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KRYLOV SUBSPACE METHODS WITH
DEFLATION AND BALANCING

PRECONDITIONERS FOR LEAST SQUARES
PROBLEMS

Liang Zhao1, Tingzhu Huang1,† and Liangjian Deng1,†

Abstract For solving least squares problems, the CGLS method is a typical
method in the point of view of iterative methods. When the least squares
problems are ill-conditioned, the convergence behavior of the CGLS method
will present a deteriorated result. We expect to select other iterative Krylov
subspace methods to overcome the disadvantage of CGLS. Here the GMRES
method is a suitable algorithm for the reason that it is derived from the mini-
mal residual norm approach, which coincides with least squares problems. Ken
Hayami proposed BAGMRES for solving least squares problems in [GMRES
Methods for Least Squares Problems, SIAM J. Matrix Anal. Appl., 31(2010),
pp.2400-2430]. The deflation and balancing preconditioners can optimize the
convergence rate through modulating spectral distribution. Hence, in this
paper we utilize preconditioned iterative Krylov subspace methods with de-
flation and balancing preconditioners in order to solve ill-conditioned least
squares problems. Numerical experiments show that the methods proposed in
this paper are better than the CGLS method.

Keywords Least squares problems, Krylov subspace methods, deflation pre-
conditioner, GMRES methods, CGLS methods.
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1. Introduction
We assume that the least squares problem is in this form

min
x

∥b−Ax∥2, (1.1)

where the coefficient matrix A is large and sparse, and we consider that A is of size
m×n, with full column rank and m ≥ n. When m = n, the least squares problems
could be regarded as a square case and we can choose typical iterative Krylov
methods [7, 18, 19, 21], such as GMRES [21] and Bi-CG [7], to get an approximate
solution of the linear system Ax = b, minimizing residual under 2-norm. Especially,
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this linear system actually has been applied to many practical applications, such
as signal processing [24, 25], image restoration [3, 8, 26–28]. In this paper, we just
consider the situation that m > n. The least square problem (1.1) is mathematically
equivalent to a linear system as this form

ATAx = AT b, (1.2)

which simply translates the original least squares problems into a square case by
premultiplying AT on two sides of the equal sign. And the system matrix of (1.2) is
symmetric positive definite (SPD) so that it could be solved by CG method. That
is the strategy of CGLS [1].

However, the condition number of the SPD linear system, in (1.2), influences
the convergence of conjugate gradient methods significantly. Notice the following
theorem describing the relationship between the condition number of system matrix
and the convergence of CG method. (See [20] for illustration)

Theorem 1.1. Let xm be the approximate solution obtained at the mth step of the
CG algorithm and x∗ be the exact solution. ATA is symmetric positive definite.
Then

∥x∗ − xm∥ATA ≤ 2(

√
κ(ATA)− 1√
κ(ATA) + 1

)m∥x∗ − x0∥ATA, (1.3)

where x0 is the initial guess, and κ(ATA) = λmax(A
TA)/λmin(A

TA).

From (1.3), it is obvious that a small κ(ATA), or close to one, will provide
us a fine convergent boundary, vice versa. If A in (1.1) is ill-conditioned, the
condition number of ATA will even be larger than the original one A, so that the
convergence deteriorates consequently. We would like to utilize a preconditioner,
which could make condition numbers better in the sense of convergence, to optimize
the convergent boundary. For this reason, deflation and balancing preconditioners
are suitable candidates. Now we define them as follow. Notice that A used below is
not the system matrix of least squares problems (1.1) but just a general nonsigular
matrix. Deflation preconditioners [6] are in these forms

Pdef = I −AZE−1Y T , (1.4)

for left precondition cases and

Qdef = I − ZE−1Y TA, (1.5)

for right precondition ones, where E = Y TAZ. Balancing preconditioners, proposed
by Mandel [13], are illustrated below

Pbal = QdefM
−1Pdef + ZE−1Y T , (1.6)

where E = Y TAZ, Qdef and Pdef are described in (1.4) and (1.5) respectively.
And M is a nonsingular preconditioning matrix. Whereas the purpose of this paper
focuses on the influence of deflation and balancing preconditioners related to least
squares problems, we just set M as I, the identity matrix, for simplicity. Y and Z,
here, are matrices of size n × r, where r ≪ n, and they also denote the deflation
subspace which gives rise to the improved condition number. On the option of
Y and Z, both of the two matrices should be full-ranked but we do not assume
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that they are combined with eigenvectors for generality. Also we expect that Y
and Z could make E = Y TAZ easy to compute, especially when inverting E. The
balancing preconditioner has been analyzed by several authors in [8, 9, 10]. The
details of such preconditioners will be stated in the following sections.

