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Abstract In this paper, we study a general class of impulsive partial stochas-
tic differential equations with infinite delay and pseudo almost periodic coeffi-
cients in Hilbert spaces. Firstly, a more appropriate concept of pseudo almost
periodic in distribution for stochastic processes of infinite class is introduced.
Secondly, the existence of pseudo almost periodic in distribution mild solution-
s is investigated by utilizing the interpolation theory, the stochastic analysis
techniques and fixed point theorem. The existence of optimal mild solutions
of the systems is also proved. Finally, an example is provided to show the
effectiveness of the theoretical results.
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1. Introduction

The concept of the pseudo almost periodicity, which is a natural generalization
of almost periodicity and finds its application in various fields. For instance, the
existence of pseudo almost periodic solutions are among the most attractive topics
in qualitative theory of differential equations with finite and infinite delay (see
[7, 9, 11, 29]). On the other hand, it should be pointed out that there has been an
intense interest in studying several extensions of this concept such as pseudo almost
periodic stochastic processes. The study of the existence of pseudo almost periodic
solutions is one of the most attractive topics in the qualitative theory of stochastic
differential equations in Hilbert spaces due to both its mathematical interest and
the applications in physics; see [2, 3, 8, 23,28] and the references therein.

The theory of impulsive differential equations has been an object of increas-
ing interest because of its wide applicability in biology, medicine, and in many
other fields [22]. Therefore, it seems interesting to study the existence and stabil-
ity of pseudo almost periodic solutions to abstract impulsive differential equations
(see [5, 16,25]). However, besides impulse effects and delays, stochastic effects like-

†the corresponding author. Email address: yanzuomao@163.com(Z. Yan)
1Department of Mathematics, Hexi University, Zhangye, Gansu 734000, China
∗The authors were supported by National Natural Science Foundation of China
(11461019).

http://dx.doi.org/10.11948/2018.1396


Pseudo almost periodic . . . 1397

wise exist in real systems. In recent years, several interesting results on impulsive
partial stochastic systems have been reported in [18, 20, 21, 27] and the references
therein. Further, the authors in [26] established the existence and exponential stabil-
ity of p-mean pseudo almost periodic solutions for impulsive nonautonomous partial
stochastic evolution equations. However, as indicated in [?, 14, 19], it appears that
almost periodicity in distribution sense is a more appropriate concept relatively to
solutions of stochastic differential equations. Recently, the authors in [1,24] studied
pseudo almost automorphic and pseudo almost periodic in distribution solutions of
stochastic differential equations in a Hilbert space.

In this paper, we study the existence of pseudo almost periodic in distribu-
tion mild solutions and optimal mild solutions to the following impulsive partial
stochastic differential equations with infinite delay:

d[x(t)− h(t, xt)] = [Ax(t) + g(t, xt)]dt+ f(t, xt)dW (t), t ∈ R, t 6= ti, i ∈ Z, (1.1)

∆x(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i ∈ Z, (1.2)

where A is the infinitesimal generator of an uniformly exponentially stable semi-
group of linear operators on a Hilbert space Lp(P,H); the coefficients h, g : R×B →
Lp(P,H) and f : R × B → Lp(P, L0

2) are appropriate functions, B is a abstract
phase space defined in the next section. Also, the history xt : (−∞, 0]→ Lp(P,H),
defined by xt(θ) = x(t+ θ) for each θ ∈ (−∞, 0]. W (t) is a two-sided standard one-
dimensional Brownian motion defined on the filtered probability space (Ω,F ,P,Ft),
where Ft = σ{W (u)−W (v);u, v ≤ t}. The functions Ii, i ∈ Z, satisfy suitable con-
ditions which will be established later. The notations x(t+i ), x(t−i ) represent the
right-hand side and the left-hand side limits of x(·) at ti, respectively.

To the best of our knowledge, the existence of pseudo almost periodic in dis-
tribution mild solutions and optimal mild solutions to impulsive partial stochastic
functional differential equations, especially, impulsive partial neutral differential e-
quations with infinite delay, is an untreated topic and this is the main motivation of
the present paper. In this work, we will introduce the concept of piecewise pseudo
almost periodic in distribution for stochastic processes, which, in turn generalizes all
the above-mentioned concepts. Then, we study and obtain the existence of pseudo
almost periodic in distribution mild solutions to for nonlinear impulsive stochastic
system by using the interpolation theory, the stochastic analysis techniques and the
Krasnoselskii-Schaefer type fixed point theorem. Moreover, we investigate the exis-
tence of optimal mild solutions of the system with infinite delay and pseudo almost
periodic coefficients. The known results appeared in [?, 14, 19] are generalized to
the impulsive stochastic evolution equations settings and the case of infinite delay
conditions.

The paper is organized as follows. In Section 2, we introduce some notations
and necessary preliminaries. In Section 3, we give the existence of pseudo almost
periodic in distribution mild solutions. In Section 4, we the existence of optimal
mild solutions is proved. Finally, an example is given to illustrate our results in
Section 5.

2. Preliminaries

Throughout the paper, N,Z and R stand for the set of natural numbers, integers,
real numbers, respectively. We assume that (H, ‖ · ‖), (K, ‖ · ‖) are real separable
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Hilbert spaces and (Ω,F ,P) is supposed to be a filtered complete probability space.
The notation Lp(P,H), for p ≥ 1 stands for the space of all H-valued random vari-
ables x such that E‖x‖p =

∫
Ω
‖x‖pdP <∞. Then Lp(P,H) is a Hilbert space when

it is equipped with its natural norm ‖ · ‖p defined by ‖x ‖p= (
∫

Ω
E‖x‖pdP)1/p <∞

for each x ∈ Lp(P,H). Let C(R, Lp(P,H)), BC(R, Lp(P,H)) stand for the collection
of all continuous functions from R into Lp(P,H), the Banach space of all bounded
continuous functions from R into Lp(P,H), equipped with the sup norm, respec-
tively. We let L(K,H) be the space of all linear bounded operators from K into
H, equipped with the usual operator norm ‖ · ‖L(K,H); in particular, this is sim-
ply denoted by L(H) when K = H. W (t) is a two-sided standard one-dimensional
Brownian motion defined on the filtered probability space (Ω,F ,P,Ft) with covari-
ance operator Q, that is E〈W (t), x〉K〈W (s), y〉K = (t ∧ s)〈Qx, y〉K, for all x, y ∈ K,
where Q is a positive, self-adjoint, trace class operator on K. Furthermore, L0

2(K,H)
denotes the space of all Q-Hilbert-Schmidt operators from K to H with the norm
‖ψ‖2

L0
2

= Tr(ψQψ∗) <∞ for any ψ ∈ L(K,H).

Definition 2.1 ( [2]). A stochastic process x : R→ Lp(P,H) is said to be bounded
if there exists a constant M0 > 0 such that

E‖x(t)‖p ≤M0, t ∈ R.

Definition 2.2 ( [2]). A stochastic process x : R → Lp(P,H) is said to be contin-
uous provided that for any s ∈ R,

lim
t→s

E ‖ x(t)− x(s) ‖p= 0.

Let T be the set consisting of all real sequences {ti}i∈Z such that ς = infi∈Z(ti+1−
ti) > 0, limi→∞ ti =∞ and limi→−∞ ti = −∞. For {ti}i∈Z ∈ T, let PC(R, Lp(P,H))
be the space consisting of all bounded piecewise continuous processes f : R →
Lp(P,H) such that f(·) is continuous at t for any t /∈ {ti}i∈Z and f(ti) = f(t−i )
for all i ∈ Z; let PC(R × Lp(P,K), Lp(P,H)) be the space formed by all piecewise
continuous processes f : R × Lp(P,K) → Lp(P,H) such that for any x ∈ Lp(P,K),
f(·, x) ∈ PC(R, Lp(P,H)) and for any t ∈ R, f(t, ·) is continuous at x ∈ Lp(P,K).

Definition 2.3 ( [2]). A stochastic process f ∈ C(R, Lp(P,H)) is said to be p-mean
almost periodic if for every sequence of real numbers {s′n}, there exist a subsequence
{sn} and a process f̃ ∈ C(R, Lp(P,H)) such that

lim
n→∞

E ‖ f(t+ sn)− f̃(t) ‖p= 0

for all t ∈ R. Denote by AP (R, Lp(P,H)) the set of such processes.

Definition 2.4 ( [22]). A sequence {xk} is called p-mean almost periodic if for
every sequence of integer numbers {α′n}, there exist a subsequence {αn} and a
sequence {x̃k} such that

lim
n→∞

E ‖ xk+αn − x̃k ‖p= 0

holds for all k ∈ N. Denote by AP (Z, Lp(P,H)) the set of such sequences.

Define l∞(Z, Lp(P,H)) = {x : Z → Lp(P,H) : ‖x‖ = supk∈Z(E‖x(k)‖p)1/p <
∞}, and

PAP0(Z, Lp(P,H)) =

{
x ∈ l∞(Z, Lp(P,H)) : lim

k→∞

1

2k

k∑
j=−k

E ‖ x(j) ‖p= 0

}
.
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Definition 2.5. A sequence {xk}k∈Z ∈ l∞(Z, Lp(P,H)) is called p-mean pseudo al-
most periodic if xk = x1

k+x2
k, where x1

k ∈ AP (Z, Lp(P,H)), x2
k ∈ PAP0(Z, Lp(P,H)).

Denote by PAP (Z, Lp(P,H)) the set of such sequences.

Definition 2.6 (Compare with [22]). For {ti}i∈Z ∈ T, the stochastic process f ∈
PC(R, Lp(P,H)) is said to be p-mean piecewise almost periodic if the following
conditions are fulfilled:

(i) {tji = ti+j − ti}, j ∈ Z, is equipotentially almost periodic, that is, for ev-
ery sequence of integer numbers {α′n}, there exist a subsequence {αn} and a
sequence {t̃i} such that limn→∞ |ti+αn − ti − t̃i| = 0 for all i ∈ Z.

(ii) For any ε > 0, there exists a positive number δ̃ = δ̃(ε) such that if the points
t′ and t′′ belong to a same interval of continuity of f and |t′ − t′′| < δ̃, then
E ‖ f(t′)− f(t′′) ‖p< ε.

(iii) For every sequence of real numbers {s′n}, there exist a subsequence {sn} and
a process f̃ ∈ C(R, Lp(P,H)) such that

lim
n→∞

E ‖ f(t+ sn)− f̃(t) ‖p= 0

for all t ∈ R satisfying the condition |t− ti| > ε for any ε > 0, i ∈ Z.
We denote by APT (R, Lp(P,H)) the collection of all the p-mean piecewise almost

periodic functions. Obviously, the space APT (R, Lp(P,H)) endowed with the sup
norm defined by ‖ f ‖∞= (supt∈RE ‖ f(t) ‖p)1/p for any f ∈ APT (R, Lp(P,H)) is

a Banach space. Throughout the rest of this paper, we always assume that {tji} are
equipotentially almost periodic. Let UPC(R, Lp(P,H)) be the space of all stochastic
functions f ∈ PC(R, Lp(P,H)) such that f satisfies the condition (ii) in Definition
2.6

Definition 2.7 (Compare with [22]). The stochastic process f ∈ PC(R×Lp(P,K),
Lp(P,H)) is said to be p-mean piecewise almost periodic in t ∈ R uniform in x ∈
Lp(P,K) if for every sequence of real numbers {s′n}, there exist a subsequence {sn}
and a process f̃ ∈ C(R× Lp(P,K), Lp(P,H)) such that

lim
n→∞

E ‖ f(t+ sn, x)− f̃(t, x) ‖p= 0

for every bounded or compact set K ⊂ Lp(P,K), x ∈ K, and t ∈ R satisfying
|t− ti| > ε for any ε > 0, i ∈ Z. Denote by APT (R× Lp(P,K), Lp(P,H)) the set of
all such processes.

We need to introduce the new space of functions defined for each q > 0 by

PC0
T (R, Lp(P,H), q) =

{
f ∈ PC(R, Lp(P,H)) : lim

t→∞

(
sup

θ∈[t−q,t]
E‖f(θ)‖p

)
= 0
}
,

PAP 0
T (R, Lp(P,H), q)=

{
f ∈PC(R, Lp(P,H)) : lim

r→∞

1

2r

∫ r

−r

(
sup

θ∈[t−q,t]
E‖f(θ)‖p

)
dt=0

}
,

PAP 0
T (R× Lp(P,K), Lp(P,H), q)

=

{
f ∈ PC(R× Lp(P,K), Lp(P,H)) : lim

r→∞

1

2r

∫ r

−r

(
sup

θ∈[t−q,t]
E ‖ f(θ, x) ‖p

)
dt = 0

uniformly with respect to x ∈ K,

where K is an arbitrary compact subset of Lp(P,K)

}
,
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where in both cases the limit (as r →∞) is uniform in compact subset of Lp(P,K).
Now, we recall the definition of fading memory space (phase space) B axiomat-

ically presented in [10]. Let B denote the vector space of functions xt : (−∞, 0] →
Lp(P,H) defined as xt(s) = x(t + s) for s ∈ R−, endowed with a seminorm de-
noted by ‖ · ‖B . A Banach space (B, ‖ · ‖B) which consists of such functions
ϕ : (−∞, 0]→ Lp(P,H) is called a fading memory space, if it satisfies the following
axioms due to Hale and Kato (see e.g., in [10]).

(A) If x : (−∞, τ + b]→ Lp(P,H) with b > 0, τ ∈ R is continuous on [τ, τ + b] and
xτ ∈ B, then for every t ∈ [τ, τ + b] the following conditions hold:

(i) xt is in B;

(ii) ‖ x(t) ‖≤ H̃ ‖ xt ‖B;

(iii) ‖ xt ‖B≤ K̃(t − τ) sup{‖ x(s) ‖: τ ≤ s ≤ t} + M̃(t − τ) ‖ xτ ‖B, where
H̃ ≥ 0 is a constant; K̃, M̃ : [0,∞)→ [1,∞), K̃ is continuous and M̃ is
locally bounded, and H̃, K̃, M̃ are independent of x(·).

(B) For the function x(·) in (A), xt is a B-valued function on R.
(C) The space B is complete.

(D) If {ξn}n∈N is a sequence of continuous functions with compact support de-
fined from (−∞, 0] into Lp(P,H), which converges to ξ uniformly on compact
subsets of (−∞, 0] and if {ξn}n∈N is a cauchy sequence in B, then ξ ∈ B and
ξn → ξ in B.

Definition 2.8 ( [12]). Let S(t) : B → B be a C0-semigroup defined by S(t)ξ(θ) =
ξ(0) on [−t, 0] and S(t)ξ(θ) = ξ(t + θ) on [−∞,−t]. The phase space B is called a
fading memory space if ‖ S(t)ξ ‖B→ 0 as t→∞ for each ξ ∈ B with ξ(0) = 0.

Remark 2.1 ( [12]). By axiom (D), there exists a constant K > 0 such that
‖ ξ ‖B≤ K supθ≤0 ‖ ξ(θ) ‖ for every ξ ∈ B bounded continuous. Moreover, if B
is a fading memory, we assume that max{K̃(t), M̃(t)} ≤ K0 for t ≥ 0. Further, it
should be mentioned that the phase B is a uniform fading memory space if and only
if axiom (D) holds, the function K̃(t) is bounded and limt→∞M̃(t) = 0 .

The next result is a consequence of the phase space axioms.

Lemma 2.1. Let x : R→ Lp(P,H) be an Ft-adapted measurable process such that
for t ≥ τ the Fτ -adapted process xτ = ϕ ∈ L0

2(Ω,B), then

‖ xs ‖B≤ K0[E ‖ ϕ ‖B + sup
s∈R

E ‖ x(s) ‖].

Similar to [7], one has.

Lemma 2.2. The spaces PAP 0
T (R, Lp(P,H), q) and PAP 0

T (R×Lp(P,K), Lp(P,H), q)
endowed with the uniform convergence topology are Banach spaces.

Definition 2.9. A function f ∈ PC(R, Lp(P,H)) is said to be p-mean piecewise
pseudo almost periodic if it can be decomposed as f = f1 + f2, where f1 ∈
APT (R, Lp(P,H)) and f2 ∈ PAP 0

T (R, Lp(P,H), q).Denoted by PAPT (R, Lp(P,H), q)
the set of all such functions.
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PAPT (R, Lp(P,H), q) is a Banach space with the sup norm ‖ · ‖∞ .
Similar to [29], one has

Remark 2.2. (i) PAP 0
T (R, Lp(P,H), q) is a translation invariant set of PC(R, Lp(P,

H)). (ii) PC0
T (R, Lp(P,H), q) ⊂ PAP 0

T (R, Lp(P,H), q).

