ t}+M(t− σ)∥xσ∥B,
where K,M : [0,∞) → [1,∞),K is continuous, M is locally bounded and H̃ > 0 is

a constant, H̃,K,M are independent of x(·).
(B) The space B is complete.
The next result is a consequence of the phase space axioms.

Lemma 2.1 ( [25]). Let x : (−∞, b] → H be an Ft-adapted measurable process
such that the F0-adapted process x0 = ϕ ∈ L0

2(Ω,B) and x(·)|J ∈ PC, then,

∥xs∥B ≤MbE∥ϕ∥B +Kb sup
0≤s≤b

E∥x(s)∥,

where Kb = sup{K(t) : 0 ≤ t ≤ b} and Mb = sup{M(t) : 0 ≤ t ≤ b}.

In order to define the solution of the system(1.1), we consider the space

B′
h1

= {x : (−∞, b] → H such that x(·)|J ∈ PC, x0 ∈ B}

and

B′
h2

= {x ∈ B′
h1
, x′(·) |J∈ PC}.

Let ∥ · ∥B′
h1
, ∥ · ∥B′

h2
be the seminorm in B′

h1
and B′

h2
, and they are defined by

∥x∥B′
h1

= ∥ϕ∥B + sup
s∈J

∥x(s)∥, x ∈ B′
h1
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and

∥x∥B′
h2

= max{∥x∥B′
h1
, sup
s∈J

∥x′(s)∥}, x ∈ B′
h2
.

3. Existence results

In this section, we study the existence of mild solutions for the impulsive stochastic
differential system (1.1). We present the definition of mild solutions for the system
firstly.

Definition 3.1. An Ft-adapted stochastic process x : (−∞, b) → H is called a
mild solution of the abstract Cauchy problem (1.1) if
(i) x0 = ϕ, xρ(s,xs) ∈ B, satisfying x0 ∈ L0

2(Ω,H), x(·)|J ∈ PC;
(ii) the impulsive conditions △x|t=tk = I1k(x(tk)), △x′|t=tk = I2k(x(tk)), k =
1, 2, · · · ,m;
(iii) x(t) satisfies the following integral equation:

x(t) = C(t)ϕ(0) + S(t)ζ +
∫ t

0
S(t− s)Bu(s)ds+

∫ t

0
S(t− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
∑

0<tk<t
C(t− tk)I

1
k(x(tk)) +

∑
0<tk<t

S(t− tk)I
2
k(x(tk)), t ∈ J.

In this paper, we assume that ρ : J×B → (−∞, b] is continuous. In the following,
we give the following hypotheses firstly.
(H1) For each 0 ≤ t < b, the operator α(αI + Γb

t)
−1 → 0 in the strong operator

topology as α→ 0+, where the controllability operator Γb
t , associated with (1.1) is

defined as

Γb
t =

∫ b

t
S(b− s)BB∗S∗(b− s)ds.

(H2) f : J × B ×H → LQ(K,H) is a continuous function and there exist positive
constants k1 and k2 such that

∥f(t,ϖ1, ν1)− f(t,ϖ2, ν2)∥Q ≤ k1∥ϖ1 −ϖ2∥B + k2∥ν1 − ν2∥

for every ϖ1, ϖ2 ∈ B and ν1, ν2 ∈ H.
(H3) The functions Iik : H → H are continuous and there exist positive constants
L(Iik), i = 1, 2, k = 1, 2, · · · ,m such that

∥Iik(ν1)− Iik(ν2)∥2 ≤ L(Iik)∥ν1 − ν2∥2,

for each ν1, ν2 ∈ H.
(H4) max{ϕ1, ϕ2} < 1, where

ϕ1 =32N2Tr(Q)b(1 + 6(
N2K2b

α
)2)η + 8(1 + 6(

N2K2b

α
)2)[M2

m∑
k=1

L(I1k)

+N2
m∑

k=1

L(I2k)],

ϕ2 =32Tr(Q)b[M2 + 6N2(
MNK2b

α
)2]η + 8[Ñ2 + 6M2(

MNK2b

α
)2]

m∑
k=1

L(I1k)

+ 8[M2 + 6N2(
MNK2b

α
)2]

m∑
k=1

L(I2k),
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and Ñ = sup
s∈J

∥AS(t)∥L(E,H), η = 2k21K
2
b + k22.

Theorem 3.1. If (H1)-(H4) are satisfied, then system (1.1) has a mild solution on
J for all u ∈ LF

2 (J, U).

Proof. Let lf = max
t∈J

∥f(t, 0, 0)∥Q, ∥B∥ < K. Define the feedback control function

u(t) = B∗S∗(b− t)(αI + Γb
0)

−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, xρ(s,xs), x

′(s))dω(s)−
m∑

k=1

C(b− tk)I
1
k(x(tk))

−
m∑

k=1

S(b− tk)I
2
k(x(tk))].

For ϕ ∈ B, we define ϕ̃ by

ϕ̃(t) =

ϕ(t), t ∈ (−∞, 0],

C(t)ϕ(0) + S(t)ζ, t ∈ J,

and then ϕ̃ ∈ B′
h1
.

We define y(t) = AS(t)ϕ(0) + C(t)ζ, t ∈ J . Let x(t) = x̃(t) + ϕ̃(t), x′(t) =

x̃′(t) + y(t), −∞ < t ≤ b. It is straightforward that x satisfies

x(t) = C(t)ϕ(0) + S(t)ζ +
∫ t

0
S(t− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
∫ t

0
S(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, xρ(s,xs), x

′(s))dω(s)−
m∑

k=1

C(b− tk)I
1
k(x(tk))

−
m∑

k=1

S(b− tk)I
2
k(x(tk))]dη +

∑
0<tk<t

C(t− tk)I
1
k(x(tk))

+
∑

0<tk<t
S(t− tk)I

2
k(x(tk)), t ∈ J,

if and only if x̃ satisfies x̃0 = 0, and

x̃(t) =
∫ t

0
S(t− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

+
∫ t

0
S(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))]dη

+
∑

0<tk<t
C(t− tk)I

1
k(x̃(tk) + ϕ̃(tk)) +

∑
0<tk<t

S(t− tk)I
2
k(x̃(tk) + ϕ̃(tk)), t ∈ J.