In this paper, what we concern about first is the reason why we choose GMRES
instead of CGLS as the strategy for solving least squares problems. As we know,
Krylov subspace methods can be divided into four different classes, and the typical
Krylov subspace methods, such as CG, FOM [20], GMRES, BiCG and SYMMLQ
[17], are all derived from the four approaches. On this preliminary, we propose
that GMRES, to which mininum norm residual approach [22] leads, is a suitable
method for least squares problems. In [10], Prof. Ken Hayami constructed a variant
of the GMRES method for least squares problems. The ill-conditioned system
matrices still exist and hamper convergence behaviors along iterative process in
the situation that choosing an auxiliary matrix in Prof. Ken’s methods without
considering the improvement of condition numbers. Hence we precondition the
variant of GMRES, named as BAGMRES in [10], with deflation and balancing
preconditioners to optimize the spectral distribution so that the iterative Krylov
subspace methods could achieve a better convergence rate.

Particulars of the option about iterative Krylov subspace methods will be stated
in section 2. In section 3, the approach why and how the least squares problems
could be solved by GMRES will be explained. The details of deflation and balancing
preconditioners will be stated in section 4. KAGMRES with deflation and balancing
preconditioners for least squares problems is presented in section 5. Then, numerical
examples are demonstrated in section 6. Finally, conclusions are presented in section
7.

2. The option of Krylov subspace methods
For a large linear system

Ax = b, A ∈ Rn×n (2.1)
where A is nonsingular, we usually solve it through iterative Krylov subspace meth-
ods. We set x0 as the initial guess, and then we get initial residual r0 = b − Ax0.
The Krylov subspace is defined as follow

Km(A, r0) = span{r0, Ar0, A2r0, ..., A
m−1r0}. (2.2)

The approximate solution xm, computed in the mth iteration, presents as a form
belonged to the affine subspace x0 + Km(A, r0), i.e., xm ∈ x0 + Km(A, r0). By
this way, we limit approximate solutions in the affine subspace and expect to ob-
tain more optimal approximate solutions. To get better approximate solutions, we
should, at first, establish some regulations under which we search and compute the
approximate solutions in the affine subspace x0+Km(A, r0). As stated by Henk A.
van der Vorst in the monograph [22], Krylov subspace methods can be distinguished
into four different sorts:

(I). The Ritz-Galerkin approach. Under this approach we construct the xm

so that the residual, rm = b − Axm, is orthogonal to the Krylov subspace, i.e.,
b−Axm ⊥ Km(A, r0). In Krylov subspace methods, FOM and CG are both deduced
based on this approach. The detailed process of deductions is demonstrated in
the monograph [20]. However, the Ritz-Galerkin based methods may suffer from
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expensive computation and storage caused by sophisticated recurrence relationship
for approximate solutions.

(II). The Petrov-Galerkin approach. For overcoming the disadvantage of the
Ritz-Galerkin approach, the Petrov-Galerkin is a regulation under which the resid-
ual, rm = b−Axm, is orthogonal to other k − dimensional subspace. For illustra-
tion, we could attain the biconjugate gradient method (BiCG) and the qusi-minimal
residual method (QMR) if we select Krylov subspace Lm(AT , s0) as the space to
which the residual is orthogonal.

(III). The minimum norm error approach. In this approach the space where we
look for the approximate solutions is different from the above ones. The approximate
solutions, that is, based on the minimum norm error approach is constructed in
ATKm(AT , r0) and such that the 2-norm of error, ∥xm−x∥2, is minimal. SYMMLQ
method [17] and GMERR method [23] are designed along the minimum norm error
approach.