Lemma 2.3. Let {fn}n∈N ⊂ PAP 0
T (R, Lp(P,H), q) be a sequence of functions. If

fn converges uniformly to f, then f ∈ PAP 0
T (R, Lp(P,H), q).

One can refer to Lemma 2.5 in [7] for the proof of Lemma 2.3.

Definition 2.10. A function f ∈ PC(R×Lp(P,K), Lp(P,H)) is said to be p-mean
piecewise pseudo almost periodic if it can be decomposed as f = f1 + f2, where
f1 ∈ APT (R× Lp(P,K), Lp(P,H)) and f2 ∈ PAP 0

T (R× Lp(P,K), Lp(P,H), q).

Denoted by PAPT (R× Lp(P,K), Lp(P,H), q) the set of all such functions.
Let P(H) be the space of all Borel probability measures on H endowed with the

metric:

dBL(µ, ν) := sup

{∣∣∣∣ ∫ fdµ−
∫
fdν

∣∣∣∣ :‖ f ‖BL≤ 1

}
, µ, ν ∈ P(H),

where f is Lipschitz continuous real-valued function on H with the norm

‖ f ‖BL= max{‖ f ‖L, ‖ f ‖∞}, ‖ f ‖L= sup
x 6=y

|f(x)− f(y)|
‖ x− y ‖

, ‖ f ‖∞= sup
x∈H
|f(x)|.

We denote by law(x(t)) the distribution of the random variable x(t). We say that
x has almost periodic in one-dimensional distribution if the mapping t→ law(x(t))
from R to (P(H), dBL) is almost periodic.

Definition 2.11 (Compare with [14]). For {ti}i∈Z ∈ T, the stochastic process
f ∈ PC(R, Lp(P,H)) is said to be piecewise almost periodic in distribution if the
following conditions are fulfilled:

(i) {tji , j ∈ Z} is equipotentially almost periodic.

(ii) f ∈ UPC(R, Lp(P,H)).

(iii) The lawµ(t) of f(t) is a P(H)-valued almost periodic mapping, i.e. for every
sequence of real numbers {s′n} there exist a subsequence {sn} and a P(H)-
valued continuous mapping µ̃(t) such that

lim
n→∞

dBL(µ(t+ sn)− µ̃(t)) = 0

hold for all t ∈ R satisfying the condition |t− ti| > ε for any ε > 0, i ∈ Z.

Definition 2.12. A stochastic process f ∈ PC(R, Lp(P,H)) is said to be piece-
wise pseudo almost periodic in distribution of class q if it can be decomposed
as f = f1 + f2, where f1 is piecewise almost periodic in distribution and f2 ∈
PAP 0

T (R, Lp(P,H), q).

Now, we introduce some notions and properties about hyperbolic semigroups
and intermediate spaces.

Let H and Z be Hilbert spaces, with norms ‖ · ‖, ‖ · ‖Z respectively, and suppose
that Z is continuously embedded in H , that is, Z ↪→ H.
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Definition 2.13 ( [17]). A semigroup {T (t)}t≥0 is hyperbolic, that is, there exist
a projection P and constants M, δ > 0 such that each T (t) commutes with P, KerP
is invariant with respect to T (t), T (t) : R(Q) → R(Q) is invertible and for every
x ∈ H

‖ T (t)Px ‖≤Me−δt ‖ x ‖, for t ≥ 0;

‖ T (t)Qx ‖≤Meδt ‖ x ‖, for t ≤ 0;

where Q := I − P and, for t < 0, T (t) = T (−t)−1.

Definition 2.14 ( [17]). A linear operator A : D(A) ⊂ H → H (not necessarily
densely defined) is said to be sectorial if the following hold: There exist constants
ω ∈ R, θ ∈ (π2 , π), and M > 0 such that ρ(A) ⊂ Sθ,ω := {λ ∈ C : λ 6= ω, | arg(λ −
ω)| < θ},

‖ R(λ,A) ‖≤ M

|λ− ω|
, λ ∈ Sθ,ω.

Definition 2.15 ( [17]). Let 0 ≤ α ≤ 1. A Banach space Y such that Z ↪→ Y ↪→ H
is said to the class Jα between H and Z if there is a constant c > 0 such that

‖ x ‖Y≤ c ‖ x ‖1−α‖ x ‖αZ , x ∈ Z.

In this case we write Y ∈ Jα((X),Z).

Definition 2.16 ( [17]). Let A : D(A) ⊂ H→ H be a sectorial operator. A Banach
space (Hα, ‖ · ‖α),α ∈ (0, 1), is said to be an intermediate space between H and
D(A) if Hα ∈ Jα(H, D(A)).

Lemma 2.4 ( [17]). Let (T (t))t≥0 be a hyperbolic analytic semigroup on H with
generator A. For α ∈ (0, 1), let (Hα, ‖ · ‖α) be intermediate spaces between H and
D(A). Then there are positive constants C(α),M(α), δ and γ such that

‖ T (t)Px ‖α ≤M(α)t−αe−γt ‖ x ‖, t > 0. (2.1)

‖ T (t)Qx ‖α ≤ C(α)eδt ‖ x ‖, t ≤ 0. (2.2)

Lemma 2.5 ( [17]). Let 0 < α, β < 1. Then

‖ AT (t)Px ‖α ≤ ctβ−α−1e−γt ‖ x ‖β , t > 0. (2.3)

‖ AT (t)Qx ‖α ≤ ceδt ‖ x ‖β , t ≤ 0. (2.4)

Next, we introduce a useful compactness criterion on PC(R, Lp(P,H), q).
Let h̃ : R → R+ be a continuous function such that h̃(t) ≥ 1 for all t ∈ R and

h̃(t)→∞ as |t| → ∞. Define

PC0
h̃
(R, Lp(P,H), q) =

{
f ∈ PC(R, Lp(P,H)) : lim

|t|→∞

(
sup

θ∈[t−q,t]

E ‖ f(θ) ‖p

h̃(θ)

)
= 0

}

endowed with the norm ‖ f ‖h̃= supt∈R(supθ∈[t−q,t]
E‖f(θ)‖p

h̃(θ)
), it is a Banach space.

Lemma 2.6. A set B ⊆ PC0
h̃
(R, Lp(P,H), q) is relatively compact if and only if it

verifies the following conditions:

(i) lim
|t|→∞

(supθ∈[t−q,t]
E‖f(t)‖p

h̃(t)
) = 0 uniformly for f ∈ B.
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(ii) B(t) = {f(t) : f ∈ B} is relatively compact in Lp(P,H) for every t ∈ R.

(iii) The set B is equicontinuous on each interval (ti, ti+1)(i ∈ Z).

One can refer to Lemma 4.1 in [16] for the proof of Lemma 2.6.

Lemma 2.7 (Krasnoselskii-Schaefer type fixed point theorem [4]). Let Φ1,Φ2 be
two operators such that:

(a) Φ1 is a contraction, and

(b) Φ2 is completely continuous.

Then either:

(i) the operator equation x = Φ1x+ Φ2x has a solution, or

(ii) the set G = {x ∈ H : λΦ1(xλ ) + λΦ2x = x} is unbounded for λ ∈ (0, 1).

3. Existence of pseudo almost periodic in distribu-
tion mild solution

In this section, we investigate the existence of pseudo almost periodic in distribution
mild solution for system (1.1)-(1.2). We begin introducing the followings concepts
of mild solutions.

Definition 3.1. An Ft -progressively measurable process x : R→ Lp(P,H), σ > 0,
is called a mild solution of system (1.1)-(1.2), if xσ = ϕ ∈ B, the function s →
AT (t− s)h(s, xs) is integrable on R and for every t ≥ σ, σ ∈ R and σ 6= ti, i ∈ Z,

x(t) =T (t− σ)[ϕ(σ)− h(σ, ϕ)] + h(t, xt)

+

∫ t

σ

AT (t− s)h(s, xs)ds+

∫ t

σ

T (t− s)g(s, xs)ds

+

∫ t

σ

T (t− s)f(s, xs)dW (s) +
∑

σ<ti<t

T (t− ti)Ii(x(ti)). (3.1)

Additionally, we make the following hypotheses:

(H1) The operator A is sectorial and generates a hyperbolic semigroup (T (t))t≥0.
Moreover, T (t) is compact for t > 0.

(H2) If 0 < α < β < 1, then we let k1, k(α) be the bound of the embedding
Lp(P,Hβ) ↪→ Lp(P,Hα) ↪→ Lp(P,H), that is E ‖ x ‖p≤ k1E ‖ x ‖pα for
x ∈ Lp(P,Hα) and E ‖ x ‖pα≤ k(α)E ‖ x ‖pβ for x ∈ Lp(P,Hβ).

(H3) h = h1 +h2 ∈ PAPT (R×B, Lp(P,Hβ), q), where h1 ∈ APT (R×B, Lp(P,Hβ))
and h2 ∈ PAP 0

T (R×B, Lp(P,Hβ), q). g = g1 +g2 ∈ PAPT (R×B, Lp(P,H), q),
where g1 ∈ APT (R × B, Lp(P,H)) and g2 ∈ PAP 0

T (R × B, Lp(P,H), q). f =
f1 + f2 ∈ PAPT (R× B, Lp(P, L0

2), q), where f1 ∈ APT (R× B, Lp(P, L0
2)) and

f2 ∈ PAP 0
T (R × B, Lp(P, L0

2), q). Ii = Ii,1 + Ii,2 ∈ PAP (Z, Lp(P,H)), where
Ii,1 ∈ AP (Z, Lp(P,H)) and Ii,2 ∈ PAP0(Z, Lp(P,H)).
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(H4) Let 0 ≤ α < β < 1 and there exist constants Lh > 0 such that

E ‖ h(t, ψ1)− h(t, ψ2) ‖pβ ≤ Lh[|t1 − t2|+ ‖ ψ1 − ψ2 ‖pB], t ∈ R, ψ1, ψ2 ∈ B,
E ‖ h(t, ψ) ‖pβ ≤ Lh(‖ ψ ‖pB +1), t ∈ R, ψ ∈ B,

E ‖ h1(t, ψ1)− h1(t, ψ2) ‖pβ ≤ Lh ‖ ψ1 − ψ2 ‖pB, t ∈ R, ψ1, ψ2 ∈ B.

(H5) The functions g : R × B → Lp(P,H), f : R × B → Lp(P, L0
2) are continuous

with respect to ψ, and there exists a constant µ̃ such that

lim sup
‖ψ‖p→∞

(
sup
t∈R

E ‖ g(t, ψ) ‖p +E ‖ f(t, ψ) ‖p
L0

2

‖ ψ ‖p

)
= µ̃, ψ ∈ B.

(H6) The functions Ii : Lp(P,K)→ Lp(P,H) are continuous with respect to x, and
there exist constants ci such that

lim sup
‖x‖p→∞

E ‖ Ii(x) ‖p

‖ x ‖p
= ci

for every x ∈ Lp(P,K), i ∈ Z.
(H7) The functions g1(t, ·), f1(t, ·) are uniformly continuous in each bounded subset

of B uniformly in t ∈ R, and Ii,1(·) are uniformly continuous in x ∈ Lp(P,K)
uniformly in i ∈ Z.

Theorem 3.1. Assume that (H1)-(H7) are satisfied. Then system (1.1)-(1.2) has
at least one pseudo almost periodic in distribution mild solution on R, provided that

18p−1Kp0k1

{(
k(α) + cp

(
Γ(1 +

p(β − α− 1)

p− 1
)

)p−1

γ−p(β−α) +
1

δp

)
Lh

+

([
(M(α))p

(
Γ(1− p

p− 1
α)γ

p
p−1α−1

)p−1
1

γ
+ (C(α))p

1

δp

]

+ Cp

[
(M(α))p

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p 2

pγ

+ (C(α))p
(
p− 2

pδ

) p−2
p 2

pγ

])
µ̃

+

[
(M(α))pς−pα

1

(1− e−γς)p
+ (C(α))p

1

(1− e−ςδ)p

]
sup
i∈Z

ci

}
< 1

for p > 2, and

18K2
0k1

{
k(α) + (M(α))2

[
(Γ(1 + 2(β − α− 1)γ−2(β−α−1)−1)

1

γ
+

1

δ2

]
Lh

+ [(M(α))2(Γ(1− 2α)γ2α−2) + (C(α))2 1

δ
]

+ [(M(α))2(Γ(1− 2α)(2γ)2α−1) + (C(α))2 1

2δ
]µ̃

+

[
(M(α))2ς−2α 1

(1− e−γς)2
+ (C(α))2 1

(1− e−ςδ)2

]
sup
i∈Z

ci

}
< 1

for p = 2.
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Proof. Let Y = UPC(R, Lp(P,Hα)). Consider the operator Φ : Y → PC(R, Lp(P,
Hα)) defined by

(Φx)(t) = h(t, xt) +

∫ t

−∞
AT (t− s)Ph(s, xs)ds−

∫ ∞
t

AT (t− s)Qh(s, xs)ds

+

∫ t

−∞
T (t− s)Pg(s, xs)ds−

∫ ∞
t

T (t− s)Qg(s, xs)ds

+

∫ t

−∞
T (t− s)Pf(s, xs)dW (s)−

∫ ∞
t

T (t− s)Qf(s, xs)dW (s)

+
∑
ti<t

T (t− ti)PIi(x(ti))−
∑
t<ti

T (t− ti)QIi(x(ti)), t ∈ R.

It is clear that Φ is a well-defined operator on Y. We show that Φ has a fixed point,
which in turn is a mild solution of the system (1.1)-(1.2). To prove which we shall
employ Lemma 2.7, we divide the proof into several steps.

Step 1. Ψx ∈ Y.
Let t′, t′′ ∈ (ti, ti+1), i ∈ Z, t′′ < t′. By (H1), for any ε > 0, there exists

0 < ξ < min{ εκ , ( εκ )1/p(β+α), ( εκ )1/p, ( εκ )p/2(p−1), ( εκ )p/2(p−1)}, κ = 18h̄1 + 18h̄2(1 +
p(β−α−1)

p−1 )1−p + 18h̄2 + 18f̄(1− p
p−2α)

p
p(2−α)−2 + 18f̄ , such that 0 < t′ − t′′ < ξ and

sup−∞≤θ≤0 E ‖ x(t′ + θ)− x(t′′ + θ) ‖p< ε
18h̄1

, we have for p > 2,

‖ T (t′ − t′′)− I ‖p≤ min

{
ε

18h̄2δ̄1
,

ε

18ḡδ̄2
,

ε

18f̄ δ̄3
,
δ̄4ε

18γ̄1

}
,

where h̄1 = 9p−1k(α)Lh, h̄2 = 18p−1cp ‖ h ‖pβ,∞, δ̄1 = [Γ(1+ p(β−α−1)
p−1 )]p−1γ−

p(β−α)
p−1

+ 1
δp , ḡ = 18p−1[(M(α))p + (C(α))p] ‖ g ‖p∞, δ̄2 = (Γ(1 − p

p−1α))p−1γp(α−1) + 1
δp ,

f̄ = 18p−1[(M(α))p + (C(α))p]Cp ‖ f ‖p∞, δ̄3 = (Γ(1 − pα
p−2 )( pγ

p−2 )
pα
p−2−1))

p−2
p 2

pγ +

(p−2
p δ)

p−2
p 2

pδ , γ̄1 = 18p−1[(M(α))p + (C(α))p] supi∈Z ‖ Ii ‖p∞, δ̄4 = (1 − e−γς)p +

(1− e−δς)p. Then we have for p > 2,

E ‖ (Φx)(t′)− (Φx)(t′′) ‖pα≤
9∑
j=1

Ξj ,

where

Ξ1 = 9p−1E ‖ h(t′, xt′)− h(t′′, xt′′) ‖pα,

Ξ2 = 9p−1E

wwww∫ t′

−∞
AT (t′ − s)Ph(s, xs)ds−

∫ t′′

−∞
AT (t′′ − s)Ph(s, xs)ds

wwwwp
α

,

Ξ3 = 9p−1E

wwww∫ ∞
t′

AT (t′ − s)Qh(s, xs)ds−
∫ t′′

−∞
AT (t′′ − s)Qh(s, xs)ds

wwwwp
α

,

Ξ4 = 9p−1E

wwww∫ t′

−∞
T (t′ − s)Pg(s, xs)ds−

∫ t′′

−∞
T (t′ − s)P (s)g(s, xs)ds

wwwwp
α

,

Ξ5 = 9p−1E

wwww∫ ∞
t′

T (t′ − s)Qg(s, xs)ds−
∫ ∞
t′′

T (t′ − s)Q(s)g(s, xs)ds

wwwwp
α

,
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Ξ6 = 9p−1E

wwww∫ t′

−∞
T (t′ − s)Pf(s, xs)dW (s)−

∫ t′′

−∞
T (t′ − s)Pf(s, xs)dW (s)

wwwwp
α

,

Ξ7 = 9p−1E

wwww∫ ∞
t′

T (t′ − s)Qf(s, xs)dW (s)−
∫ ∞
t′′

T (t′ − s)Qf(s, xs)dW (s)

wwwwp
α

,

Ξ8 = 9p−1E

wwww ∑
ti<t′

T (t′ − ti)PIi(x(ti))−
∑
ti<t′′

T (t′′ − ti)PIi(x(ti))

wwwwp
α

,

Ξ9 = 9p−1E

wwww ∑
t′<ti

T (t′ − ti)QIi(x(ti))−
∑
t′′<ti

T (t′′ − ti)QIi(x(ti))

wwwwp
α

.