It is also easy to verify that x′ satisfies

x′(t) = AS(t)ϕ(0) + C(t)ζ +
∫ t

0
C(t− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
∫ t

0
C(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, xρ(s,xs), x

′(s))dω(s)−
m∑

k=1

C(b− tk)I
1
k(x(tk))
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−
m∑

k=1

S(b− tk)I
2
k(x(tk))]dη +

∑
0<tk<t

AS(t− tk)I
1
k(x(tk))

+
∑

0<tk<t
C(t− tk)I

2
k(x(tk)), t ∈ J,

if and only if x̃′ satisfies

x̃′(t) =
∫ t

0
C(t− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

+
∫ t

0
C(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))]dη

+
∑

0<tk<t
AS(t− tk)I

1
k(x̃(tk) + ϕ̃(tk)) +

∑
0<tk<t

C(t− tk)I
2
k(x̃(tk) + ϕ̃(tk)),

t ∈ J.

Let B′′
h1

= {x̃ ∈ B′
h1

: x̃0 = 0 ∈ B}. For any x̃ ∈ B′′
h1
, ∥x̃∥B′′

h1
= ∥x̃0∥B +

sup
s∈J

∥x̃(s)∥ = sup
s∈J

∥x̃(s)∥, and thus (B′′
h1
, ∥ · ∥B′′

h1
) is a Banach space.

Let Z = B′′
h1

× PC1 be the space

Z = {(x̃, z̃) : x̃ ∈ B′′
h1
, z̃ ∈ PC1 and x̃′(t) = z̃(t) for t ∈ J, t ̸= tk}

provided with the norm

∥(x̃, z̃)∥Z = max{∥x̃∥B′′
h1
, ∥z̃∥PC1}.

It is now shown, (x̃, z̃) ∈ Z implies x̃ ∈ B′
h2
.

On the space Z, we define the nonlinear operator Φ(x̃, z̃) = (Φ1(x̃, z̃),Φ2(x̃, z̃)),
where

Φ1(x̃, z̃)(t)

=
∫ t

0
S(t− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

+
∫ t

0
S(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))]dη

+
∑

0<tk<t
C(t− tk)I

1
k(x̃(tk) + ϕ̃(tk)) +

∑
0<tk<t

S(t− tk)I
2
k(x̃(tk) + ϕ̃(tk)),

(3.1)

and

Φ2(x̃, z̃)(t)

=
∫ t

0
C(t− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

+
∫ t

0
C(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))]dη

(3.2)
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+
∑

0<tk<t
AS(t− tk)I

1
k(x̃(tk) + ϕ̃(tk)) +

∑
0<tk<t

C(t− tk)I
2
k(x̃(tk) + ϕ̃(tk)).

The continuity and well definition of Φ follow directly from the assumptions. Next,
we will show that the operator Φ has a fixed point.

Let Q = {(x̃, z̃) ∈ Z : ∥(x̃, z̃)∥Z ≤ r}, where r is a positive constant. For
(x̃, z̃) ∈ Q, by Lemma 2.1 and x̃0 = 0, we can obtain the following estimates:

∥x̃t∥B ≤MbE∥x̃0∥B +Kb sup
0≤s≤b

E∥x̃(s)∥ ≤ Kbr,

and

∥x̃t + ϕ̃t∥B ≤ ∥x̃t∥B + ∥ϕ̃t∥B
≤MbE∥x̃0∥B +Kb sup

0≤s≤b
E∥x̃(s)∥+MbE∥ϕ̃0∥B +Kb sup

0≤s≤b
E∥ϕ̃(s)∥

≤ Kb(r +M∥ϕ(0)∥+M∥ζ∥) +Mb∥ϕ∥B.

So, we can obtain

E∥x̃t + ϕ̃t∥2B ≤ 4K2
b (r

2 +M2∥ϕ(0)∥2 +N2∥ζ∥2)) + 4M2
b ∥ϕ∥2B =: r1 (3.3)

and

E∥x̃′(t) + y(t)∥2 ≤ 2r2 + 2E∥AS(t)ϕ(0) + C(t)ζ∥2

≤ 2(r2 + 2Ñ2∥ϕ(0)∥2 + 2M2∥ζ∥2)

=: r2.

(3.4)

For (x̃, z̃) ∈ Q, by taking expectation on (3.1), then from (H2)-(H3), we have

E∥Φ1(x̃, z̃)(t)∥2

= E∥
∫ t

0
S(t− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

+
∫ t

0
S(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))]dη

+
∑

0<tk<t
C(t− tk)I

1
k(x̃(tk) + ϕ̃(tk))

+
∑

0<tk<t
S(t− tk)I

2
k(x̃(tk) + ϕ̃(tk))∥2

≤ 4E∥
∫ t

0
S(t− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)∥2

+4E∥
∫ t

0
S(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))]dη∥2

+4E∥
∑

0<tk<t
C(t− tk)I

1
k(x̃(tk) + ϕ̃(tk))∥2

+4E∥
∑

0<tk<t
S(t− tk)I

2
k(x̃(tk) + ϕ̃(tk))∥2

:= I1 + I2 + I3 + I4.

(3.5)
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From condition (H2) and above mentioned estimates, we can find that

I1 = 4E∥
∫ t

0
S(t− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)∥2

≤ 4Tr(Q)N2
∫ t

0
E∥f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))∥2Qds

= 4Tr(Q)N2
∫ t

0
E∥f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))− f(s, 0, 0)

+f(s, 0, 0)∥2Qds

≤ 4Tr(Q)N2
∫ t

0
[2E∥f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))− f(s, 0, 0)∥2Q

+2E∥f(s, 0, 0)∥2Q]ds

≤ 8Tr(Q)N2
∫ t

0
[2k21E∥x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
∥2B + 2k22E∥x̃′(s) + y(s)∥2 + l2f ]ds

≤ 8Tr(Q)N2b[2k21r1 + 2k22r2 + l2f ].