(IV). The minimum norm residual approach. Similar to the minimum norm
error approach, but in this approach we search for a approximate solution xm in
the space Km(A, r0) and determine the optimality of xm in the sense of minimal
residual under 2-norm, i.e. min ∥b−Axm∥2. GMRES, MINRES, and ORTHODIR
are all derived from the the minimum norm residual approach. More information
could be consulted in [20].

Along idea of the (IV), the approximate solution xm, based on the minimum
norm residual approach, satisfies that they make the 2-norm of residual minimal.
This is coincident with the ultimate purpose that should be solved for the original
least squares problems (1.1). And Krylov subspace methods based on (IV ) can be
all regarded as solvers of least squares problems, with a special case that m = n in
(1.1). On the other hand, we can not ensure that the approximate solutions based
on (I), (II) and (III) are the optimal ones under the minimal norm of residual. For
example, we assume that xg

m and xf
m are the approximate solutions computed by

GMRES and FOM at mth step respectively. As we know, GMRES method is based
on (IV) and FOM method on (I). To compare, from a abstractly angle, the effects
of the two methods on solving least squares problems, we set the residual norms
as ∥b−Axg

m∥2 for GMRES and ∥b−Axf
m∥2 for FOM. Then we have the following

proposition.

Proposition 2.1. We set ρg = ∥b − Axg
m∥g2 and ρf = mini=1,2,...,m ∥b−Axf

i ∥
f
2 .

Then we have the following relationship [20]:

ρg ≤ ρf . (2.3)

Eq. (2.3) shows, obviously, that the approximate solution, within m-step itera-
tions, through GMRES method are better than the one obtained by FOM for (1.1).
Hence we select GMRES, a typical Krylov subspace method based on (IV), as the
approach to solve least squares problems (1.1). Now GMRES method is shown as
below.
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Algorithm 1 GMRES with k restart [20].
1. select x0 as the initial guess, r0 = b−Ax0 and ν1 = r0/∥r0∥2
2. for i = 1, 2, ...,m

3. ωi = Aνi

4. for j = 1, 2, ..., i

5. hj,i = (ωi, νj)

6. ωi = ωi − hj,iνj

7. endfor

8. hi+1,i = ∥ωi∥2
9. νi+1 = ωi/hi+1,i

10. Compute ym to minimize ∥ri∥2 = ∥∥r0∥2e1 −Hiy∥2
11. if ∥ri∥2 < τ

12. xi = x0 + [ν1, ..., νi]yi

13. stop

14. endif

15. endfor

16. set x0 = xk and return to line 2 until convergence

The GMRES method, however, can not be applied to solve least squares prob-
lems directly. We have to translate the system matrix A in (1.1) into a square one
by premultiplying a matrix, AT in CGLS for instance. How to determine such a
matrix denoted by K in order that the new system KAx = Kb could be solved by
GMRES is stated in the next section.

3. Auxiliary matrices for solving the least squares
problems

Because the system matrix A in (1.1) is of size m × n, where we just consider the
situation m > n, the GMRES can not be utilized to obtain approximate solutions
of (1.1). Hence, it is necessary to define an auxiliary matrix K of size n × m
so that a new liear system KAx = Kb satisfying GMRES solvers. We assume
that K is certain an auxiliary matrix for the least squares problems (1.1), and the
linear system handled by GMRES, therefore, turns to be KAx = Kb. Under the
hypothesis, we structure a approximate solution under a Krylov subspace of the
form

Km(KA, r̂0) = span{r̂0,KAr̂0, (KA)2r̂0, ..., (KA)m−1r̂0}, (3.1)

where r̂0 = Kr0. The approximate solution xm, constructed in the Krylov subspace
above through GMRES, is the optimal one to the new least squares problem as below

min
x

∥Kb−KAx∥2. (3.2)
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For avoiding such problems like the one mentioned in Proposition 2.1, we should
ensure that the approximate solution extracted from min∥Kb−KAx∥2 is also the
optimal approximation to the original question (1.1). Thanks to the work of Ken
Hayami in [2,9,10,12], we could establish sufficient conditions to define a auxiliary
matrix K by which a optimal approximation, to least squares problems (1.1), could
be extracted from another least squares problems (3.2). In summary, the relative
theorems to identify the auxiliary matrices are presented as below.