By (H4) and Hölder’s inequality, we have

Ξ1 ≤ 9p−1k(α)E ‖ h(t′, xt′)− h(t′′, xt′′) ‖pβ
≤ 9p−1k(α)Lh[|t′ − t′′|+ ‖ xt′ − xt′′ ‖pB]

≤ 9p−1k(α)Lh[|t′ − t′′|+ sup
s∈(−∞,0]

E ‖ x(t′ + s)− x(t′′ + s) ‖p] < ε

9
,

Ξ2 ≤ 18p−1E

wwww∫ t′′

−∞
A[T (t′ − t′′)− I]T (t′′ − s)Ph(s, xs)ds

wwwwp
α

+ 18p−1E

wwww∫ t′

t′′
AT (t′ − s)Ph(s, xs)ds

wwwwp
α

≤ 18p−1cp ‖ T (t′ − t′′)− I ‖p
(∫ t′′

−∞
(t′′ − s)

p
p−1 (β−α−1)e−γ(t′′−s)ds

)p−1

×
(∫ t′′

−∞
e−γ(t′′−s)E ‖ h(s, xs) ‖pβ ds

)
+ 18p−1cp

(∫ t′

t′′
(t′ − s)

p
p−1 (β−α−1)e−γ(t′−s)ds

)p−1

×
(∫ t′

t′′
e−γ(t′−s)E ‖ h(s, xs) ‖pβ ds

)
≤ 18p−1cp ‖ T (t′ − t′′)− I ‖p

[
Γ

(
1 +

p(β − α− 1)

p− 1

)]p−1

γ−
p(β−α)
p−1 ‖ h ‖pβ,∞

+ 18p−1cp
(

1 +
p(β − α− 1)

p− 1

)1−p

(t′ − t′′)p(β+α) ‖ h ‖pβ,∞<
ε

9
.

Similarly, we have

Ξ3 ≤ 18p−1cp ‖ T (t′ − t′′)− I ‖p 1

δp
‖ h ‖pβ,∞ +18p−1cp(t′ − t′′)p ‖ h ‖pβ,∞<

ε

9
.

By (H5) and Hölder’s inequality, we have

Ξ4 ≤ 18p−1E

wwww∫ t′′

−∞
[T (t′ − t′′)− I]T (t′′ − s)Pg(s, xs)ds

wwwwp
α

+ 18p−1E

wwww∫ t′

t′′
T (t′ − s)Pg(s, xs)ds

wwwwp
α
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≤ 18p−1(M(α))p ‖ T (t′ − t′′)− I ‖p
(∫ t′′

−∞
(t′′ − s)−

p
p−1αe−γ(t′′−s)ds

)p−1

×
(∫ t′′

−∞
e−γ(t′′−s)E ‖ g(s, xs) ‖p ds

)
+ 18p−1(M(α))p

(∫ t′

t′′
(t′ − s)−

p
p−1αe−γ(t′−s)ds

)p−1

×
(∫ t′

t′′
e−γ(t′−s)E ‖ g(s, xs) ‖p ds

)
≤ 18p−1(M(α))p ‖ T (t′ − t′′)− I ‖p

(
Γ(1− p

p− 1
α)

)p−1

γp(α−1) ‖ g ‖p∞

+ 18p−1(M(α))p
(

1− p

p− 1
α

)1−p

(t′ − t′′)p ‖ g ‖p∞<
ε

9
.

Similarly, we have

Ξ5≤18p−1(C(α))p‖T (t′ − t′′)− I‖p(1

δ
)p‖g‖p∞+18p−1(C(α))p(t′−t′′)p‖g‖p∞<

ε

9
.

By (H5) and the Ito integral [13], we have

Ξ6 ≤ 18p−1E

wwww∫ t′′

−∞
[T (t′ − t′′)− I]T (t′′ − s)Pf(s, xs)dW (s)

wwwwp
α

+ 18p−1E

wwww∫ t′

t′′
T (t′ − s)Pf(s, xs)dW (s)

wwwwp
α

≤18p−1(M(α))pCpE

[∫ t′′

−∞
(t′′−s)−2αe−2γ(t′′−s)‖T (t′−t′′)−I‖2‖lf(s, xs)‖2L0

2
ds

]p/2
+ 18p−1(M(α))pCpE

[ ∫ t′

t′′
e−2γ(t′−s) ‖ f(s, xs) ‖2L0

2
ds

]p/2
≤ 18p−1(M(α))pCp ‖ T (t′ − t′′)− I ‖p

×
(∫ t′′

−∞
(t′′ − s)−

p
p−2αe−

p
p−2γ(t′′−s)ds

) p−2
p
(∫ t′′

−∞
e−

p
2 δ(t

′′−s)ds

)
‖ f ‖p∞

+ 18p−1(M(α))pCp

(∫ t′

t′′
(t′ − s)−

p
p−2αe−

p
p−2γ(t′−s)ds

) p−2
p

×
(∫ t′

t′′
e−

p
2 γ(t′−s)ds

)
‖ f ‖p∞

≤18p−1(M(α))pCp‖T (t′−t′′)−I‖p
(

Γ(1− pα

p− 2
)(

pγ

p− 2
)
pα
p−2−1)

) p−2
p 2

pγ
‖f‖p∞

+ 18p−1(M(α))pCp(1−
p

p− 2
α)

p
p−2 (t′ − t′′)

p(2−α)−2
p ‖ f ‖p∞<

ε

9
.

Similarly, we have

Ξ7 ≤ 18p−1(C(α))pCp ‖ T (t′ − t′′)− I ‖p
(
p− 2

p
δ

) p−2
p 2

pδ
‖ f ‖p∞
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+ 18p−1(C(α))pCp(t
′ − t′′)

2(p−1)
p ‖ f ‖p∞<

ε

9
.

For p = 2, let ε > 0, there exists 0 < ξ < min{ εκ , ( εκ )1/2(β+α), ( εκ )1/2}, κ =
18h̄1 + 18h̄2(1 + 2(β − α − 1))−1 + 18h̄2 + 18f̄ , such that 0 < t′ − t′′ < ξ and
sup−∞≤θ≤0E ‖ x(t′ + θ)− x(t′′ + θ) ‖2< ε

18h̄1
, we have

‖ T (t′ − t′′)− I ‖p≤ min

{
ε

18h̄δ̄1
,

ε

18ḡδ̄2
,

ε

18f̄ δ̄3
,
δ̄4ε

18γ̄1

}
,

where h̄1 = 9k(α)Lh, h̄2 = 18c2 ‖ h1 ‖2β,∞, δ̄1 = Γ(1 + 2(β − α − 1)γ−2(β−α) +
1
δ2 , ḡ = 18[(M(α))2 + (C(α))2] ‖ g ‖2∞, δ̄2 = Γ(1 − 2α)γ2(α−1) + ( 1

δ )2, f̄ =
18[(M(α))2 + (C(α))2] ‖ f ‖2∞, δ̄3 = Γ(1 − 2α)(2γ)2α−1 + 1

2δ , γ̄1 = 18[(M(α))2 +
(C(α))2] supi∈Z ‖Ii‖2∞, δ̄4 = (1− e−γς)2 + (1− e−δς)2. Then we have

Ξ6 ≤ 18(M(α))2 ‖ T (t′ − t′′)− I ‖2
(∫ t′′

−∞
(t′′ − s)−2αe−2γ(t′′−s)ds

)
‖ f ‖2∞

+ 18(M(α))2

(∫ t′

t′′
(t′ − s)−2αds

)
‖ f ‖2∞

≤ 18(M(α))2 ‖ T (t′ − t′′)− I ‖2 Γ(1− 2α)(2γ)2α−1 ‖ f ‖2∞
+ 18(M(α))2 ‖ f ‖2∞ (t′ − t′′) < ε

9
.

Similarly, we have

Ξ7 ≤ 18(C(α))2 ‖ T (t′ − t′′)− I ‖2‖ f ‖2∞
1

2δ
+ 18(C(α))2 ‖ f ‖2∞ (t′ − t′′) < ε

9
.

By (H7) and Hölder’s inequality again, we have

Ξ8 = 9p−1E

wwww ∑
ti<t′′

[T (t′ − t′′)− I]T (t′′ − ti)PIi(x(ti))

wwwwp
α

≤ 9p−1(M(α))p ‖ T (t′ − t′′)− I ‖p
( ∑
ti<t′′

(t′′ − ti)−
p
p−1αe−γ(t′′−ti)

)p−1

×
( ∑
ti<t′′

e−γ(t′′−ti)E ‖ Ii(x(ti)) ‖p
)

≤ 9p−1(M(α))p ‖ T (t′ − t′′)− I ‖p ς−pα
( ∑
ti<t′′

e−γ(t′′−ti)
)p

sup
i∈Z
‖ Ii ‖p∞

<
ε

9
.

Similarly, we have

Ξ9 ≤ 9p−1(C(α))p ‖ T (t′ − t′′)− I ‖p
( ∑
t′′<ti

eδ(t
′′−ti)

)p
sup
i∈Z
‖ Ii ‖p∞<

ε

9
.

By the above discussion, one has

E ‖ (Φx)(t′)− (Φx)(t′′) ‖pα< ε.
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Consequently, Φx ∈ Y.
Step 2. Φ has a fixed point in Y.
To do this, we decompose Φ as Φ1 + Φ2 where

(Φ1x)(t) =

[
h(t, xt) +

∫ t

−∞
AT (t− s)Ph(s, xs)ds

]
−
[ ∫ ∞

t

AT (t− s)Qh(s, xs)ds

]
:= (Φ11x)(t) + (Φ12x)(t), t ∈ R,

(Φ2x)(t) =

[ ∫ t

−∞
T (t− s)Pg(s, xs)ds+

∫ t

−∞
T (t− s)Pf(s, xs)dW (s)

+
∑
ti<t

T (t− ti)PIi(x(ti))

]
−
[ ∫ ∞

t

T (t− s)Qg(s, xs)ds

+

∫ ∞
t

T (t− s)Qf(s, xs)dW (s) +
∑
t<ti

T (t− ti)QIi(x(ti))

]
:= (Φ21x)(t) + (Φ22x)(t), t ∈ R.

We will verify that Φ1 is a contraction while Φ2 is a completely continuous operator.
(1) Φ1 is a contraction.
For t ∈ R, and x∗, x∗∗ ∈ Br∗ . From (H2) and (H4) and Lemma 2.1, we have

E ‖ (Φ11x
∗)(t)− (Φ11x

∗∗)(t) ‖pα

≤2p−1E‖h(t, x∗t )−h(t, x∗∗t )‖pα+2p−1E

wwww∫ t

−∞
AT (t− s)P [h(s, x∗s)−h(s, x∗∗s )]ds

wwwwp
α

≤2p−1(k(α))pLh ‖ x∗t − x∗∗t ‖
p
B +2p−1

(∫ t

−∞
(t− s)

p
p−1 (β−α−1)e−γ(t−s)ds

)p−1

×
(∫ t

−∞
e−γ(t−s)E ‖ h(s, x∗s)− h(s, x∗∗s ) ‖pβ ds

)
≤2p−1k(α)Lh ‖ x∗t − x∗∗t ‖

p
B +2p−1

(
Γ(1 +

p

p− 1
(β − α− 1))γ−

p
p−1 (β−α−1)−1

)p−1

×
(∫ t

−∞
e−γ(t−s)Lh ‖ x∗s − x∗∗s ‖

p
B ds

)
≤2p−1Lhk1Kp0

[
k(α) +

(
Γ(1 +

p

p− 1
(β − α− 1))

)p−1

γ−p(β−α)

]
‖ x∗ − x∗∗ ‖pα,∞ .

Similarly, we have

E ‖ (Φ12x
∗)(t)− (Φ12x

∗∗)(t) ‖pα≤ Lhk1Kp0
1

δp
‖ x∗ − x∗∗ ‖pα,∞ .

Then, we have

E ‖ (Φ1x
∗)(t)− (Φ1x

∗∗)(t) ‖pα≤ L0 ‖ x∗ − x∗∗ ‖pα,∞ .

Taking supremum over t,

‖ Φ1x
∗ − Φ1x

∗∗ ‖pα,∞≤ L0 ‖ x∗ − x∗∗ ‖pα,∞ .
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where L0 = 3p−1Lhk1Kp0[k(α) + (Γ(1 + p
p−1 (β − α − 1)))p−1γ−p(β−α) + 1

δp ] < 1.
Hence, Φ1 is a contractive operator with constant L0.

(2) Φ2 maps bounded sets into bounded sets in Y.
Indeed, it is enough to show that there exists a positive constant L such that

for each x ∈ Br∗ = {x ∈ Y :‖ x ‖pα,∞≤ r∗}, r∗ > 0, one has ‖ Φ2x ‖α,∞≤ L. By
(H5) and (H6) it follows that there exist positive constants ε, εi(i ∈ Z) and r̃ such
that, for all t ∈ R and ψ ∈ B, x ∈ Lp(P,K) with ‖ ψ ‖pB> r̃,E ‖ x ‖p> r̃,

E ‖ g(t, ψ) ‖p +E ‖ f(t, ψ) ‖p
L0

2
≤ (µ̃+ ε) ‖ ψ ‖pB,

E ‖ Ii(x) ‖p≤ (ci + εi)E ‖ x ‖p, i ∈ Z.

For p > 2, we have

L̃ = 18p−1Kp0k1

{(
k(α) + cp

(
Γ(1 +

p(β − α− 1)

p− 1
)

)p−1

γ−p(β−α) +
1

δp

)
Lh

+

([
(M(α))p

(
Γ(1− p

p− 1
α)γ

p
p−1α−1

)p−1
1

γ
+ (C(α))p

1

δp

]
+ Cp

[
(M(α))p

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p 2

pγ

+ (C(α))p
(
p− 2

pδ

) p−2
p 2

pγ

])
(µ̃+ ε)

+

[
(M(α))pς−pα

1

(1− e−γς)p
+ (C(α))p

1

(1− e−ςδ)p

]
sup
i∈Z

(ci + εi)

}
< 1,

and for p = 2, we have

L̃ = 18K2
0k1

{
k(α) + (M(α))2

[
(Γ(1 + 2(β − α− 1)γ−2(β−α−1)−1)

1

γ
+

1

δ2

]
Lh

+ [(M(α))2(Γ(1− 2α)γ2α−2) + (C(α))2 1

δ
]

+ [(M(α))2(Γ(1− 2α)(2γ)2α−1) + (C(α))2 1

2δ
](µ̃+ ε)

+

[
(M(α))2ς−2α 1

(1− e−γς)2
+ (C(α))2 1

(1− e−ςδ)2

]
sup
i∈Z

(ci + εi)

}
< 1.

Let

ν̃ = sup
t∈R
{E ‖ g(t, ψ) ‖p +E ‖ f(t, ψ) ‖p

L0
2
: E ‖ ψ ‖pB≤ r̃},

ν̃1 = sup
t∈R,i∈Z

{E ‖ Ii(x) ‖p: E ‖ x ‖p≤ r̃}.