Then by using (H3) and above mentioned estimates, we get

I3 = 4E∥
∑

0<tk<t
C(t− tk)I

1
k(x̃(tk) + ϕ̃(tk))∥2

= 4E∥
∑

0<tk<t
C(t− tk)[I

1
k(x̃(tk) + ϕ̃(tk))− I1k(ϕ̃(tk)) + I1k(ϕ̃(tk))]∥2

≤ 4M2
∑

0<tk<t
[2L(I1k)E∥x̃(tk)∥2 + 2E∥I1k(ϕ̃(tk))∥2]

≤ 8M2
m∑

k=1

[L(I1k)r
2 + ∥I1k(ϕ̃(tk))∥2]

and

I4 = 4E∥
∑

0<tk<t
S(t− tk)I

2
k(x̃(tk) + ϕ̃(tk))∥2

= 4E∥
∑

0<tk<t
S(t− tk)[I

2
k(x̃(tk) + ϕ̃(tk))− I2k(ϕ̃(tk)) + I2k(ϕ̃(tk))]∥2

≤ 8N2
m∑

k=1

[L(I2k)E∥x̃(tk)∥2 + E∥I2k(ϕ̃(tk))∥2]

≤ 8N2
m∑

k=1

[L(I2k)r
2 + ∥I2k(ϕ̃(tk))∥2].

Similarly, from the expressions of (I1), (I3) and (I4), we have

I2 = 4E∥
∫ t

0
S(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))]dη∥2

≤ 4(N
2K2b
α )2E∥x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))∥2

≤ 24(N
2K2b
α )2{∥x1∥2 +M2∥ϕ(0)∥2 +N2∥ζ∥2 + 2N2Tr(Q)b[2k21r1 + 2k22r2 + l2f ]

+2M2
m∑

k=1

[L(I1k)r
2 + ∥I1k(ϕ̃(tk))∥2] + 2N2

m∑
k=1

[L(I2k)r
2 + ∥I2k(ϕ̃(tk))∥2]}.
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Thus, for (x̃, z̃) ∈ Q, we have

E∥Φ1(x̃, z̃)(t)∥2

≤ I1 + I2 + I3 + I4

≤ 8Tr(Q)N2b[2k21r1 + 2k22r2 + l2f ] + 24(N
2K2b
α )2{∥x1∥2 +M2∥ϕ(0)∥2B +N2∥ζ∥2

+2N2Tr(Q)b[2k21r1 + 2k22r2 + l2f ] + 2M2
m∑

k=1

[L(I1k)r
2 + ∥I1k(ϕ̃(tk))∥2]

+2N2
m∑

k=1

[L(I2k)r
2 + ∥I2k(ϕ̃(tk))∥2]}+ 8M2

m∑
k=1

[L(I1k)r
2 + ∥I1k(ϕ̃(tk))∥2]

+8N2
m∑

k=1

[L(I2k)r
2 + ∥I2k(ϕ̃(tk))∥2]

:= 8Tr(Q)N2bN1 + 24(N
2K2b
α )2N2 + 8N3,

where

N1 = 2k21r1 + 2k22r2 + l2f ,

N2 = ∥x1∥2 +M2∥ϕ(0)∥2 +N2∥ζ∥2 + 2N2Tr(Q)bN1 + 2N3,

N3 =M2
m∑

k=1

[L(I1k)r
2 + ∥I1k(ϕ̃(tk))∥2] +N2

m∑
k=1

[L(I2k)r
2 + ∥I2k(ϕ̃(tk))∥2].

Now let 8Tr(Q)N2bN1 + 24(N
2K2b
α )2N2 + 8N3 < r2, and substitute r1 and r2

into this inequality, which is equivalent to

8Tr(Q)N2b{2k21[4K2
b (M

2∥ϕ(0)∥2 +N2∥ζ∥2) + 4M2
b ∥ϕ∥2B]

+2k22[2(2Ñ
2∥ϕ(0)∥2 + 2M2∥ζ∥2)] + l2f}+ 24(N

2K2b
α )2{∥x1∥2 +M2∥ϕ(0)∥2

+N2∥ζ∥2 + 2N2Tr(Q)b{2k21[4K2
b (M

2∥ϕ(0)∥2 +N2∥ζ∥2) + 4M2
b ∥ϕ∥2B]

+2k22[2(2Ñ
2∥ϕ(0)∥2 + 2M2∥ζ∥2)] + l2f}+ 2M2

m∑
k=1

∥I1k(ϕ̃(tk))∥2

+2N2
m∑

k=1

∥I2k(ϕ̃(tk))∥2}+ 8M2
m∑

k=1

∥I1k(ϕ̃(tk))∥2 + 8N2
m∑

k=1

∥I2k(ϕ̃(tk))∥2

< r2{1− 8Tr(Q)N2b(8k21K
2
b + 4k22)

−24(N
2K2b
α )2[2N2Tr(Q)b(8k21K

2
b + 4k22) + 2M2

m∑
k=1

L(I1k)

+2N2
m∑

k=1

L(I2k)]− 8M2
m∑

k=1

L(I1k)− 8N2
m∑

k=1

L(I2k)}.

(3.6)
Then there exists r2 such that (3.6) holds if,

ϕ1 = 32N2Tr(Q)b(1 + 6(N
2K2b
α )2)(2k21K

2
b + k22)

+8(1 + 6(N
2K2b
α )2)[M2

m∑
k=1

L(I1k) +N2
m∑

k=1

L(I2k)]

< 1.

(3.7)

Similarly, taking expectation on (3.2),

E∥Φ2(x̃, z̃)(t)∥2 ≤ 8M2Tr(Q)bN1 + 24(MNK2b
α )2N2 + 8N4,
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where

N4 = Ñ2
m∑

k=1

[L(I1k)r
2 + ∥I1k(ϕ̃(tk))∥2] +M2

m∑
k=1

[L(I2k)r
2 + ∥I2k(ϕ̃(tk))∥2].

Now let 8M2Tr(Q)bN1 + 24(MNK2b
α )2N2 + 8N4 < r2. Similarly, substitute r1 and

r2 into this inequality, we abtain

ϕ2 = 32Tr(Q)b[M2 + 6N2(MNK2b
α )2](2k21K

2
b + k22) + 8[Ñ2

+6M2(MNK2b
α )2]

m∑
k=1

L(I1k) + 8[M2 + 6N2(MNK2b
α )2]

m∑
k=1

L(I2k)

< 1.