Thus, we have for all t ∈ R and ψ ∈ B, x ∈ Lp(P,K),

E ‖ g(t, ψ) ‖p +E ‖ f(t, ψ) ‖p
L0

2
≤ (µ̃+ ε) ‖ ψ ‖pB +ν̃, (3.2)

E ‖ Ii(x) ‖p≤ (ci + εi)E ‖ x ‖p +ν̃1, i ∈ Z. (3.3)

On the other hand, for x ∈ Br∗ , from (H2) and Lemma 2.1, it follows that

‖ xs ‖pB ≤ 2p−1Kp0(‖ ϕ ‖pB +k1r
∗) := r′. (3.4)
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Then, by (3.2)-(3.4), Hölder’s inequality and the Ito integral, we have for p > 2,

E ‖ (Φ21x)(t) ‖pα

≤3p−1E

wwww∫ t

−∞
T (t− s)Pg(s, xs)ds

wwwwp
α

+ 3p−1E

wwww∫ t

−∞
T (t− s)Pf(s, xs)dW (s)

wwwwp
α

+ 3p−1E

wwww∑
ti<t

T (t− ti)PIi(x(ti))

wwwwp
α

≤3p−1(M(α))p
(∫ t

−∞
(t− s)−

p
p−1αe−γ(t−s)ds

)p−1(∫ t

−∞
e−γ(t−s)E ‖ g(s, xs) ‖p ds

)
+ 3p−1(M(α))pCpE

[ ∫ t

−∞
(t− s)−2αe−2γ(t−s) ‖ f(s, xs) ‖2L0

2
ds

]p/2
+ 3p−1(M(α))pE

[(∑
ti<t

(t− ti)−
p
p−1αe−γ(t−ti)

)p−1(∑
ti<t

e−γ(t−ti)‖Ii(x(ti))‖p
)]

≤3p−1(M(α))p
(

Γ(1− p

p− 1
α)γ

p
p−1α−1

)p−1(∫ t

−∞
e−γ(t−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)
+ 5p−1(M(α))pCp

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p

×
(∫ t

−∞
e−

p
2 γ(t−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)
+ 5p−1(M(α))pς−pα

1

(1− e−γσ)p−1

×
(∑
ti<t

e−γ(t−ti)[(ci + εi) ‖ x(ti) ‖pB +ν̃1]

)

≤3p−1(M(α))p
(

Γ(1− p

p− 1
α)γ

p
p−1α−1

)p−1
1

γ
[(µ̃+ ε)r′ + ν̃]

+ 3p−1(M(α))pCp

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p 2

pγ
[(µ̃+ ε)r′ + ν̃]

+ 3p−1(M(α))pς−pα
1

(1− e−γς)p
sup
i∈Z

[(ci + εi)k1r
∗ + ν̃1] := L1.

For p = 2, we have

E ‖ (Φ21x)(t) ‖pα≤3(M(α))2(Γ(1− 2α)γ2α−1)[(µ̃+ ε)r′ + ν̃]

+ 3(M(α))2ς−pα
1

(1− e−γς)2
sup
i∈Z

[(ci + εi)k1r
∗ + ν̃1]

:=L̃1.

Similarly, we have for p > 2,

E‖(Ψ22x)(t)‖pα ≤3p−1(C(α))p
1

δp
[(µ̃+ ε)r′ + ν̃] + 3p−1(C(α))pCp

(
p− 2

p
δ

) p−2
p 2

pδ

× [(µ̃+ε)r′ + ν̃]+3p−1(C(α))p
(

1

1−e−ςδ

)p
sup
i∈Z

[(ci+εi)k1r
∗ + ν̃1]

:=L2.
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For p = 2, we have

E ‖ (Φ22x)(t) ‖pα≤3(C(α))2 1

δ2
[(µ̃+ ε)r′ + ν̃] + 3(C(α))2 1

2δ
[(µ̃+ ε)r′ + ν̃]

+ 3(C(α))2 1

(1− e−ςδ)2
sup
i∈Z

[(ci + εi)k1r
∗ + ν̃1] := L̃2.

Take L = maxj=1,2{Lj , L̃j}. Then for each x ∈ Br∗ , we have ‖ Φ2x ‖α,∞≤ L.
(3) Φ2 maps bounded sets into equicontinuous sets of Y.
Let τ1, τ2 ∈ (ti, ti+1), i ∈ Z, τ1 < τ2, and x ∈ Br∗ . Then, by (H1)-(H6), Hölder’s

inequality and the Ito integral, we have for p > 2,

E ‖ (Φ21x)(τ2)− (Φ21x)(τ1) ‖pα

≤ 6p−1E

wwww∫ τ1

−∞
T (τ1 − s)[T (τ2 − τ1)− I]Pg(s, xs)ds

wwwwp
α

+ 6p−1E

wwww∫ τ2

τ1

T (τ2 − s)Pg(s, xs)ds

wwwwp
α

+ 6p−1E

wwww∫ τ1

−∞
T (τ1 − s)[T (τ2 − τ1)− I]Pf(s, xs)dW (s)

wwwwp
α

+ 6p−1E

wwww∫ τ2

τ1

T (τ2 − s)Pf(s, xs)dW (s)

wwwwp
α

+ 3p−1E

wwww ∑
ti<τ1

T (τ1 − ti)[T (τ2 − τ1)− I]PIi(x(ti))

wwwwp
α

≤ 6p−1(M(α))p ‖ T (τ2 − τ1)− I ‖p
(∫ τ1

−∞
(τ1 − s)−

p
p−1αe−γ(τ1−s)ds

)p−1

×
(∫ τ1

−∞
e−γ(τ1−s)E ‖ g(s, xs) ‖p ds

)
+ 6p−1(M(α))p

(∫ τ2

τ1

(τ2 − s)−
p
p−1αe−γ(τ2−s)ds

)p−1

×
(∫ τ2

τ1

e−γ(τ2−s)E ‖ g(s, xs) ‖p ds
)

+ 6p−1(M(α))pCpE

[ ∫ τ1

−∞
(τ1 − s)−2αe−2γ(τ1−s) ‖ T (τ2 − τ1)− I ‖2

× ‖ f(s, xs) ‖2L0
2
ds

]p/2
+ 6p−1(M(α))pCpE

[ ∫ τ2

τ1

(τ2 − s)−2αe−2γ(τ2−s) ‖ f(s, xs) ‖2L0
2
ds

]p/2
+ 3p−1(M(α))p ‖ T (τ2 − τ1)− I ‖p

( ∑
ti<τ1

(τ1 − ti)−
p
p−1αe−γ(τ1−ti)

)p−1

×
( ∑
ti<τ1

e−γ(τ1−ti)E ‖ Ii(x(ti)) ‖p
)

≤ 6p−1(M(α))p ‖ T (τ2 − τ1)− I ‖p
(

Γ(1− pα

p− 1
)γ

pα
p−1−1

)p−1
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×
(∫ τ1

−∞
e−γ(τ1−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)
+ 6p−1(M(α))p

(∫ τ2

τ1

(τ2 − s)−
p
p−1αds

)p−1

×
(∫ τ2

τ1

e−γ(τ2−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)

+ 6p−1(M(α))pCp ‖ T (τ2 − τ1)− I ‖p
(

Γ(1− pα

p− 2
)(

pα

p− 2
γ)

pα
p−2−1

) p−2
p

×
(∫ τ1

−∞
e−

p
2 γ(τ1−s)m(s)Θ(‖ xs ‖pC)ds

)
+ 6p−1(M(α))pCp

(∫ τ2

τ1

(τ2 − s)−
pα
p−2 ds

) p−2
p

×
(∫ τ2

τ1

e−
p
2 γ(τ2−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)
+ 3p−1(M(α))p ‖ T (τ2 − τ1)− I ‖p ς−pα

( ∑
ti<τ1

e−γ(τ1−ti)
)p−1

×
( ∑
ti<τ1

e−γ(τ1−ti)[(ci + εi) ‖ x(ti) ‖p +ν̃1]

)

≤ 6p−1(M(α))p ‖ T (τ2 − τ1)− I ‖p
(

Γ(1− pα

p− 1
)γ

pα
p−1−1

)p−1

[(µ̃+ ε)r′ + ν̃]

+ 6p−1(M(α))p
(∫ τ2

τ1

(τ2 − s)−
p
p−1αds

)p−1(∫ τ2

τ1

e−γ(τ2−s)ds

)
× [(µ̃+ ε)r′ + ν̃]

+ 6p−1(M(α))pCp ‖ T (τ2 − τ1)− I ‖p

×
(

Γ(1− pα

p− 2
)(

pα

p− 2
γ)

pα
p−2−1

) p−2
p

[(µ̃+ ε)r′ + ν̃]

+ 6p−1(M(α))pCp

(∫ τ2

τ1

(τ2 − s)−
p
p−2αds

) p−2
p

×
(∫ τ2

τ1

e−
p
2 γ(τ2−s)ds

)
[(µ̃+ ε)r′ + ν̃]

+ 3p−1(M(α))p ‖ T (τ2 − τ1)− I ‖p ς−pα 1

(1− e−γς)p
sup
i∈Z

[(ci + εi)k1r
∗ + ν̃].

For p = 2, we have

E ‖ (Φ21x)(τ2)− (Φ21x)(τ1)) ‖2α
≤ 6(M(α))2 ‖ T (τ2 − τ1)− I ‖2 (Γ(1− 2α)γ2α−1)p−1[(µ̃+ ε)r′ + ν̃]

+ 6(M(α))2

(∫ τ2

τ1

(τ2 − s)−2αds

)(∫ τ2

τ1

e−γ(τ2−s)ds

)
[(µ̃+ ε)r′ + ν̃]

+ 6(M(α))2 ‖ T (τ2 − τ1)− I ‖2 Γ(1− 2α)γ2α−1[(µ̃+ ε)r′ + ν̃]
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+ 6(M(α))2

(∫ τ2

τ1

(τ2 − s)−2αds

)
[(µ̃+ ε)r′ + ν̃]

+ 3(M(α))2 ‖ T (τ2 − τ1)− I ‖2 ς−pα 1

(1− e−γς)2
sup
i∈Z

[(ci + εi)k1r
∗ + ν̃1].

The right-hand side of the above inequality is independent of x ∈ Br∗ and
tends to zero as τ2 → τ1, since the compactness of T (t) for t > 0 implies imply
the continuity in the uniform operator topology. Thus, Φ21 maps Br∗ into an
equicontinuous family of functions. Similarly, we can show that Φ22 maps Br∗ into
an equicontinuous family of functions and hence Φ2 maps Br∗ into an equicontinuous
family of functions.

(4)The set V (t) = {(Φ2x)(t) : x ∈ Br∗} is relatively compact in Y.
For each t ∈ R, and let ε be a real number satisfying 0 < ε < 1. For x ∈ Br∗ ,

we define

(Φ21,εx)(t) = T (ε)

[ ∫ t−ε

−∞
T (t−ε−s)Pg(s, xs)ds+

∫ t−ε

−∞
T (t−ε−s)Pf(s, xs)dW (s)

+
∑

ti<t−ε
T (t− ε− ti)PIi(x(ti))

]
= T (ε)[(Φ21x)(t− ε)].

Since T (t)(t > 0) is compact, then the set Vε(t) = {(Φ21,εx)(t) : x ∈ Br∗} is
relatively compact in Lp(P,H) for each t ∈ R. Moreover, for every x ∈ Br∗ , we have
for p > 2,

E ‖ (Φ21x)(t)− (Φ21,εx)(t) ‖pα

≤3p−1E

wwww∫ t

t−ε
T (t− s)Pg(s, xs)ds

wwwwp
α

+ 3p−1E

wwww∫ t

t−ε
T (t− s)Pf(s, xs)dW (s)

wwwwp
α

+ 3p−1E

wwww ∑
t−ε<ti<t

T (t− ti)PIi(x(ti))

wwwwp
α

≤3p−1(M(α))p
(∫ t

t−ε
(t−s)−

p
p−1αe−γ(t−s)ds

)p−1(∫ t

t−ε
e−γ(t−s)E ‖ g(s, xs) ‖p ds

)
+ 3p−1(M(α))pCpE

(∫ t

t−ε
(t− s)−2αe−2γ(t−s) ‖ f(s, xs) ‖2L0

2
ds

)p/2
+ 3p−1(M(α))pE

[( ∑
t−ε<ti<t

(t− ti)−
p
p−1αe−γ(t−ti)

)p−1

×
( ∑
t−ε<ti<t

e−γ(t−ti) ‖ Ii(x(ti)) ‖p
)]

≤3p−1(M(α))p
(∫ t

t−ε
(t− s)−

p
p−1αds

)p−1(∫ t

t−ε
e−γ(t−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)
+3p−1(M(α))pCp

(∫ t

t−ε
(t−s)−

p
p−2αds

) p−2
p
(∫ t

t−ε
e−

p
2 γ(t−s)[(µ̃+ε)‖xs‖pB+ν̃]ds

)
+ 3p−1(M(α))pς−pα

( ∑
t−ε<ti<t

e−γ(t−ti)
)p−1
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×
( ∑
t−ε<ti<t

e−γ(t−ti)[(ci + εi)E ‖ x(ti) ‖p +ν̃1]

)

≤3p−1(M(α))p
(∫ t

t−ε
(t− s)−

p−1
p αds

)p−1(∫ t

t−ε
e−γ(t−s)ds

)
[(µ̃+ ε)r′ + ν̃]

+ 3p−1(M(α))pCp

(∫ t

t−ε
(t− s)−

p
p−2αds

) p−2
p
(∫ t

t−ε
e−

p
2 δ(t−s)ds

)
[(µ̃+ ε)r′ + ν̃]

+ 3p−1(M(α))pς−pα
( ∑
t−ε<ti<t

e−γ(t−ti)
)p

sup
i∈Z

[(ci + εi)k1r
∗ + ν̃1].

For p = 2, we have

E ‖ (Φ21x)(t)− (Φ21,εx)(t) ‖2α

≤3(M(α))2

(∫ t

t−ε
(t− s)−2αds

)(∫ t

t−ε
e−γ(t−s)ds

)
[(µ̃+ ε)r′ + ν̃]

+ 3(M(α))2

(∫ t

t−ε
(t− s)−2αds

)
[(µ̃+ ε)r′ + ν̃]

+ 3(M(α))2ς−2α

( ∑
t−ε<ti<t

e−γ(t−ti)
)2

sup
i∈Z

[(ci + εi)k1r
∗ + ν̃1].

Therefore, letting ε → 0, it follows that there are relatively compact sets Vε(t)
arbitrarily close to V (t) = {(Φ21x)(t) : x ∈ Br∗}, and hence V (t) is also relatively
compact in Lp(P,H) for each t ∈ R. Since {Φ21x : x ∈ Br∗} ⊂ PC0

l (R, Lp(P,H), q),
then {Φ21x : x ∈ Br∗} is a relatively compact set by Lemma 2.6, then Φ21 is
a compact operator. Similarly, Φ22 is a compact operator and Φ2 is a compact
operator. Hence we can conclude that Φ2 is a completely continuous map.

(5) Φ2 : Y → Y is continuous.
Let {x(n)} ⊆ Br∗ with x(n) → x(n → ∞) in Y, then there exists a bounded

subset K ⊆ Lp(P,K) such that R(x) ⊆ K,R(xn) ⊆ K,n ∈ N. By the assumptions
(H4)-(H6), for any ε > 0, there exists ξ̃ > 0 such that x, y ∈ K and ‖ x− y ‖p∞< ξ̃
implies that

E ‖ g(s, xs)− g(s, ys) ‖p< ε for all t ∈ R,

E ‖ f(s, xs)− f(s, ys) ‖pL0
2
< ε for all t ∈ R,

and
E ‖ Ii(x)− Ii(y) ‖p< ε for all i ∈ Z.

For the above ξ̃ there exists n0 such that ‖ x(n) − x ‖p∞< ε and ‖ x(n)
s − xs ‖p∞< ε

for n > n0. Then for n > n0, we have

E ‖ g(s, x(n)
s )− g(s, xs) ‖p< ε for all t ∈ R,

E ‖ f(s, x(n)
s )− f(s, xs) ‖pL0

2
< ε for all t ∈ R,

and
E ‖ Ii(x(n))− Ii(x) ‖p< ε for all i ∈ Z.