(3.8)

Therefore, Φ maps Q into Q, when max{ϕ1, ϕ2} < 1.
Next, we show that Φ is a contraction mapping on Q. Let (x̃, z̃), (ṽ, w̃) ∈ Q,

then we get

E∥Φ1(x̃, z̃)(t)− Φ1(ṽ, w̃)(t)∥2

≤ 4E∥
∫ t

0
S(t− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
∫ t

0
S(t− s)f(s, ṽρ(s,ṽs+ϕ̃s)

+ ϕ̃ρ(s,ṽs+ϕ̃s)
, ṽ′(s) + y(s))dω(s)∥2

+4E∥
∫ t

0
S(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))]dη

−
∫ t

0
S(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1[x1 − C(b)ϕ(0)− S(b)ζ

−
∫ b

0
S(b− s)f(s, ṽρ(s,ṽs+ϕ̃s)

+ ϕ̃ρ(s,ṽs+ϕ̃s)
, ṽ′(s) + y(s))dω(s)

−
m∑

k=1

C(b− tk)I
1
k(ṽ(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(ṽ(tk) + ϕ̃(tk))]dη∥2

+4E∥
∑

0<tk<t
C(t− tk)I

1
k(x̃(tk) + ϕ̃(tk))−

∑
0<tk<t

C(t− tk)I
1
k(ṽ(tk) + ϕ̃(tk))∥2

+4E∥
∑

0<tk<t
S(t− tk)I

2
k(x̃(tk) + ϕ̃(tk))−

∑
0<tk<t

S(t− tk)I
2
k(ṽ(tk) + ϕ̃(tk))∥2

:= J1 + J2 + J3 + J4.

From the condition (H2), we get

J1 = 4E∥
∫ t

0
S(t− s)[f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))

−f(s, ṽρ(s,ṽs+ϕ̃s)
+ ϕ̃ρ(s,ṽs+ϕ̃s)

, ṽ′(s) + y(s))]dω(s)∥2

≤ 4N2Tr(Q)
∫ t

0
E∥f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))

−f(s, ṽρ(s,ṽs+ϕ̃s)
+ ϕ̃ρ(s,ṽs+ϕ̃s)

, ṽ′(s) + y(s))∥2Qds

≤ 4N2Tr(Q)
∫ t

0
[2k21E∥x̃ρ(s,x̃s+ϕ̃s)

− ṽρ(s,ṽs+ϕ̃s)
∥2B + 2k22E∥x̃′(s)− ṽ′(s)∥2]ds.

In view of

∥x̃s − ṽs∥B ≤ Kb sup
0≤τ≤s

∥x̃(τ)− ṽ(τ)∥,



610 M. Li & M. Huang

we obtain

J1 ≤ 8N2Tr(Q)b(k21K
2
b ∥x̃− ṽ∥2B′′

h1

+ k22∥z̃ − w̃∥2PC1)

= 8N2Tr(Q)bk21K
2
b ∥x̃− ṽ∥2B′′

h1

+ 8N2Tr(Q)bk22∥z̃ − w̃∥2PC1 .

Similarly, we can obtain

J2 ≤ 4(N
2K2b
α )2E∥[

∫ b

0
S(b− s)f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))dω(s)

−
∫ b

0
S(b− s)f(s, ṽρ(s,ṽs+ϕ̃s)

+ ϕ̃ρ(s,ṽs+ϕ̃s)
, ṽ′(s) + y(s))dω(s)]

+[
m∑

k=1

C(b− tk)I
1
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

C(b− tk)I
1
k(ṽ(tk) + ϕ̃(tk))]

+[
m∑

k=1

S(b− tk)I
2
k(x̃(tk) + ϕ̃(tk))−

m∑
k=1

S(b− tk)I
2
k(ṽ(tk) + ϕ̃(tk))]∥2

≤ 4(N
2K2b
α )2[3Tr(Q)N2bE∥f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))

−f(s, ṽρ(s,ṽs+ϕ̃s)
+ ϕ̃ρ(s,ṽs+ϕ̃s)

, ṽ′(s) + y(s))∥2Q
+3M2

m∑
k=1

E∥I1k(x̃(tk) + ϕ̃(tk))− I1k(ṽ(tk) + ϕ̃(tk))∥2

+3N2
m∑

k=1

E∥I2k(x̃(tk) + ϕ̃(tk))− I2k(ṽ(tk) + ϕ̃(tk))∥2]

≤ 12(N
2K2b
α )2{Tr(Q)N2b[2k21K

2
b ∥x̃− ṽ∥2B′′

h1

+ 2k22∥z̃ − w̃∥2PC1 ]

+M2
m∑

k=1

L(I1k)∥x̃− ṽ∥2B′′
h1

+N2
m∑

k=1

L(I2k)∥x̃− ṽ∥2B′′
h1

}

≤ 12(N
2K2b
α )2[2Tr(Q)N2bk21K

2
b +M2

m∑
k=1

L(I1k) +N2
m∑

k=1

L(I2k)]∥x̃− ṽ∥2B′′
h1

+24Tr(Q)N2bk22(
N2K2b

α )2∥z̃ − w̃∥2PC1 ,

and

J3 ≤ 4M2
m∑

k=1

L(I1k)∥x̃− ṽ∥2B′′
h1

,

J4 ≤ 4N2
m∑

k=1

L(I2k)∥x̃− ṽ∥2B′′
h1

.

Then, we have

E∥Φ1(x̃, z̃)(t)− Φ1(ṽ, w̃)(t)∥2

≤ [8N2Tr(Q)bk21K
2
b + 24N2Tr(Q)bk21K

2
b (

N2K2b
α )2

+12M2(N
2K2b
α )2

m∑
k=1

L(I1k) + 12N2(N
2K2b
α )2

m∑
k=1

L(I2k)

+4M2
m∑

k=1

L(I1k) + 4N2
m∑

k=1

L(I2k)]∥x̃− ṽ∥2B′′
h1

+[8N2Tr(Q)bk22 + 24N2Tr(Q)bk22(
N2K2b

α )2]∥z̃ − w̃∥2PC1

= 4(1 + 3(N
2K2b
α )2)[2N2Tr(Q)bk21K

2
b +M2

m∑
k=1

L(I1k)

+N2
m∑

k=1

L(I2k)]∥x̃− ṽ∥2B′′
h1

+ 8N2Tr(Q)bk22(1 + 3(N
2K2b
α )2)∥z̃ − w̃∥2PC1 .

(3.9)
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Similarly, we have

E∥Φ2(x̃, z̃)(t)− Φ2(ṽ, w̃)(t)∥2

≤ 4E∥
∫ t

0
C(t− s)[f(s, x̃ρ(s,x̃s+ϕ̃s)

+ ϕ̃ρ(s,x̃s+ϕ̃s)
, x̃′(s) + y(s))

−f(s, ṽρ(s,ṽs+ϕ̃s)
+ ϕ̃ρ(s,ṽs+ϕ̃s)

, ṽ′(s) + y(s))]dω(s)∥2

+4E∥
∫ t

0
C(t− η)BB∗S∗(b− η)(αI + Γb

0)
−1{−

∫ b

0
S(b− s)

×[f(s, x̃ρ(s,x̃s+ϕ̃s)
+ ϕ̃ρ(s,x̃s+ϕ̃s)

, x̃′(s) + y(s))

−f(s, ṽρ(s,ṽs+ϕ̃s)
+ ϕ̃ρ(s,ṽs+ϕ̃s)

, ṽ′(s) + y(s))]dω(s)

−
m∑

k=1

C(b− tk)[I
1
k(x̃(tk) + ϕ̃(tk))− I1k(ṽ(tk) + ϕ̃(tk))]

−
m∑

k=1

S(b− tk)[I
2
k(x̃(tk) + ϕ̃(tk))− I2k(ṽ(tk) + ϕ̃(tk))]}dη∥2

+4E∥
m∑

k=1

AS(b− tk)[I
1
k(x̃(tk) + ϕ̃(tk))− I1k(ṽ(tk) + ϕ̃(tk))]∥2

+4E∥
m∑

k=1

C(b− tk)[I
2
k(x̃(tk) + ϕ̃(tk))− I2k(ṽ(tk) + ϕ̃(tk))]∥2

≤ 8M2Tr(Q)b(k21K
2
b ∥x̃− ṽ∥2B′′

h1

+ k22∥z̃ − w̃∥2PC1)

+12(MNK2b
α )2[N2Tr(Q)b(2k21K

2
b ∥x̃− ṽ∥2B′′

h1

+ 2k22∥z̃ − w̃∥2PC1)

+M2
m∑

k=1

L(I1k)∥x̃− ṽ∥2B′′
h1

+N2
m∑

k=1

L(I2k)∥x̃− ṽ∥2B′′
h1

]

+4Ñ2
m∑

k=1

L(I1k)∥x̃− ṽ∥2B′′
h1

+ 4M2
m∑

k=1

L(I2k)∥x̃− ṽ∥2B′′
h1

= [(M2 + 3N2(MNK2b
α )2)(8Tr(Q)bk21K

2
b + 4

m∑
k=1

L(I2k))

+4(Ñ2 + 3M2(MNK2b
α )2)

m∑
k=1

L(I1k)]∥x̃− ṽ∥2B′′
h1

+8Tr(Q)bk22(M
2 + 3N2(MNK2b

α )2)∥z̃ − w̃∥2PC1 .

(3.10)

The above inequalities (3.9) and (3.10) and the assumption max{ϕ1, ϕ2} < 1 imply
that Φ is a contraction mapping. Hence there exists a unique fixed point (x̃, z̃) ∈ Q.

Then the function x(·) = x̃(·)+ϕ̃(·) ∈ B′
h2

is a mild solution of (1.1). This completes
the proof.

4. Approximate controllability

In this section, we compare approximate controllability of the semilinear system
(1.1) with approximate controllability of the associated linear system. For this
reason, we consider the linear system

x′′(t) = Ax(t) +Bu(t), t ∈ J, (4.1)

with initial condition

x(0) = ϕ(0),

x′(0) = ζ.
(4.2)
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First, we show the definition of the approximate controllability of systems (4.1)-
(4.2).

Definition 4.1. Systems (4.1)-(4.2) are said to be approximately controllable on
J if D = H × H, where D = {x(b, ϕ(0), ζ, u), y(b, ϕ(0), ζ, u) : u ∈ LF

2 (J, U)},
y(·, ϕ(0), ζ, u) = x′(·, ϕ(0), ζ, u) and x(·, ϕ(0), ζ, u) is a mild solution of (4.1)-(4.2).

The following result has been established by Fattorini [7] and Triggiani [23,24].
We introduce the sets

D∞(A) =
∞∩

n=1
D(An),

U∞ = {u ∈ U : Bu ∈ D∞(A)},

X0 =
∪

t>0 T (t)(X),

U0 = {u ∈ U : Bu ∈ X0},

where T (t) is the analytic semigroup generated by A [1,8]. It is clear that U0 ⊆ U∞.
We are on the position to give the approximate controllability of (4.1)-(4.2),

that is

Theorem 4.1. (see [7, 23,24])
(i) Systems (4.1)-(4.2) are approximately controllable on J if, and only if, x∗, y∗ ∈

H∗ are such that B∗S(t)x∗ +B∗C(t)∗y∗ = 0, for t ∈ J , then x∗ = y∗ = 0.
(ii) If Sp{AnBU∞ : n ≥ 0} is dense in H, then systems (4.1)-(4.2) are approx-

imately controllable on J .
(iii) If BU0 is dense in BU and system (4.1)-(4.2) are approximately controllable

on J , then Sp{AnBU0 : n ≥ 0} is dense in H.

Next, we discuss the approximate controllability of the semilinear system (1.1).
Before stating and proving our main result, we give the definition of approximate
controllability firstly.