Then, by Hölder’s inequality, we have that for p > 2,

E ‖ (Φ21x
(n))(t)− (Φ21x)(t) ‖pα
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≤ 3p−1E

wwww∫ t

−∞
T (t− s)P [g(s, x(n)

s )− g(s, xs)]ds

wwwwp
α

+ 3p−1E

wwww∫ t

−∞
T (t− s)P [f(s, x(n)

s )− f(s, xs)]dW (s)

wwwwp
α

+ 3p−1E

wwww∑
ti<t

T (t− ti)P [Ii(x
(n)(ti))− Ii(x(ti))]

wwwwp
α

≤ 3p−1(M(α))p
(∫ t

−∞
(t− s)−

p
p−1αe−γ(t−s)ds

)p−1

×
(∫ t

−∞
e−γ(t−s)E ‖ g(s, x(n)

s )− g(s, xs) ‖p ds
)

+ 3p−1(M(α))pCp

(∫ t

−∞
(t− s)−2αe−2γ(t−s)

× E ‖ f(s, x(n)
s )− f(s, xs) ‖2L0

2
ds

)p/2
+ 3p−1(M(α))pE

[(∑
ti<t

(t− ti)−
p
p−1αe−γ(t−ti)

)p−1

×
(∑
ti<t

e−γ(t−ti) ‖ Ii(x(n)(ti))− Ii(x(ti)) ‖p
)]

≤ 3p−1(M(α))p
(

Γ(1− p

p− 1
α)γ

p
p−1α−1

)p−1(∫ t

−∞
e−γ(t−s)ds

)
ε

+ 3p−1(M(α))pCp

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p

×
(∫ t

−∞
e−

p
2 γ(t−s)ds

)
ε

+ 3p−1(M(α))pς−pα
1

(1− e−γς)p−1

(∑
ti<t

e−γ(t−ti)
)
ε

≤ 3p−1(M(α))p
[(

Γ(1− p

p− 1
α)

)p−1

γp(α−1)

+ Cp

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p 2

pγ
+

ς−pα

(1− e−γς)p

]
ε.

For p = 2, we have

E ‖ (Φ21x
(n))(t)− (Φ21x)(t) ‖2α

≤ 3M2

[
Γ(1− 2α)γ2(α−1) + Γ(1− 2α)γ2α−1 +

1

(1− e−γς)2

]
ε.

Thus Φ21 is continuous on Br∗ . Similarly, we have Φ22 is continuous on Br∗ and
hence Φ2 is continuous on Br∗ .

(6) We shall show the set G = {x ∈ Y : λΦ1(xλ )+λΦ2(x) = x for some λ ∈ (0, 1)}
is bounded on R.
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To do this, we consider the following nonlinear operator equation

x(t) = λ(Φx)(t), 0 < λ < 1, (3.5)

where Φ is already defined. Next we gives a priori estimate for the solution of the
above equation. Indeed, let x ∈ Y be a possible solution of x = λΦ(x) for some
0 < λ < 1. This implies by (3.5) that for each t ∈ R we have

x(t) = λh(t, xt) + λ

∫ t

−∞
AT (t− s)Ph(s, xs)ds

− λ
∫ ∞
t

AT (t− s)Qh(s, xs)ds

+ λ

∫ t

−∞
T (t− s)Pg(s, xs)ds− λ

∫ ∞
t

T (t− s)Qg(s, xs)ds

+ λ

∫ t

−∞
T (t− s)Pf(s, xs)dW (s)− λ

∫ ∞
t

T (t− s)Qf(s, xs)dW (s)

+ λ
∑
ti<t

T (t− ti)PIi(x(ti))− λ
∑
t<ti

T (t− ti)QIi(x(ti)), t ∈ R.

From the above equation, we have

E ‖ x(t) ‖pα≤
[
9p−1E ‖ h(t, xt) ‖pα +9p−1E

wwww∫ t

−∞
AT (t− s)Ph(s, xs)ds

wwwwp
α

+ 9p−1E

wwww∫ t

−∞
T (t− s)Pg(s, xs)ds

wwwwp
α

+ 9p−1E

wwww∫ t

−∞
T (t− s)Pf(s, xs)dW (s)

wwwwp
α

+ 9p−1E

wwww∑
ti<t

T (t− ti)PIi(x(ti))

wwwwp
α

]

+

[
9p−1E

wwww∫ t

−∞
AT (t− s)Qh(s, xs)ds

wwwwp
α

+ 9p−1E

wwww∫ t

−∞
T (t− s)Qg(s, xs)ds

wwwwp
α

+ 9p−1E

wwww∫ t

−∞
T (t− s)Qf(s, xs)dW (s)

wwwwp
α

+ 9p−1E

wwww∑
ti<t

T (t− ti)QIi(x(ti))

wwwwp
α

]
:= Φ̃1 + Φ̃2.

By Hölder’s inequality and the Ito integral, we have for p > 2,

Φ̃1 ≤ 9p−1k(α)Lh(‖ xt ‖pB +1)

+ 9p−1cp
(

Γ(1 +
p(β − α− 1)

p− 1
)γ−

p(β−α−1)
p−1 −1

)p−1
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×
(∫ t

−∞
e−γ(t−s)Lh(‖ xs ‖pB +1)ds

)
+ 9p−1(M(α))p

(
Γ(1− p

p− 1
α)γ

p
p−1α−1

)p−1

×
(∫ t

−∞
e−γ(t−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)
+ 9p−1(M(α))pCp

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p

×
(∫ t

−∞
e−

p
2 γ(t−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)
+ 9p−1(M(α))pς−pα

1

(1− e−γς)p−1

×
(∑
ti<t

e−γ(t−ti)[(ci + εi) ‖ x(ti) ‖p +ν̃1]

)
.

For p = 2, we have

Φ̃1 ≤ 9k(α)Lh(‖ xt ‖2B +1) + 5cp
(

Γ(1 + 2(β − α− 1)γ−2(β−α−1)−1

)
×
(∫ t

−∞
e−γ(t−s)Lh(‖ xs ‖2B +1)ds

)
+ 9(M(α))2

(
Γ(1− 2α)γ2α−1

)(∫ t

−∞
e−γ(t−s)[(µ̃+ ε) ‖ xs ‖2B +ν̃]ds

)
+ 9(M(α))2

(∫ t

−∞
(t− s)−2αe−2γ(t−s)[(µ̃+ ε) ‖ xs ‖2B +ν̃]ds

)
+ 9(M(α))2ς−pα

1

(1− e−γς)

(∑
ti<t

e−γ(t−ti)[(ci + εi) ‖ x(ti) ‖2 +ν̃1]

)
.

Similarly, we have for p > 2,

Φ̃2 ≤ 9p−1cp
1

δp−1

(∫ ∞
t

eδ(t−s)Lh(‖ xs ‖pB +1)ds

)
+ 9p−1(C(α))p

1

δp−1

(∫ ∞
t

eδ(t−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)
+ 9p−1(C(α))pCp

(
p− 2

pδ

) p−2
p
(∫ ∞

t

e
p
2 δ(t−s)[(µ̃+ ε) ‖ xs ‖pB +ν̃]ds

)
+ 9p−1(C(α))p

1

(1− eςδ)p−1

(∑
t<ti

eδ(t−ti)[(ci + εi) ‖ x(ti) ‖p +ν̃1]

)
.

For p = 2, we have

Φ̃2 ≤ 9c2
1

δ

(∫ ∞
t

eδ(t−s)Lh(‖ xs ‖2B +1)ds

)
+ 9(C(α))2 1

δ

(∫ ∞
t

eδ(t−s)[(µ̃+ ε) ‖ xs ‖2B +ν̃]ds

)
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+ 9p−1(C(α))2

(∫ ∞
t

e2δ(t−s)[(µ̃+ ε) ‖ xs ‖2B +ν̃]ds

)
+ 9(C(α))2 1

(1− eςδ)

(∑
t<ti

eδ(t−ti)[(ci + εi) ‖ x(ti) ‖2 +ν̃1]

)
.

By Lemmas 2.1, it follows that

‖ xs ‖pB≤ 2p−1Kp0(‖ ϕ ‖pB + sup
s∈R

E ‖ x(s) ‖p).

Then, we have for p > 2,

E ‖ x(t) ‖pα ≤ M̃ + L̃ sup
t∈R
‖ x(t) ‖pα,

where M̃ is a constant. Since L̃ < 1, we obtain

sup
t∈R

E ‖ x(t) ‖pα≤
M̃

1− L̃
.

This implies that G is bounded on R. Consequently, by Lemma 2.7, we deduce that
Φ has a fixed point x ∈ Y, which is a mild solution of the system (1.1)-(1.2).

Step 3. Pseudo almost periodic in distribution of mild solution.
For given x ∈ PAPT (R, Lp(P,H), q), by the definition of the mapping Φ, we

have
(Φx)(t) = (Ψx)(t) + (Υx)(t),

where

(Ψx)(t) = h1(t, xt) +

∫ t

−∞
AT (t− s)Ph1(s, xs)ds

−
∫ ∞
t

AT (t− s)Qh1(s, xs)ds

+

∫ t

−∞
T (t− s)Pg1(s, xs)ds−

∫ ∞
t

T (t− s)Qg1(s, xs)ds

+

∫ t

−∞
T (t− s)Pf1(s, xs)dW (s)−

∫ ∞
t

T (t− s)Qf1(s, xs)dW (s)

+
∑
ti<t

T (t− ti)PIi,1(x(ti))−
∑
t<ti

T (t− ti)QIi,1(x(ti)),

(Υx)(t) = h2(t, xt) +

∫ t

−∞
AT (t− s)Ph2(s, xs)ds

−
∫ ∞
t

AT (t− s)Qh2(s, xs)ds

+

∫ t

−∞
T (t− s)Pg2(s, xs)ds−

∫ ∞
t

T (t− s)Qg2(s, xs)ds

+

∫ t

−∞
T (t− s)Pf2(s, xs)dW (s)−

∫ ∞
t

T (t− s)Qf2(s, xs)dW (s)

+
∑
ti<t

T (t− ti)PIi,2(x(ti))−
∑
t<ti

T (t− ti)QIi,2(x(ti)).
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(1) Ψx is almost periodic in distribution.

Let ti < t ≤ ti+1. For ε > 0 and 0 < η < min{ε, ς/2}. Since h
1
∈ APT (R ×

B, Lp(P,Hβ)), g1 ∈ APT (R × B, Lp(P,H)), f1 ∈ APT (R × B, Lp(P, L0
2)), thus for

every sequence of real numbers {s′n}, there exist a subsequence {sn} and a stochastic
processes h̃1 ∈ APT (R× B, Lp(P,Hβ)), g̃1 ∈ APT (R× B, Lp(P,H)), f̃1 ∈ APT (R×
B, Lp(P, L0

2)), such that

lim
n→∞

E ‖ h1(t+ sn, ψ)− h̃1(t, ψ) ‖pβ= 0, (3.6)

lim
n→∞

E ‖ g1(t+ sn, ψ)− g̃1(t, ψ) ‖p= 0, (3.7)

lim
n→∞

E ‖ f1(t+ sn, ψ)− f̃1(t, ψ) ‖p
L0

2
= 0 (3.8)

for each t ∈ R, ψ ∈ K, where K is any bounded subset in B. Since Ii,1 ∈ APT (Z, Lp
(P,H)), thus for every sequence of integer numbers {α′n}, there exist a subsequence
{αn} and a stochastic processes Ĩi,1 ∈ APT (Z, Lp(P,H)), such that

lim
n→∞

E ‖ Ii+αn,1(x)− Ĩi,1(x) ‖p= 0 (3.9)

for each x ∈ B, where B is any bounded subset in Lp(P,K).

Let W̃n(s) := W (s+ sn)−W (sn), for each s ∈ R. It is easy to show that W̃n is
a Q-Wiener process with the same distribution as W, then

(Ψx)(t+ sn)

=h1(t+ sn, xt+sn) +

∫ t+sn

−∞
AT (t+ sn − s)Ph1(s, xs)ds

−
∫ ∞
t+sn

AT (t+ sn − s)Qh1(s, xs)ds+

∫ t+sn

−∞
T (t+ sn − s)Pg1(s, xs)ds

−
∫ ∞
t+sn

T (t+ sn − s)Qg1(s, xs)ds+

∫ t+sn

−∞
T (t+ sn − s)Pf1(s, xs)dW (s)

−
∫ ∞
t+sn

T (t+ sn − s)f1(s, xs)dW (s) +
∑

ti<t+sn

T (t+ sn − ti)PIi,1(x(ti))

−
∑

t+sn<ti

T (t+ sn − ti)QIi,1(x(ti))

=h1(t+ sn, xt+sn) +

∫ t

−∞
AT (t− s)Ph1(s+ sn, xs+sn)ds

−
∫ ∞
t

AT (t− s)Qh1(s+ sn, xs+sn)ds+

∫ t

−∞
T (t− s)Pg1(s+ sn, xs+sn)ds

−
∫ ∞
t

T (t− s)Qg1(s+ sn, xs+sn)ds+

∫ t

−∞
T (t− s)Pf1(s+ sn, xs+sn)dW̃n(s)

−
∫ ∞

0

T (t− s)Qf1(s+ sn, xs+sn)dW̃n(s) +
∑

ti<t+sn

U(t+ sn − ti)PIi,1(x(ti))

−
∑

t+sn<ti

T (t+ sn − ti)QIi,1(x(ti)).
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Consider the process

xn(t) =h1(t+ sn, xn,t) +

∫ t

−∞
AT (t− s)Ph1(s+ sn, xn,s)ds

−
∫ ∞
t

AT (t− s)Qh1(s+ sn, xn,s)ds+

∫ t

−∞
T (t− s)Pg1(s+ sn, xn,s)ds

−
∫ ∞
t

T (t− s)Qg1(s+ sn, xn,s)ds+

∫ t

−∞
T (t− s)Pf1(s+ sn, xn,s)dW (s)

−
∫ ∞

0

T (t− s)Qf1(s+ sn, xn,s)dW (s)+
∑

ti<t+sn

T (t+ sn − ti)PIi,1(xn(ti))

−
∑

t+sn<ti

T (t+ sn − ti)QIi,1(xn(ti)).

It is easy to see that (Ψx)(t+ sn) has the same distribution as xn(t) for each t ∈ R.
Let x̃(t) satisfy the integral equation

x̃(t) = h̃1(t, x̃t) +

∫ t

−∞
AT (t− s)Ph̃1(s, x̃s)ds−

∫ ∞
t

AT (t− s)Qh̃1(s, x̃s)ds

+

∫ t

−∞
T (t− s)P g̃1(s, x̃s)ds−

∫ ∞
t

T (t− s)Qg̃1(s, x̃s)ds

+

∫ t

−∞
T (t− s)P f̃1(s, x̃s)dW (s)−

∫ ∞
t

T (t− s)Qf̃1(s, x̃s)dW (s)

+
∑
ti<t

T (t− ti)P Ĩi,1(x̃(ti))−
∑
t<ti

T (t− ti)QĨi,1(x̃(ti)).

Then we have

E ‖ xn(t)− x̃(t) ‖pα
≤9p−1E ‖ h1(t+ sn, xn,t)− h̃1(t, x̃t) ‖pα

+ 9p−1E

wwww∫ t

−∞
AT (t− s)P [h1(s+ sn, xn,s)− h̃1(s, x̃s)]ds

wwwwp
α

+ 9p−1E

wwww∫ ∞
t

AT (t− s)Q[h1(s+ sn, xn,s)− h̃1(s, x̃s)]ds

wwwwp
α

+ 9p−1E

wwww∫ t

−∞
T (t− s)P [g1(s+ sn, xn,s)− g̃1(s, x̃s)]ds

wwwwp
α

+ 9p−1E

wwww∫ ∞
t

T (t− s)Q[g1(s+ sn, xn,s)− g̃1(s, x̃s)]ds

wwwwp
α

+ 9p−1E

wwww∫ t

−∞
T (t− s)P [f1(s+ sn, xn,s)− f̃1(s, x̃s)]dW (s)

wwwwp
α

+ 9p−1E

wwww∫ ∞
t

T (t− s)Q[f1(s+ sn, xn,s)− f̃1(s, x̃s)]dW (s)

wwwwp
α

+ 9p−1E

wwww ∑
ti<t+sn

T (t+ sn − ti)PIi,1(xn(ti))−
∑
ti<t

T (t− ti)P Ĩi,1(x̃(ti))

wwwwp
α



1422 Z. Yan & X. Jia

+ 9p−1E

wwww ∑
t+sn<ti

T (t+ sn − ti)QIi,1(xn(ti))−
∑
t<ti

T (t− ti)QĨi,1(x̃(ti))

wwwwp
α

:=

9∑
j=1

Ψj .

By (H4), we have

Ψ1 ≤ 18p−1k(α)[E ‖ h1(t+ sn, xn,t)− h1(t+ sn, x̃t) ‖pβ
+ E ‖ h1(t+ sn, x̃t)− h̃1(t, x̃t) ‖pβ ]

≤ 18p−1k(α)[Lh ‖ xn,t − x̃t ‖pD +ε(1)
n (t)]

≤ 18p−1k(α)[Lh ‖ xn − x̃ ‖p∞ +ε(1)
n (t)],

where ε1
n(t) = E ‖ h1(t+ sn, x̃t)− h̃1(t, x̃t) ‖pβ . By (3.6), we have limn→∞ ε

(1)
n = 0.