Definition 4.2. System (1.1) is said to be approximately controllable on J if
R(f, ϕ, ζ) = H × H, where R(f, ϕ, ζ) = {x(b, ϕ, ζ, u), y(b, ϕ, ζ, u) : u ∈ LF

2 (J, U)},
y(·, ϕ, ζ, u) = x′(·, ϕ, ζ, u) and x(·, ϕ, ζ, u) is a mild solution of (1.1).

Now, under the above conditions, we prove the following approximately control-
lable theorem.

Theorem 4.2. Assume that BU0 is dense in BU and the conditions (H1)-(H4) are
satisfied. If systems (4.1)-(4.2) are approximately controllable on J , then system
(1.1) is approximately controllable on J .

Proof. It follows by the approximately controllability of (4.1)-(4.2) on J , we ob-
tain (H1) is satisfied. Because the hypotheses of Theorem 3.1 are fulfilled, for each
u ∈ LF

2 (J, U), there is a unique mild solution of (1.1). Let (x̃, z̃) be a fixed point

of Φ in Q. x(·) = x̃(·) + ϕ̃(·) is the mild solution of (1.1) on J . By the conditions
(H2) and the proof of Theorem 3.1, we know

E∥f(t, xρ(t,xt), x
′(t))∥2Q ≤ 2k21r1 + 2k22r2 + l2f .

We fix z = (z1, z2) ∈ H×H and take 0 < bn < b such that bn → b as n→ ∞. Let
xn = x(bn, ϕ, ζ, 0) and yn = y(bn, ϕ, ζ, 0). It follows from the properties established
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in Section 2 that xn ∈ E. In addition, it follows from Theorem 4.1 that system
(4.1) with initial conditions x(0) = xn and x′(0) = yn is approximate controllable
on [0, b−bn]. Consequently, there exists a control function wn(·) ∈ LF

p ([0, b−bn], U)
such that∫ b−bn

0
S(b− bn − s)Bwn(s)ds+ C(b− bn)xn + S(b− bn)yn − z1

=
∫ b

bn
S(b− s)Bvn(s)ds+ C(b− bn)xn + S(b− bn)yn − z1 → 0, n→ ∞

and ∫ b−bn
0

C(b− bn − s)Bwn(s)ds+AS(b− bn)xn + C(b− bn)yn − z2

=
∫ b

bn
C(b− s)Bvn(s)ds+AS(b− bn)xn + C(b− bn)yn − z2 → 0, n→ ∞,

where vn(s) = wn(s−bn). LF
p ([0, b−bn], U) denotes the closed subspace of Lp([0, b−

bn], U) consisting of F-adapted processes. We define

un(s) =

0, 0 ≤ s ≤ bn,

vn(s), bn < s ≤ b.

Next, we denote the abbreviate notation with x(·) = x(·, ϕ, ζ, un) and y(·) =
y(·, ϕ, ζ, un). By the uniqueness of solutions, we have

xn = C(bn)ϕ(0) + S(bn)ζ +
∫ bn
0
S(bn − s)f(s, xρ(s,xs), x

′(s))dω(s)

+
∑

0<tk<bn

C(bn − tk)I
1
k(x(tk)) +

∑
0<tk<bn

S(bn − tk)I
2
k(x(tk)),

yn = AS(bn)ϕ(0) + C(bn)ζ +
∫ bn
0
C(bn − s)f(s, xρ(s,xs), x

′(s))dω(s)

+
∑

0<tk<bn

AS(bn − tk)I
1
k(x(tk)) +

∑
0<tk<bn

C(bn − tk)I
2
k(x(tk)).

Combing these expressions with (2.1) and (2.2), we obtain

x(b, ϕ, ζ, un)

= C(b)ϕ(0) + S(b)ζ +
∫ b

0
S(b− s)Bun(s)ds+

∫ b

0
S(b− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
m∑

k=1

C(b− tk)I
1
k(x(tk)) +

m∑
k=1

S(b− tk)I
2
k(x(tk))

= C(b)ϕ(0) + S(b)ζ +
∫ b

bn
S(b− s)Bvn(s)ds+

∫ bn
0
S(b− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
∫ b

bn
S(b− s)f(s, xρ(s,xs), x

′(s))dω(s) +
m∑

k=1

C(b− tk)I
1
k(x(tk))

+
m∑

k=1

S(b− tk)I
2
k(x(tk))

= C(b)ϕ(0) + S(b)ζ +
∫ b

bn
S(b− s)Bvn(s)ds

+S(b− bn)
∫ bn
0
C(bn − s)f(s, xρ(s,xs), x

′(s))dω(s)

+C(b− bn)
∫ bn
0
S(bn − s)f(s, xρ(s,xs), x

′(s))dω(s)

+
∫ b

bn
S(b− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
m∑

k=1

C(b− tk)I
1
k(x(tk)) +

m∑
k=1

S(b− tk)I
2
k(x(tk))

= C(b)ϕ(0) + S(b)ζ +
∫ b

bn
S(b− s)Bvn(s)ds+

∫ b

bn
S(b− s)f(s, xρ(s,xs), x

′(s))dω(s)
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+
m∑

k=1

C(b− tk)I
1
k(x(tk)) +

m∑
k=1

S(b− tk)I
2
k(x(tk)) + S(b− bn)[yn −AS(bn)ϕ(0)

−C(bn)ζ −
∑

0<tk<bn

AS(bn − tk)I
1
k(x(tk))−

∑
0<tk<bn

C(bn − tk)I
2
k(x(tk))]

+C(b− bn)[xn − C(bn)ϕ(0)− S(bn)ζ −
∑

0<tk<bn

C(bn − tk)I
1
k(x(tk))

−
∑

0<tk<bn

S(bn − tk)I
2
k(x(tk))]

=
∫ b

bn
S(b− s)Bvn(s)ds+

∫ b

bn
S(b− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
m∑

k=1

C(b− tk)I
1
k(x(tk)) +

m∑
k=1

S(b− tk)I
2
k(x(tk))

+S(b− bn)[yn −
∑

0<tk<bn

AS(bn − tk)I
1
k(x(tk))−

∑
0<tk<bn

C(bn − tk)I
2
k(x(tk))]

+C(b− bn)[xn −
∑

0<tk<bn

C(bn − tk)I
1
k(x(tk))−

∑
0<tk<bn

S(bn − tk)I
2
k(x(tk))].