Using (H4) and Hölder’s inequality, we have

Ψ2 ≤ 18p−1cp
(

Γ(1 +
p(β − α− 1)

p− 1
)γ−

p(β−α−1)
p−1 −1

)p−1

×
[(∫ t

−∞
e−γ(t−s)E ‖ h1(s+ sn, xn,s)− h1(s+ sn, x̃s) ‖pβ ds

)
+

(∫ t

−∞
e−γ(t−s)E ‖ h1(s+ sn, x̃s)− h̃1(s, x̃s) ‖pβ ds

)]
≤ 18p−1cp

(
Γ(1 +

p(β − α− 1)

p− 1
)γ−

p(β−α−1)
p−1 −1

)p−1

×
[(∫ t

−∞
e−γ(t−s)L ‖ xn,s − x̃s ‖pB ds

)
+ sup

t∈R
ε(2)
n (t)

]
≤ 18p−1cp

(
Γ(1 +

p(β − α− 1)

p− 1
)γ−

p(β−α−1)
p−1 −1

)p−1

× [
1

γ
Lh ‖ xn − x̃ ‖p∞ + sup

t∈R
ε(2)
n (t)],

where ε
(2)
n (t) =

∑4
j=1 ε

(2j)
n (t), and

ε(21)
n (t) =

i−1∑
j=−∞

∫ tj+1−η

tj+η

e−γ(t−s)E ‖ h1(s+ sn, x̃s)− h̃1(s, x̃s) ‖pβ ds,

ε(22)
n (t) =

i−1∑
j=−∞

∫ tj+η

tj

e−γ(t−s)E ‖ h1(s+ sn, x̃s)− h̃1(s, x̃s) ‖pβ ds,

ε(23)
n (t) =

i−1∑
j=−∞

∫ tj+1

tj+1−η
e−γ(t−s)E ‖ h1(s+ sn, x̃s)− h̃1(s, x̃s) ‖pβ ds,

ε(24)
n (t) =

∫ t

ti

e−γ(t−s)E ‖ h1(s+ sn, x̃s)− h̃1(s, x̃s) ‖pβ ds.

By (3.6), there exists N1 ∈ N such that

E ‖ h1(s+ sn, x̃s)− h̃1(s, x̃s) ‖pβ< ε
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for all s ∈ [tj + η, tj+1 − η], j ∈ Z, j ≤ i, and t − s ≥ t − ti + ti − (tj+1 − η)
≥ s− ti + γ(i− 1− j) + η, whenever n ≥ N1. Then,

ε(21)
n (t) ≤ ε

i−1∑
j=−∞

∫ tj+1−η

tj+η

e−γ(t−s)ds

≤ ε

γ

i−1∑
j=−∞

e−γ(t−tj+1+η)

≤ ε

γ

i−1∑
j=−∞

e−γς(i−j−1)

≤ ε

γ(1− e−γς)
,

ε(22)
n (t) ≤ 2p−1[‖ h1 ‖pβ,∞ + ‖ h̃1 ‖pβ,∞]

i−1∑
j=−∞

∫ tj+η

tj

e−γ(t−s)ds

≤ 2p−1[‖ h1 ‖pβ,∞ + ‖ h̃1 ‖pβ,∞]εeγη
i−1∑

j=−∞
e−γ(t−tj)

≤ 2p−1[‖ h1 ‖pβ,∞ + ‖ h̃1 ‖pβ,∞]εeγηe−γ(t−ti)
i−1∑

j=−∞
e−γς(i−j)

≤
2p−1[‖ h1 ‖pβ,∞ + ‖ h̃1 ‖pβ,∞]e(γς)/2ε

1− e−γς
.

Similarly, one has

ε(23)
n (t) ≤ M̃1ε, ε(24)

n (t) ≤ M̃2ε,

where M̃1, M̃2 are some positive constants. Therefore, we get that limn→∞ supt∈R ε
(2)
n

(t) = 0. By a similar argument, we can show that

Ψ3 ≤ 18p−1cp
1

δp−1
[
1

δ
Lh ‖ xn − x̃ ‖p∞ + sup

t∈R
ε(3)
n (t)],

where ε
(3)
n (t) =

∫∞
t
e(δ/2)(t−s)E ‖ h1(s+sn, x̃s)−h̃1(s, x̃s) ‖pβ ds and limn→∞ supt∈R

ε
(3)
n (t) = 0.

By (H6), for any ε > 0, there exist δ1 > 0 and a bounded subset K ⊂ B such
that ϕ,ψ ⊂ K and E ‖ ϕ− ψ ‖pB< δ1 imply that

E ‖ g1(t, ϕ)− g1(t, ψ) ‖p< ε,

E ‖ f1(t, ϕ)− f1(t, ψ) ‖p
L0

2
< ε

for each t ∈ R. For the above δ1 > 0, there exists N1 > 0 such that ‖ xn,t−x̃t ‖pB< δ1
for all n > N1 and all t ∈ R. Therefore,

E ‖ g1(s+ sn, xn,s)− g1(s+ sn, x̃s) ‖p< ε, (3.10)

E ‖ f1(s+ sn, xn,s)− f1(s+ sn, x̃s) ‖pL0
2
< ε (3.11)
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for all n > N1 and all s+ sn ∈ R. Using (3.10) and Hölder’s inequality, we have

Ψ4 ≤ 18p−1(M(α))p
(

Γ(1− p

p− 1
α)γ

p
p−1α−1

)p−1

×
[ ∫ t

−∞
e−γ(t−s)E ‖ g1(s+ sn, xn,s)− g1(s+ sn, x̃s) ‖p ds

+

∫ t

−∞
e−γ(t−s)E ‖ g1(s+ sn, x̃s)− g̃1(s, x̃s)ds

]
≤ 18p−1(M(α))p

(
Γ(1− p

p− 1
α)γ

p
p−1α−1

)p−1

[
1

γ
ε+ sup

t∈R
ε4
n(t)],

where ε
(4)
n (t) =

∑4
j ε

(4j)
n (t), and

ε41
n (t) =

i−1∑
j=−∞

∫ tj+1−η

tj+η

e−γ(t−s)E ‖ g1(s+ sn, x̃s)− g̃1(s, x̃s) ‖p ds,

ε(42)
n (t) =

i−1∑
j=−∞

∫ tj+η

tj

e−γ(t−s)E ‖ g1(s+ sn, x̃s)− g̃1(s, x̃s) ‖p ds,

ε(43)
n (t) =

i−1∑
j=−∞

∫ tj+1

tj+1−η
e−γ(t−s)E ‖ g1(s+ sn, x̃s)− g̃1(s, x̃s) ‖p ds,

ε(44)
n (t) =

∫ t

ti

e−γ(t−s)E ‖ g1(s+ sn, x̃s)− g̃1(s, x̃s) ‖p ds.

By (3.7), there exists N2 ∈ N such that

E ‖ g1(s+ sn, x̃s)− g̃1(s, x̃s) ‖p< ε

for all s ∈ [tj + η, tj+1 − η], j ∈ Z, j ≤ i, and t − s ≥ t − ti + ti − (tj+1 − η)
≥ s− ti + γ(i− 1− j) + η, whenever n ≥ N2. Then,

ε(41)
n (t) ≤ ε

i−1∑
j=−∞

∫ tj+1−η

tj+η

e−γ(t−s)ds

≤ ε

γ

i−1∑
j=−∞

e−γ(t−tj+1+η)

≤ ε

γ

i−1∑
j=−∞

e−γς(i−j−1)

≤ ε

γ(1− e−γς)
,

ε(42)
n (t) ≤ 2p−1[‖ g1 ‖p∞ + ‖ g̃1 ‖p∞]

i−1∑
j=−∞

∫ tj+η

tj

e−γ(t−s)ds

≤ 2p−1[‖ g1 ‖p∞ + ‖ g̃1 ‖p∞]εeγη
i−1∑

j=−∞
e−γ(t−tj)
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≤ 2p−1[‖ g1 ‖p∞ + ‖ g̃1 ‖p∞]εeγηe−γ(t−ti)
i−1∑

j=−∞
e−γς(i−j)

≤ 2p−1[‖ g1 ‖p∞ + ‖ g̃1 ‖p∞]e(γς)/2ε

1− e−γς
.

Similarly, one has

ε(43)
n (t) ≤ M̃3ε, ε(44)

n (t) ≤ M̃4ε,

where M̃3, M̃4 are some positive constants. Therefore, we get that limn→∞ supt∈R
ε

(4)
n (t) = 0. By a similar argument, we can show that

Ψ5 ≤ 18p−1(C(α))p
1

δp−1
[
1

δ
ε+ sup

t∈R
ε(5)
n (t)],

where ε
(5)
n (t) =

∫∞
t
eδ(t−s)E ‖ g1(s + sn, x̃s) − g̃1(s, x̃s) ‖p ds and limn→∞ supt∈R

ε
(5)
n (t) = 0.

Using (3.11) and the Ito integral, we have for p > 2,

Ψ6 ≤ 18p−1(M(α))pCp

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p

×
[ ∫ t

−∞
e−

p
2 γ(t−s)E ‖ f1(s+ sn, xn,s)− f1(s+ sn, x̃s) ‖pL0

2
ds

+

∫ t

−∞
e−

p
2 γ(t−s)E ‖ f1(s+ sn, x̃s − f̃1(s, x̃s) ‖pL0

2
ds

]
≤ 18p−1(M(α))pCp

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p

× [
2

pγ
ε+ sup

t∈R
ε(6)
n (t)],

where ε
(6)
n (t) =

∑4
j=1 ε

(6j)
n (t), and

ε(61)
n (t) =

i−1∑
j=−∞

∫ tj+1−η

tj+η

e−
p
2 γ(t−s)E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖pL0

2
ds,

ε(62)
n (t) =

i−1∑
j=−∞

∫ tj+η

tj

e−
p
2 γ(t−s)E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖pL0

2
ds,

ε(63)
n (t) =

i−1∑
j=−∞

∫ tj+1

tj+1−η
e−

p
2 γ(t−s)E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖pL0

2
ds,

ε(64)
n (t) =

∫ t

ti

e−
p
2 γ(t−s)E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖pL0

2
ds.

By (3.8), there exists N3 ∈ N such that

E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖pL0
2
< ε
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for all s ∈ [tj + η, tj+1 − η], j ∈ Z, j ≤ i, and t − s ≥ t − ti + ti − (tj+1 − η) ≥
s− ti + γ(i− 1− j) + η, whenever n ≥ N3. Then,

ε(61)
n (t) ≤ ε

i−1∑
j=−∞

∫ tj+1−η

tj+η

e−
p
2 γ(t−s)ds

≤ 2

γp

i−1∑
j=−∞

e−
p
2 ς(t−tj+1+η)

≤ 2ε

γp

i−1∑
j=−∞

e−
p
2 γς(i−j−1)

≤ 2ε

γp(1− e−(ςγ/2))
,

ε(62)
n (t) ≤ 2p−1[‖ f1 ‖p∞ + ‖ f̃1 ‖p∞]

i−1∑
j=−∞

∫ tj+1+η

tj

e−
p
2 γ(t−s)ds

≤ 2p−1[‖ f1 ‖p∞ + ‖ f̃1 ‖p∞]εe
p
2 γηe−

p
4 ς(t−ti)

i−1∑
j=−∞

e−
p
2 γς(i−j)

≤ 2p−1[‖ f1 ‖p∞ + ‖ f̃1 ‖p∞]εe
p
2 γηe−

p
2 γ(t−ti)

i−1∑
j=−∞

e−
p
2 γς(i−j)

≤ 2p−1[‖ f1 ‖p∞ + ‖ f̃1 ‖p∞]e(γς)/4ε

1− e− p2 γς
.

Similarly, one has

ε(63)
n (t) ≤ M̃5ε, ε(64)

n (t) ≤ M̃6ε,

where M̃5, M̃6 are some positive constants. Therefore, we get that limn→∞ ε
(6)
n (t) =

0. By a similar argument, we can show that

Ψ7 ≤ 18p−1(C(α))pCp

(
p− 2

pδ

) p−2
p

[
2

pδ
ε+ sup

t∈R
ε(7)
n (t)],

where ε
(7)
n (t) =

∫∞
t
e(δ/2)(t−s)E ‖ f1(s+sn, x̃s)−f̃1(s, x̃s) ‖pL0

2
ds and limn→∞ supt∈R

ε
(7)
n (t) = 0.

For p = 2, we have

Ψ6 ≤ 9(M(α))2E

∫ t

−∞
(t− s)−2αe−2γ(t−s) ‖ f1(s+ sn, xn,s)− f̃1(s, x̃s) ‖2L0

2
ds

≤ 18(M(α))2ς−2α

[ ∫ t

−∞
e−2γ(t−s) ‖ f1(s+ sn, xn,s)− f1(s+ sn, x̃s) ‖2L0

2
ds

+

∫ t

−∞
e−2γ(t−s) ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖2L0

2
ds

]
≤ 18(M(α))2ς−2α[

1

2γ
ε+ sup

t∈R
ε(6)
n ],
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where ε
(6)
n =

∑4
j=1 ε

(6j)
n , and

ε(61)
n =

i−1∑
j=−∞

∫ tj+1−η

tj+η

e−2γ(t−s)E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖2L0
2
ds,

ε(62)
n =

i−1∑
j=−∞

∫ tj+η

tj

e−2γ(t−s)E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖2L0
2
ds,

ε(63)
n =

i−1∑
j=−∞

∫ tj+1

tj+1−η
e−2γ(t−s)E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖2L0

2
ds,

ε(64)
n =

∫ t

ti

e−2γ(t−s)E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖2L0
2
ds.

Similarly, we get that limn→∞ supt∈R ε
(6)
n (t) = 0. By a similar argument, we can

show that

Ψ7 ≤ 18(C(α))2[
1

2δ
ε+ sup

t∈R
ε(7)
n ],

where ε
(7)
n (t) =

∫∞
t
e2δ(t−s)E ‖ f1(s+ sn, x̃s)− f̃1(s, x̃s) ‖2L0

2
ds and limn→∞ supt∈R

ε
(7)
n (t) = 0.

Since {tji}, i ∈Z , j = 0, 1, ..., are equipotentially almost periodic, then for ε > 0,
there exist the sequence of real numbers {sn} and sequence of integer numbers {αn},
such that ti < t ≤ ti+1, |t− ti| > ε, |t− ti+1| > ε, i ∈ Z, one has t+sn > t+sn+ε >
ti+αn and ti+αn+1 > ti+1 + sn − ε > t + sn, that is ti+αn < t + sn < ti+αn+1. By
(H6), for any ε > 0, there exist δ2 > 0 and a bounded subset K̃ ⊂ Lp(P,K) such
that x, y ⊂ K̃ and E ‖ x− y ‖p< δ2 imply that

E ‖ Ii,1(x(ti))− Ii,1(y(ti)) ‖p< ε,

for i ∈ Z. For the above δ2 > 0, there exists N4 > 0 such that E ‖ xn(ti+αi) −
x̃(ti+αi) ‖p, E ‖ x̃(ti+αn)− x̃(ti) ‖p< δ2 for all n > N4 and all i ∈ Z. Therefore,

E ‖ Ii+αn,1(xn(ti+αi))− Ii+αn,1(x̃(ti+αi)) ‖p< ε, (3.12)

E ‖ Ii+αn,1(x̃(ti+αn))− Ii+αn,1(x̃(ti)) ‖p< ε (3.13)

for all n > N4 and all s + sn ∈ R. Then by (3.12), (3.13) and Hölder’s inequality,
we have

Ψ8 ≤ 54p−1(M(α))pς−pα
(∑
ti<t

e−γ(t−ti)
)p−1

×
(∑
ti<t

e−γ(t−ti)[E ‖ Ii+αn,1(xn(ti + αn))− Ii+αn,1(x̃(ti + αn)) ‖p

+ E ‖ Ii+αn,1(x̃(ti+αn))− Ii+αn,1(x̃(ti)) ‖p

+ E ‖ Ii+αn,1(x̃(ti))− Ĩi,1(x̃(ti)) ‖p]
)

≤ 54p−1(M(α))pς−pα

(1− e−γς)p
[2ε+ ε(8)

n ],
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where ε
(8)
n =E ‖ Ii+αn,1(x̃(ti+αn))−Ĩi,1(x̃(ti)) ‖p . By (3.10), we have limn→∞ ε

(8)
n =

0. By a similar argument, we can show that

Ψ9 ≤
54p−1(C(α))p

(1− e−δς)p
[2ε+ ε(9)

n ],

where ε
(9)
n = E ‖ Ii+αn,1(x̃(ti +αn))− Ĩi,1(x̃(ti)) ‖p and limn→∞ supt∈R ε

(9)
n (t) = 0.

By above estimations, we have for all t ∈ R,

E ‖ xn(t)− x̃(t) ‖pα≤ ϑ̃1εn(t) + ϑ̃ε,

where εn(t) =
∑9
j=1 ε

(j)
n (t), and ϑ̃1, ϑ̃ are given constants. Therefore,

sup
t∈R

E ‖ xn(t)− x̃(t) ‖pα ≤ ϑ̃1 sup
t∈R

εn(t) + ϑ̃ε.

By limn→∞ supt∈R εn(t) = 0 with ε sufficiently small, it follows that

sup
t∈R
‖ xn(t)− x̃(t) ‖pα→∞ as n→∞

for all t ∈ R. Since (Ψx)(t + sn) has the the same distribution as xn(t), it follows
that (Ψx)(t+sn)→ x̃(t) in distribution as n→∞. Hence Ψx has almost periodic in
one-dimensional distributions. Note that the sequence (E ‖ xn(t) ‖p) is uniformly
integrable, thus (E ‖ Ψx(t + sn) ‖p) is also uniformly integrable, so the family
(E ‖ xn(t) ‖p)t∈R is uniformly integrable. Next, we prove that Ψx is almost periodic
in distribution. For fixed τ ∈ R, let ξn = Ψx(τ + sn), hn1 = h1(t + sn, ψ), gn1 =
g1(t+ sn, ψ), fn1 = f1(t+ sn, ψ) and Ini,1 = Ii+αn,1(x), i ∈ Z. By the foregoing, (ξn)
converges in distribution to some variable Ψx(τ). We deduce that (ξn) is tight, so
(ξn,W ) is tight also. We can thus choose a subsequence (still noted sn for simplicity)
such that (ξn,W ) converges in distribution to (Ψx(τ),W ). Similarly as the proof
of Properties 3.1 in [?], for every T ≥ τ,Ψx(· + sn) converges in distribution on
PCT ([τ, T ], Lp(P,H)) to the solution to

x(t) = T (t− τ)[ϕ(τ)− h1(τ, ϕ)] + h1(t, xt)

+

∫ t

τ

AT (t− s)h1(s, xs)ds+

∫ t

τ

T (t− s)g1(s, xs)ds

+

∫ t

τ

T (t− s)f1(s, xs)dW (s) +
∑

τ<ti<t

T (t− ti)Ii,1(x(ti)).

Note that Ψx does not depend on the chosen interval [τ, T ], thus the convergence
takes place on PCT ([τ, T ], Lp(P,H)). Hence Ψx is almost periodic in distribution.

(2) Υx ∈ PAP 0
T (R, Lp(P,H), q).

In fact, for r > 0, one has

1

2r

∫ r

−r
sup

θ∈[t−q,t]
E ‖ Υ(θ) ‖pα dt

≤9p−1 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E ‖ h2(θ, xθ) ‖pα dt

+ 9p−1 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ θ

−∞
AT (θ − s)Ph2(s, xs)ds

wwwwp
α

dt
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+ 9p−1 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ ∞
θ

AT (θ − s)Qh2(s, xs)ds

wwwwp
α

dt

+ 9p−1 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ θ

−∞
T (θ − s)Pg2(s, xs)ds

wwwwp
α

dt

+ 9p−1 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ ∞
θ

T (θ − s)Qg2(s, xs)ds

wwwwp
α

dt

+ 9p−1 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ θ

−∞
T (θ − s)Pf2(s, xs)dW (s)

wwwwp
α

dt

+ 9p−1 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ ∞
θ

T (θ − s)Qf2(s, xs)dW (s)

wwwwp
α

dt

+ 9p−1 1

2r

∫ r

−r
E

wwww∑
ti<t

T (t− ti)PIi,2(x(ti))

wwwwp
α

+ 9p−1 1

2r

∫ r

−r
E

wwww∑
t<ti

T (t− ti)QIi,2(x(ti))

wwwwp
α

:=

9∑
j=1

Πj .

By (H3), we have

Π1 ≤ 9p−1 ‖ Aα−β ‖p 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E ‖ h2(θ, xθ) ‖pβ dt→ 0 as r →∞.

As to Π2, we have

Π2 =
1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ ∞
0

AT (s)Ph2(θ − s, xθ−s)ds
wwwwp
α

dt

≤ cp 1

2r

∫ r

−r

(∫ ∞
0

s
p
p−1 (β−α−1)e−γsds

)p−1

×
∫ ∞

0

e−γs sup
θ∈[t−q,t]

E ‖ h2(θ − s, xθ−s) ‖pβ dsdt

= cp
(∫ ∞

0

s
p
p−1 (β−α−1)e−γsds

)p−1 ∫ ∞
0

e−γsds

× 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E ‖ h2(θ − s, xθ−s) ‖pβ dt.

Since h2 ∈ PAP 0
T (R× B, Lp(P,Hβ), q), it follows that

1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ θ

−∞
AT (θ − s)Ph2(s, xs)ds

wwwwp
α

dt→ 0 as r →∞

for all s ∈ R. Using the Lebesgue’s dominated convergence theorem, we have Π2 → 0
as r →∞. Similarly, we can show that Π3 → 0 as r →∞.

As to Π4, we have

Π4 = 9p−1 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ ∞
0

T (s)Pg2(θ − s, xθ−s)ds
wwwwp
α

dt



1430 Z. Yan & X. Jia

≤ 9p−1(M(α))p
1

2r

∫ r

−r

(∫ ∞
0

s−
p
p−1αe−γsds

)p−1

×
∫ ∞

0

e−γs sup
θ∈[t−q,t]

E ‖ g2(θ − s, xθ−s) ‖p dsdt

= 9p−1(M(α))p
(∫ ∞

0

s−
p
p−1αe−γsds

)p−1

×
∫ ∞

0

e−γsds
1

2r

∫ r

−r
sup

θ∈[t−q,t]
E ‖ g2(θ − s, xθ−s) ‖p dt.

Since g2 ∈ PAP 0
T (R× B, Lp(P,Hβ), q), it follows that

1

2r

∫ r

−r
sup

θ∈[t−p,t]
E

wwww∫ θ

−∞
T (θ − s)Pg2(s, xs)ds

wwwwp
α

dt→ 0 as r →∞

for all s ∈ R. Using the Lebesgue’s dominated convergence theorem, we have Π4 → 0
as r →∞. Similarly, we can show that Π5 → 0 as r →∞.

As to Π6, we have for p > 2,

Π6 = 9p−1 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ ∞
0

T (s)Pf2(θ − s, xθ−s)dW (s)

wwwwp
α

dt

≤ 9p−1(M(α))pCp

× 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

[ ∫ ∞
0

s−2αe−2γs ‖ f2(θ − s, xθ−s) ‖2L0
2
ds

]p/2
dt

≤ 9p−1(M(α))pCp
1

2r

∫ r

−r

(∫ ∞
0

s−
p
p−2αe−

p
p−2γsds

) p−2
p

×
∫ ∞

0

e−
p
2 γs sup

θ∈[t−q,t]
E ‖ f2(θ − s, xθ−s) ‖pL0

2
dsdt

= 9p−1(M(α))pCp

(∫ ∞
0

s−
p
p−2αe−

p
p−2γsds

) p−2
p
∫ ∞

0

e−
p
2 γsds

× 1

2r

∫ r

−r
sup

θ∈[t−q,t]
E ‖ f2(θ − s, xθ−s) ‖pL0

2
dt.

For p = 2, we have

Π6 ≤ 9(M(α))2 1

2r

∫ r

−r

∫ ∞
0

s−2αe−2γs sup
θ∈[t−q,t]

E ‖ f2(θ − s, xθ−s) ‖2L0
2
dsdt

= 9(M(α))2

(∫ ∞
0

s−2αe−2γsds

)
1

2r

∫ r

−r
sup

θ∈[t−q,t]
E ‖ f2(θ − s, xθ−s) ‖2L0

2
dt.

Since f2 ∈ PAP 0
T (R× B, Lp(P, L0

2), q), it follows that

1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∫ θ

−∞
T (θ − s)Pf2(s, xs)dW (s)

wwww2

α

dt→ 0 as r →∞

for all s ∈ R. Using the Lebesgue’s dominated convergence theorem, we have Π6 → 0
as r →∞. Similarly, we can show that Π7 → 0 as r →∞.
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For a given i ∈ Z, define the function (Vx)(t) by (Vx)(t) = T (t−ti)PIi,2(x(ti)), ti
< t ≤ ti+1, then

lim
t→∞

sup
θ∈[t−q,t]

E ‖ (Vx)(θ) ‖pα = lim
t→∞

sup
θ∈[t−q,t]

E ‖ T (θ − ti)PIi,2(x(ti)) ‖pα

≤ lim
t→∞

(M(α))p(t− ti)−pαe−pγ(t−ti) sup
i∈Z

E ‖ Ii,2 ‖p∞

≤ lim
t→∞

(M(α))pς−pαe−pγ(t−ti) sup
i∈Z

E ‖ Ii,2 ‖p∞= 0.

Thus Vx ∈ PC0
T (R, Lp(P,H), q) ⊂ PAP 0

T (R, Lp(P,H), q). Define Vjx : R → Lp(P,
H) by

(Vjx)(t) = T (t− ti−j)PIi−j,2(x(ti)), ti < t ≤ ti+1, j ∈ N.

So Vjx ∈ PAP 0
T (R, Lp(P,H), q). Moreover,

sup
θ∈[t−q,t]

E ‖ (Vjx)(θ) ‖p = sup
θ∈[t−q,t]

E ‖ T (θ − ti−j)PIi−j,2(x(ti)) ‖p

≤ (M(α))p(t− ti−j)−pαe−pγ(t−ti−j) sup
i∈Z

E ‖ Ii−j,2 ‖p∞

≤ (M(α))pς−pαe−pγ(t−ti)e−pγςj sup
i∈Z

E ‖ Ii−j,2 ‖p∞ .

Therefore, the series
∑∞
j=0 Vjx is uniformly convergent on R. By Lemma 2.3, one

has ∑
ti<t

T (t− ti)Ii,2(x(ti)) =

∞∑
j=0

(Vjx)(t) ∈ PAP 0
T (R, Lp(P,H), q),

that is

1

2r

∫ r

−r
sup

θ∈[t−q,t]
E

wwww∑
ti<t

T (θ − ti)PIi,2(x(ti))

wwwwp
α

dt→ 0 as r →∞.

Using the Lebesgue’s dominated convergence theorem, we have Π8 → 0 as r →∞.
Similarly, we can show that Π9 → 0 as r →∞.

Hence

lim
n→∞

1

2r

∫ r

−r
sup

θ∈[t−q,t]
E ‖ Υ(θ) ‖pα dt = 0,

which is mean that Υx ∈ PAP 0
T (R, Lp(P,Hα), q). Therefore, x is piecewise pseudo

almost periodic in distribution mild solution to system (1.1)-(1.2).

4. Existence of optimal mild solutions

In this section we give the existence of optimal mild solution for the system (1.1)-
(1.2). Next, denote by Ωf the set of all mild solutions x(t) to the system (1.1)-(1.2)
which are bounded over R, that is µ∗(x) = supt∈RE ‖ x(t) ‖pα . Assume here that
Ωf 6= ∅, and recall the following definition.

Definition 4.1. A bounded mild solution x∗(t) to the system (1.1)-(1.2) is called
an optimal mild solution to the systems (1.1)-(1.2) if µ∗(x∗) ≡ µ∗∗ = infx∈Ωf µ

∗(x).

Our proof is based on the following lemma.
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Lemma 4.1 ( [15]). If D is a nonempty convex and closed subset of a uniformly
convex Banach space X and v /∈ D, then there exists a unique k0 ∈ D such that
‖ v − k0 ‖= infk∈D ‖ v − k ‖ .

To study the optimal mild solutions to the system (1.1)-(1.2), we require the
following assumption.

(S1) The functions h, g : R×B → Lp(P,H), f : R×B → Lp(P, L0
2), Ii : Lp(P,K)→

Lp(P,H), are nontrivial functions. Moreover h, g, f, Ii are convex in ψ ∈ B, x ∈
Lp(P,K) for all i ∈ Z.

Theorem 4.1. If the assumption (S1) and the assumptions of Theorem 3.1 hold.
Then the system (1.1)-(1.2) has an optimal mild solution.

Proof. It suffices to prove that Ωf is a convex and closed set because the trivial
solution 0 /∈ Ωf , then we use Lemma 4.1 to deduce the uniqueness of the optimal
mild solution. For the convexity of Ωf , we consider two distinct bounded pseudo
almost periodic in distribution mild solution x1(t), x2(t) ∈ Ωf and a real number
0 ≤ λ ≤ 1, let x(t) = λx1(t) + (1 − λ)x2(t), t ∈ R. By (H1-(H6) and (S1), we get
that x(t) is continuous for every t ∈ R, and for any t ∈ R, we have

x(t) = [λh(t, x1,t) + (1− λ)h(t, x2,t)]

+

∫ t

−∞
AT (t− s)P [λh(s, x1,s) + (1− λ)h(s, x2,s)]ds

+

∫ ∞
t

AT (t− s)Q[λh(s, x1,s) + (1− λ)h(s, x2,s)]ds

+

∫ t

−∞
T (t− s)P [λg(s, x1,s) + (1− λ)g(s, x2,s)]ds

+

∫ ∞
t

T (t− s)Q[λg(s, x1,s) + (1− λ)g(s, x2,s)]ds

+

∫ t

−∞
T (t− s)P [λf(s, x1,s) + (1− λ)f(s, x2,s)]dW (s)

+

∫ ∞
t

T (t− s)Q[λg(s, x1,s) + (1− λ)f(s, x2,s)]dW (s)

+
∑
ti<t

T (t− ti)P [λIi(x1(ti)) + (1− λ)Ii(x2(ti))]

+
∑
t<ti

T (t− ti)Q[λIi(x1(ti)) + (1− λ)Ii(x2(ti))]

= h(s, λx1,s + (1− λ)x2,s)

+

∫ t

−∞
AT (t− s)Ph(s, (λx1,s + (1− λ)x2,s))ds

+

∫ ∞
t

AT (t− s)Qh(s, (λx1,s + (1− λ)x2,s))ds

+

∫ t

−∞
T (t− s)Pg(s, (λx1,s + (1− λ)x2,s))ds

+

∫ ∞
t

T (t− s)Qg(s, (λx1,s + (1− λ)x2,s))ds
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+

∫ t

−∞
T (t− s)Pf(s, (λx1,s + (1− λ)x2,s))dW (s)

+

∫ ∞
t

T (t− s)Qf(s, (λx1,s + (1− λ)x2,s))dW (s)

+
∑
ti<t

T (t− ti)PIi(λx1(ti) + (1− λ)x2(ti))

+
∑
t<ti

T (t− ti)QIi(λx1(ti) + (1− λ)x2(ti))

= h(t, xt) +

∫ t

−∞
AT (t− s)Ph(s, xs)ds−

∫ ∞
t

AT (t− s)Qh(s, xs)ds

+

∫ t

−∞
T (t− s)Pg(s, xs)ds−

∫ ∞
t

T (t− s)Qg(s, xs)ds

+

∫ t

−∞
T (t− s)Pf(s, xs)dW (s)−

∫ ∞
t

T (t− s)Qf(s, xs)dW (s)

+
∑
ti<t

T (t− ti)PIi(x(ti))−
∑
t<ti

T (t− ti)QIi(x(ti)).

Then x(t) is a pseudo almost periodic in distribution mild solution to the system
(1.1)-(1.2). Note that x(t) is bounded over R since

µ∗(x) = sup
t∈R

E ‖ x(t) ‖pα≤ µ∗(x1) + (1− λ)µ∗(x2) <∞.