Because the function f is bounded on Q, we infer that
∫ b

bn
S(b− s)f(s, xρ(s,xs),

x′(s))dω(s) → 0, as n→ ∞. Furthermore, from (2.1) and (2.2), all the summation
terms could be canceled out as n → ∞. Thus we obtain x(b, ϕ, ζ, un) → z1 as
n→ ∞.

Similarly,

y(b, ϕ, ζ, un)

= AS(b)ϕ(0) + C(b)ζ +
∫ b

0
C(b− s)Bun(s)ds+

∫ b

0
C(b− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
m∑

k=1

AS(b− tk)I
1
k(x(tk)) +

m∑
k=1

C(b− tk)I
2
k(x(tk))

= AS(b)ϕ(0) + C(b)ζ +
∫ b

bn
C(b− s)Bvn(s)ds+

∫ b

bn
C(b− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
m∑

k=1

AS(b− tk)I
1
k(x(tk)) +

m∑
k=1

C(b− tk)I
2
k(x(tk))

+C(b− bn)[yn −AS(bn)ϕ(0)− C(bn)ζ −
∑

0<tk<bn

AS(bn − tk)I
1
k(x(tk))

−
∑

0<tk<bn

C(bn − tk)I
2
k(x(tk))] +AS(b− bn)[xn − C(bn)ϕ(0)− S(bn)ζ

−
∑

0<tk<bn

C(bn − tk)I
1
k(x(tk))−

∑
0<tk<bn

S(bn − tk)I
2
k(x(tk))]

=
∫ b

bn
C(b− s)Bvn(s)ds+

∫ b

bn
C(b− s)f(s, xρ(s,xs), x

′(s))dω(s)

+
m∑

k=1

AS(b− tk)I
1
k(x(tk)) +

m∑
k=1

C(b− tk)I
2
k(x(tk)) + C(b− bn)[yn

−
∑

0<tk<bn

AS(bn − tk)I
1
k(x(tk))−

∑
0<tk<bn

C(bn − tk)I
2
k(x(tk))] +AS(b− bn)[xn

−
∑

0<tk<bn

C(bn − tk)I
1
k(x(tk))−

∑
0<tk<bn

S(bn − tk)I
2
k(x(tk))].

Since f is bounded, we infer that
∫ b

bn
C(b−s)f(s, xρ(s,xs), x

′(s))dω(s) → 0, when

n → ∞. Again, as in x(b, ϕ, ζ, un), from (2.1) and (2.2), all the summation terms
could be canceled out as n→ ∞. Thus, y(b, ϕ, ζ, un) → z2 as n→ ∞.

This implies that z ∈ R(f, ϕ, ζ). Because z was arbitrarily chosen, this completes
the proof.
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5. Example

In this section, we consider an application of the theory developed in the previous
section. Let H = L2([0, π]). We choose the space B = PC0 × L2(g,H) constructed

in [10], which satisfies the axioms (A) and (B) with H̃ = 1, M(t) = ϱ(−t) 1
2 and

K(t) = 1 + (
∫ 0

−t
g(θ)dθ)

1
2 for t ≥ 0.

Let A : H → H be an operator defined by Af = f ′′ with domain D(A) = {f ∈
H : f and f ′ are absolutely continuous, f ′′ ∈ H, f(0) = f(π) = 0}. It is well known
that A is the infinitesimal generator of a strongly continuous cosine family of oper-
ators on H. The spectrum of A consists of the eigenvalues −n2 for n ∈ N , which

associated eigenvectors zn(ξ) =
√

2
π sin(nξ). Furthermore, the set {zn, n ∈ N} is

an orthonormal basis of H and the following properties hold:

(a) If f ∈ D(A), then Af = −
∞∑

n=1
n2⟨f, zn⟩zn.

(b) For x ∈ H, C(t)x =
∞∑

n=1
cos(nt)⟨x, zn⟩zn and S(t)x =

∞∑
n=1

sin(nt)
n ⟨x, zn⟩zn. Con-

sequently, ∥C(t)∥ = ∥S(t)∥ ≤ 1 for all t ∈ R.
(c) If Φ is the group of translations on H defined by Φ(t)x(ξ) = x̃(ξ + t), where x̃
is the extension of x with period 2π, then C(t) = 1

2 (Φ(t) + Φ(−t)) and A = B2,
where B is the generator of Φ and E = {x ∈ H1([0, π]) : x(0) = x(π) = 0} (see [8]
for details).

Consider the impulsive stochastic partial differential equation

d[∂z(t,x)∂t ] = [∂
2z(t,x)
∂x2 + q(x)u(t)]dt+ [

∫ t

−∞ c(s− t)z(s− σ(∥z(t, x)∥), x)ds

+∂z(t,x)
∂t ]dα(t), x ∈ [0, π], t ∈ J = [0, b], t ̸= tk,

z(t, 0) = z(t, π) = 0, t ∈ J,

△z(tk)(x) =
∫ π

0
K1(tk, x, y)z(tk, y)dy, k = 1, 2, · · · ,m,

△z′(tk)(x) =
∫ π

0
K2(tk, x, y)z(tk, y)dy, k = 1, 2, · · · ,m,

z(τ, x) = ϕ(τ, x), τ ∈ (−∞, 0],

∂z(0,x)
∂t = ψ(x),

(5.1)

where we assume ϕ ∈ B, with the identifications ϕ(τ)(x) = ϕ(τ, x), (τ, x) ∈ (−∞, 0]×
[0, π]. 0 = t0 < t1 < · · · < tm < tm+1 = b. σ : [0,∞) → [0,∞), is continuously
differentiable, and α(t) is a one-dimensional standard Brownian motion. We as-

sume that the function q can be expressed in the form q =
∞∑

n=1
e−n2

qnzn, where

qn ̸= 0 for all n ∈ N and
∞∑

n=1
q2n < ∞. We define B : R → H by Bu = qu. Then

∥B∥ ≤ K =

√
∞∑

n=1
e−2n2q2n. Let z(t)(y) = z(t, y). Assume that the following condi-

tions hold: (i) c(t) is measurable and continuous with finite Kf = (
∫ 0

−∞
c2(θ)
g(θ) dθ)

1
2 .