Thus x(t) ∈ Ωf .
Now we show that Ωf is closed. Let a sequence xn ∈ Ωf such that limn→∞ xn(t)=

x(t), t ∈ R, and

xn(t) = h(t, xn,t) +

∫ t

−∞
AT (t− s)Ph(s, xn,s)ds−

∫ ∞
t

AT (t− s)Qh(s, xn,s)ds

+

∫ t

−∞
T (t− s)Pg(s, xn,s)ds−

∫ ∞
t

T (t− s)Qg(s, xn,s)ds

+

∫ t

−∞
T (t− s)Pf(s, xn,s)dW (s)−

∫ ∞
t

T (t− s)Qf(s, xn,s)dW (s)

+
∑
ti<t

T (t− ti)PIi(xn(ti))−
∑
t<ti

T (t− ti)QIi(xn(ti)). (4.1)

By (H1)-(H6), taking limits in (4.1), we have for every t ∈ R,

x(t) = h(t, xt) +

∫ t

−∞
AT (t− s)Ph(s, xs)ds−

∫ ∞
t

AT (t− s)Qh(s, xs)ds

+

∫ t

−∞
T (t− s)Pg(s, xs)ds−

∫ ∞
t

T (t− s)Qg(s, xs)ds

+

∫ t

−∞
T (t− s)Pf(s, xs)dW (s)−

∫ ∞
t

T (t− s)Qf(s, xs)dW (s)

+
∑
ti<t

T (t− ti)PIi(x(ti))−
∑
t<ti

T (t− ti)QIi(x(ti)), (4.2)
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which means that x(t) is a pseudo almost periodic in distribution mild solution to
the system (1.1)-(1.2). Finally we show that x(t) is bounded over R. Indeed, we
can write (4.2) as x(t) = [x(t) − xn(t)] + xn(t) for all t ∈ R. Then, for any t ∈ R,
we have

E ‖ x(t) ‖pα ≤ 2p−1E ‖ x(t)− xn(t) ‖pα +2p−1E ‖ xn(t) ‖pα

≤
2∑
i=1

Zi + 2p−1E ‖ xn(t) ‖pα .

By Hölder’s inequality and the Ito integral, we have for p > 2,

Z1 ≤ 18p−1k(α)E ‖ h(t, xn,t)− h(t, xt) ‖pβ

+ 18p−1cp
(

Γ(1 +
p(β − α− 1)

p− 1
)γ−

p(β−α−1)
p−1 −1

)p−1

×
(∫ t

−∞
e−γ(t−s)E ‖ h(s, xn,s)− h(s, xs) ‖pβ ds

)
+ 18p−1(M(α))p

(
Γ(1− p

p− 1
α)γ

p
p−1α−1

)p−1

×
(∫ t

−∞
e−γ(t−s)E ‖ g(s, xn,s)− g(s, xs) ‖p ds

)
+ 18p−1(M(α))pCp

(
Γ(1− p

p− 2
α)(

p

p− 2
γ)

p
p−2α−1

) p−2
p

×
(∫ t

−∞
e−

p
2 γ(t−s)E ‖ f(s, xn,s)− f(s, xs) ‖pL0

2
ds

)
+ 18p−1(M(α))pς−pα

1

(1− e−γς)p−1

×
(∑
ti<t

e−γ(t−ti)E ‖ Ii(xn(ti))− Ii(x(ti)) ‖p
)
.

For p = 2, we have

Z1 ≤ 18k(α)E ‖ h(t, xn,t)− h(t, xt) ‖2β

+ 5cp
(

Γ(1 + 2(β − α− 1)γ−2(β−α−1)−1

)
×
(∫ t

−∞
e−γ(t−s)E ‖ h(s, xn,s)− h(s, xs) ‖2β ds

)
+ 18(M(α))2

(
Γ(1− 2α)γ2α−1

)
×
(∫ t

−∞
e−γ(t−s)E ‖ g(s, xn,s)− g(s, xs) ‖2 ds

)
+ 18(M(α))2

(∫ t

−∞
(t− s)−2αe−2γ(t−s)

× E ‖ f(s, xn,s)− f(s, xs) ‖2L0
2
ds

)
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+ 18(M(α))2ς−2α 1

(1− e−γς)

×
(∑
ti<t

e−γ(t−ti)E ‖ Ii(xn(ti))− Ii(x(ti)) ‖2
)
.

Similarly, we have for p > 2,

Z2 ≤ 18p−1cp
1

δp−1

(∫ ∞
t

eδ(t−s)E ‖ h(s, xn,s)− h(s, xs) ‖pβ ds
)

+ 18p−1(C(α))p
1

δp−1

(∫ ∞
t

eδ(t−s)[E ‖ g(s, xn,s)− g(s, xs) ‖pβ ]ds

)
+ 18p−1(C(α))pCp

(
p− 2

pδ

) p−2
p

×
(∫ ∞

t

e
p
2 δ(t−s)[E ‖ f(s, xn,s)− f(s, xs) ‖pβ ]ds

)
+ 18p−1(C(α))p

1

(1− eςδ)p−1

(∑
t<ti

eδ(t−ti)[E ‖ Ii(xn(ti))− Ii(x(ti)) ‖p]
)
.

For p = 2, we have

Z2 ≤ 18c2
1

δ

(∫ ∞
t

eδ(t−s)E ‖ h(s, xn,s)− h(s, xs) ‖2β ds
)

+ 18(C(α))2 1

δ

(∫ ∞
t

eδ(t−s)E ‖ g(s, xn,s)− g(s, xs) ‖2 ds
)

+ 18p−1(C(α))2

(∫ ∞
t

e2δ(t−s)E ‖ f(s, xn,s)− f(s, xs) ‖2L0
2
ds

)
+ 18(C(α))2 1

(1− eςδ)

(∑
t<ti

eδ(t−ti)E ‖ Ii(xn(ti))− Ii(x(ti)) ‖2
)
.

Choose n large enough and combine Step 2 in Theorem 3.1, for every ε > 0 we get

E ‖ x(t) ‖pα≤ N∗ε+ 2p−1E ‖ xn(t) ‖pα

for a constant N∗ and for all t ∈ R. Then one has

µ∗(x) ≤ N∗ε+ 2p−1µ∗(xn) <∞.

Thus x ∈ Ωf .

5. An example

Consider following partial stochastic differential equations of the form

d

[
z(t, x)− a0(t)

∫ 0

−∞

∫ π

0

b(s, τ, x) sin z(t+ s, x)dτds

]
=
∂2

∂x2
z(t, x)dt+ a1(t)

∫ 0

−∞
a2(s) sin z(t+ s, x)dsdt
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+ a1(t)

∫ 0

−∞
a3(s) sin z(t+ s, x)dsdW (t), t ∈ R, t 6= ti, i ∈ Z, x ∈ [0, π], (5.1)

z(t, 0) = z(t, π) = 0, t ∈ R, (5.2)

4z(ti, x) = βi sin z(ti, x), i ∈ Z, x ∈ [0, π], (5.3)

where W (t) is a two-sided standard one-dimensional Brownian motion defined on
the filtered probability space (Ω,F ,P,Ft). In this system, ti = i+ 1

4 | sin i+sin
√

2i|,
{tji}, i ∈ Z, j ∈ Z are equipotentially almost periodic and ς = infi∈Z(ti+1 − ti) > 0,
one can see [22] for more details.

Let H = L2([0, π]) with the norm ‖ · ‖ and define the operators A : D(A) ⊆
Lp(P,H)→ Lp(P,H) by Aω = ω′′ with the domain

D(A) := {ω ∈ H : ω, ω′ are absolutely continuous, ω′′ ∈ H, ω(0) = ω(π) = 0}.

It is well known that A generates a strongly continuous semigroup T (·) which is
compact, analytic and self-adjoint. Furthermore, A has a discrete spectrum; the
eigenvalues are −n2, n ∈ N, with the corresponding normalized eigenvectors zn(x) =√

2
π sin(nx). Then the following properties hold:

(a) If ω ∈ D(A), then

Aω =

∞∑
n=1

n2〈ω, ωn〉ωn.

(b) For each ω ∈ H,

A−
1
2ω =

∞∑
n=1

1

n
〈ω, ωn〉ωn.

(c) The operator A
1
2 is given by

A
1
2ω =

∞∑
n=1

n〈ω, ωn〉ωn

on the space D(A
1
2 ) = {ω(·) ∈ H,

∞∑
n=1

n〈ω, ωn〉ωn ∈ H} and ‖ A− 1
2 ‖= 1.

Moreover, ‖ A 1
2T (t) ‖≤ 1√

2e
t−

1
2 for all t > 0, and satisfy (H1)-(H2).

We assume that the following conditions hold.

(i) The functions b(·), ∂
j

∂xj b(s, τ, x), j = 1, 2 are (Lebesgue) measurable, b(s, τ0) =
b(s, τπ) for every (s, τ) and

Lb=max

{(∫ π

0

∫ 0

−∞

∫ π

0

e−2s

(
∂j

∂xj
b(s, τ, x)

)2

dτdsdx

)1/2

: j = 0, 1, 2

}
<∞.

(ii) The functions aj : R→ R, j = 0, 1, 2, 3, are continuous.

(iii) The functions aj : R → R, j = 0, 1, are pseudo almost periodic with aj =
ϑj + κj , where ϑj ∈ PAPT (R,R) and κj ∈ PAP 0

T (R,R), j = 0, 1.

(iv) There exist l0, l1 > 0, such that |a0(t)−a0(s)|p ≤ l0|t−s| and |ϑ1(t)−ϑ1(s)|p ≤
l1|t− s| for all t, s ∈ R.
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(v) βi = ζi + ηi ∈ PAP (Z,R), where ζi ∈ PA(Z,R), ηi ∈ PAP0(Z,R).

Let the phase space B be BUC(R−, Lp(P,H)), the space of bounded uniformly
continuous functions endowed with the following norm:

‖ ψ ‖B= sup
−∞<θ≤0

‖ ψ(θ) ‖, ψ ∈ B.

It is well known that B satisfies the axioms (A) and (B) with H̃ = 1,K(t) = 1 and
M(t) = 1.

Let ϕ(θ)(x) = ϕ(θ, x) ∈ B × [0, π]. Taking

h(t, ψ)(x) = a0(t)

∫ 0

−∞

∫ π

0

b(s, τ, x) sin(ψ(s)(x))dτds,

h1(t, ψ)(x) = ϑ0

∫ 0

−∞

∫ π

0

b(s, τ, x) sin(ψ(s)(x))dτds,

g(t, ψ)(x) = a1(t)

∫ 0

−∞
a2(s) sin(ψ(s)(x))ds,

g1(t, ψ)(x) = ϑ1(t)

∫ 0

−q
a2(s) sin(ψ(s)(x))ds,

f(t, ψ)(x) = a1(t)

∫ 0

−∞
a3(s) sin(ψ(s)(x))ds,

f1(t, ψ)(x) = ϑ1(t)

∫ 0

−∞
a3(s) sin(ψ(s)(x))ds,

and
Ii(z)(x) = βi sin(z(ti, x)), Ii,1(z)(x) = ζi sin(z(ti, x)), i ∈ Z.

Then, the above equation (5.1)-(5.3) can be written in the abstract form as the
system (1.1)-(1.2). Since a0(t), a1(t) are the pseudo almost periodic component. It
follows that h, g, f are uniformly pseudo almost periodic of infinite class. Moreover,
assumption (i) implies that h is D(A

1
2 )-valued. In fact, for any ψ ∈ B, we have by

assumption (i)

〈h(t, ψ), ωn〉

=

∫ π

0

ωn(x)

(
a0(t)

∫ 0

−∞

∫ π

0

b(s, τ, x)ψ(s)(x)dτds

)
dx

=
a0(t)

n

〈∫ π

0

∂

∂x

(∫ 0

−∞

∫ π

0

b(s, τ, x)ψ(s)(x)dτds

)
,

√
2

π
cos(nx)

〉
,

and

E ‖ A 1
2h(t, ψ)−A 1

2h(t1, ψ1) ‖p

=E

wwww ∞∑
n=1

n〈h(t, ψ)− h(t1, ψ1), ωn〉ωn
wwwwp

≤
[√

π

(∫ π

0

∫ 0

−∞

∫ π

0

e−2s

(
∂

∂x
b(s, τ, x)

)2

dτdsdx

)1/2]p
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× E
[
|a0(t)− a0(t1)|

∫ 0

−∞
e2sds+ ‖ a0 ‖∞

∫ 0

−∞
e2s ‖ ψ(s)− ψ1(s) ‖ ds

]p
≤2p−1(

√
πLb)

p

[
l0
2p
|t− t1|+ ‖ a0 ‖p∞

1

2p
‖ ψ − ψ1 ‖pB

]
≤Lh[|t− t1|+ ‖ ψ − ψ1 ‖pB],

and E ‖ A 1
2h(t, ψ) ‖p≤ Lh ‖ ψ ‖pB,

E ‖ A 1
2h1(t, ψ)−A 1

2h1(t, ψ1) ‖p≤ Lh ‖ ψ − ψ1 ‖pB

for all t, t1 ∈ R, ψ, ψ1 ∈ B, where Lh = 1
2 (
√
πLb)

p max{l0, ‖ a0 ‖p∞}. From assump-
tion (ii), we have

E ‖ g(t, ψ) ‖p +E ‖ f(t, ψ) ‖p

= E

[(∫ π

0

(
a1(t)

∫ 0

−∞
a2(s) sin(ψ(s)(x))ds

)2

dx

)1/2]p
+ E

[(∫ π

0

(
a1(t)

∫ 0

−∞
a3(s) sin(ψ(s)(x))ds

)2

dx

)1/2]p
≤ E

[
‖ a1 ‖∞

∫ 0

−∞
a2(s) ‖ ψ(s) ‖ ds

]p
+ E

[
‖ a1 ‖∞

∫ 0

−∞
a3(s) ‖ ψ(s) ‖ ds

]p
≤‖ a1 ‖p∞

(∫ 0

−∞
a2(s)ds

)p
‖ ψ ‖pB

+ ‖ a1 ‖p∞
(∫ 0

−∞
a3(s)ds

)p
‖ ψ ‖pB

≤ Lg ‖ ψ ‖pB,

and

E ‖ g1(t, ψ)− g1(t1, ψ1) ‖p +E ‖ f1(t, ψ)− f1(t1, ψ1) ‖p

≤ Lg1 [|t− t1|+ ‖ ψ − ψ1 ‖pB]

for all t, t1 ∈ R, ψ, ψ1 ∈ B, where Lg=‖a1‖p∞max{(
∫ 0

−∞ a2(s)ds)p, (
∫ 0

−∞ a3(s)ds)p},
Lg1 = max{l1(

∫ 0

−∞ a2(s)ds)p, ‖ ϑ1 ‖p∞ (
∫ 0

−∞ a3(s)ds)p}. Further, βi ∈ PAP (Z, R)
implies that Ii ∈ PAP (Z, Lp(P,H)), i ∈ Z, and E ‖ Ii(y) ‖p≤ supi∈Z |βi|p ‖ y ‖p,

E ‖ Ii,1(y)− Ii,1(y1) ‖p≤ sup
i∈Z
|ζi|p ‖ y − y1 ‖p

for all y, y1 ∈ Lp(P,H), i ∈ Z. Then, it satisfies all the assumptions given in The-
orems 3.1. Therefore, the system (5.1)-(5.3) has a pseudo almost periodic in dis-
tribution mild solution. Further, we can impose some suitable conditions on the
above-defined functions to verify the assumptions on Theorem 4.1. Hence by The-
orems 4.1, the system (5.1)-(5.3) has an optimal mild solution on R.
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[5] F. Chérif, Pseudo almost periodic solutions of impulsive differential equations
with delay, Differ. Equ. Dyn. Syst., 2014, 22, 73–91.

[6] G. Da Prato and C. Tudor, Periodic and almost periodic solutions for semilin-
ear stochastic equations, Stoch. Anal. Appl., 1995, 13, 13–33.

[7] T. Diagana and E. M. Hernández, Existence and uniqueness of pseudo almost
periodic solutions to some abstract partial neutral functional-differential equa-
tions and applications, J. Math. Anal. Appl., 2007, 327, 776–791.

[8] M. A. Diop, K. Ezzinbi and M. M. Mbaye, Existence and global attractiveness
of a pseudo almost periodic solution in p-th mean sense for stochastic evolution
equation driven by a fractional Brownian motion, Stochastics, 2015, 87, 1061–
1093.

[9] K. Ezzinbi and I. Zabsonre, Pseudo almost periodic solutions of infinite class
for some functional differential equations, Appl. Anal., 2013, 92, 1627–1642.

[10] J. K. Hale and J. Kato, Phase spaces for retarded equations with infinite delay,
Funkcial. Ekvac., 1978, 21, 11–41.
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