(ii) Ki(t, x, y) : J → L2(△), △ = [0, π]×[0, π], lik :=
∫ π

0

∫ π

0
∥Ki(tk, x, y)∥2dxdy, i =

1, 2, k = 1, 2, · · · ,m.
The problem (5.1) can be modeled as the abstract impulsive Cauchy problem
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(1.1) by defining

f(t, ϕ, ψ)(x) =
∫ 0

−∞ c(θ)ϕ(θ, x)dθ + ψ(x),

ρ(θ, ϕ) = θ − σ(∥ϕ(0)∥),

I1k(w)(x) =
∫ π

0
K1(tk, x, y)w(y)dy, w ∈ H,

I2k(w)(x) =
∫ π

0
K2(tk, x, y)w(y)dy, w ∈ H.

Define

Γb
t =

∫ b

t
S(b− s)BB∗S∗(b− s)ds.

We claim that B∗S∗(b − s)x∗ + B∗C∗(b − s)y∗ = 0, s ∈ J implies that x∗ =
y∗ = 0. Indeed

B∗S∗(b− s)x∗ +B∗C∗(b− s)y∗ = 0

=⇒
∞∑

n=1
e−n2

qn⟨zn,
∞∑
k=1

sin k(b−s)
k ⟨x∗, zk⟩zk⟩

+
∞∑

n=1
e−n2

qn⟨zn,
∞∑
k=1

cos k(b− s)⟨y∗, zk⟩zk⟩ = 0

=⇒
∞∑

n=1
e−n2

qn
sinn(b−s)

n ⟨x∗, zn⟩+
∞∑

n=1
e−n2

qn cosn(b− s)⟨y∗, zn⟩ = 0

=⇒ x∗ = y∗ = 0.

It follows from Theorem 4.1 that the linear systems (4.1)-(4.2) are approximately
controllable on J . Then the operator α(αI + Γb

t)
−1 → 0 in the strong operator

topology as α→ 0+ (see [4, 23,24]). So assumption (H1) is satisfied.
Under these conditions,

∥f(t, ϕ, ψ)∥2L2 =
∫ π

0
[
∫ 0

−∞ c(θ)ϕ(θ, x)dθ + ψ(x)]2dx

≤ 2
∫ π

0
[
∫ 0

−∞ c(θ)ϕ(θ, x)dθ]2dx+ 2
∫ π

0
∥ψ(x)∥2dx

= 2
∫ π

0
[
∫ 0

−∞
c(θ)

g
1
2 (θ)

g
1
2 (θ)ϕ(θ, x)dθ]2dx+ 2∥ψ∥2L2

≤ 2
∫ π

0
[
∫ 0

−∞
c2(θ)
g(θ) dθ ·

∫ 0

−∞ g(θ)∥ϕ(θ, x)∥2dθ]dx+ 2∥ψ∥2L2

= 2
∫ 0

−∞
c2(θ)
g(θ) dθ ·

∫ 0

−∞ g(θ)
∫ π

0
∥ϕ(θ, x)∥2dxdθ + 2∥ψ∥2L2

≤ 2K2
f∥ϕ∥2B + 2∥ψ∥2L2

≤ 2K2(∥ϕ∥2B + ∥ψ∥2L2),

where K2 = max{1,K2
f} and which implies that the function f satisfies the following

condition

∥f(t, ϕ1, ψ1)− f(t, ϕ2, ψ2)∥L2

= {
∫ π

0
[
∫ 0

−∞ c(θ)ϕ1(θ, x)dθ + ψ1(x)− (
∫ 0

−∞ c(θ)ϕ2(θ, x)dθ + ψ2(x))]
2dx} 1

2

= {
∫ π

0
[
∫ 0

−∞ c(θ)(ϕ1(θ, x)− ϕ2(θ, x))dθ + (ψ1(x)− ψ2(x))]
2dx} 1

2

≤
√
2K2

f∥ϕ1 − ϕ2∥2B + 2∥ψ1 − ψ2∥2L2

≤
√
2K(∥ϕ1 − ϕ2∥B + ∥ψ1 − ψ2∥L2).
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Hence, (H2) is satisfied.
Similarly,

∥Ii

k(w1)− Iik(w2)∥2L2

=
∫ π

0
[
∫ π

0
Ki(tk, x, y)w1(y)dy −

∫ π

0
Ki(tk, x, y)w2(y)dy]

2dx

=
∫ π

0
[
∫ π

0
Ki(tk, x, y)(w1(y)− w2(y))dy]

2dx

=
∫ π

0
[
∫ π

0
∥Ki(tk, x, y)∥2dy ·

∫ π

0
∥w1(y)− w2(y)∥2dy]dx

≤ lik∥w1 − w2∥2L2 .

Hence (H3) is satisfied.
Moreover, the function t → AS(t) is uniformly continuous into L(E,H) and

∥AS(t)∥L(E,H) ≤ 1 for t ∈ J .
Let

ϕ1 = ϕ2 = 64K2Tr(Q)b(1 + 6(K
2b
α )2){2[1 + (

∫ 0

−b
g(θ)dθ)

1
2 ]2 + 1}

+8(1 + 6(K
2b
α )2)[

m∑
k=1

l1k +
m∑

k=1

l2k].

The next proposition is a consequence of Theorem 4.2.

Proposition 5.1. Assume ϕ1 < 1. Then the system (5.1) is approximate control-
lability.

6. Conclusion

In this paper, we discussed approximate controllability results for the second-order
impulsive stochastic differential equations with state-dependent delay by using phase
space axioms. We have proved the result without compactness of family of cosine
operators. Several explicit sufficient conditions of such systems have been estab-
lished by utilizing the fixed point strategy. Finally, an example is illustrated for the
effectiveness of the approximate controllability results.

For the future research, we will consider the control problem for second-order
stochastic functional differential equations with infinite delay in Lp space by using
fundamental solution theory. By this manner, we will show some interesting results
for the system involving a linear term (non-uniformly bounded), which has a wide
practical background such as some heat conduction models with fading memory.
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