Theorem 3.1. If and only if R(A) = R(KTKA), least squares problems min ∥b−
Ax∥2 and min ∥Kb−KAx∥2 share the same optimal approximate solution xopt for
any b ∈ Rm.

Proof. Following the assumption, it is obvious that ∥b−Axopt∥2=min ∥b−Ax∥2
and ∥Kb−KAxopt∥2=min ∥Kb−KAx∥2. As mentioned in Chapter 5. and Chapter
6. in [20] , we have the relationships:

∥b−Axopt∥2 ⇔ AT (b−Axopt) = 0,

and also

∥Kb−KAxopt∥2 ⇔ (KA)TK(b−Axopt) = 0 ⇔ ATKTK(b−Axopt) = 0.

Then, ∥b − Axopt∥2 ⇔ ∥Kb − KAxopt∥2 if and only if N(AT ) = N(ATKTK) ⇔
R(A) = R(KTKA).

Constructing auxiliary matrix K, however, through Theorem 3.1 is sophisticated
and abstract, so we expect a more direct relationship between system matrix A and
auxiliary matrix K to determine the latter. A theorem proposed by Ken Hayami
in [10] is stated in the following.

Theorem 3.2. The approximation solution of KAx = Kb, obtained through Krylov
subspace iterative methods, minimizes ∥b−Ax∥2 if and only if R(A) = R(KT ).

Proof. See [10] for details.
Furthermore, it is easy that R(A) = R(ACT ) where C is nonsingular of size

n× n. If we construct K, depending on the relationship R(A) = R(ACT ), as

K = CAT , (3.3)

the optimal approximate solution of (3.2) computed by GMRES is the optimal so-
lution to least squares problems (1.1). Here we consider a nonsingular matrix C
to construct auxiliary matrix K as (3.3), and then apply GMRES, illustrated in
algorithm 1, to least squares problem (3.2), denoted by KAGMRES. We write it as
below.
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Algorithm 2 KAGMRES with k restart [10].
1. select x0 as the initial guess, r̂0 = K(b−Ax0) and ν1 = r0/∥r0∥2
2. for i = 1, 2, ...,m

3. ωi = KAνi

4. for j = 1, 2, ..., i

5. hj,i = (ωi, νj)

6. ωi = ωi − hj,iνj

7. endfor

8. hi+1,i = ∥ωi∥2
9. νi+1 = ωi/hi+1,i

10. Compute ym to minimize ∥r̂i∥2 = ∥∥r̂0∥2e1 −Hiy∥2
11. if ∥AT ri∥2 < τ

12. xi = x0 + [ν1, ..., νi]yi

13. stop

14. endif

15. endfor

16. set x0 = xk and return to line 2 until convergence

The KAGMRES could be regarded as a special case of GMRES where the system
matrix and right hand side are both premultiplied by CAT . In summary, we look for
the approximate solution of (3.2) in stead of solving (1.1) directly, and the solution
of (3.2) is extracted from linear system CATAx = CAT b. We denote the linear
system that is handled by KAGMRES directly as follow

Âx = b̂. (3.4)

Now we just need to determine a nonsingular matrix C of size n×n to construct
the auxiliary matrix K, and then the approximate solution of (3.4) will give us the
answer of (1.1). To analyze Algorithm 2 further, we expect the convergence bound
of KAGMRES. At first, we give the convergence bound of GMRES for (3.4) as
below.

Theorem 3.3. Â = XΛX−1 is the spectral decomposition of the system matrix of
(3.4), and Λ = diag{λ1, λ2, ..., λn}, λn ≥ λn−1 ≥ ... ≥ λ1 ≥ 0. Then it holds that

∥r̂m∥2 ≤ 2κ2(X)(1− 2√
κ(Â) + 1

)m∥r̂0∥2, (3.5)

where κ2(X) = ∥X∥2∥X−1∥2 and κ(Â) = λn

λ1
.

Proof. See [20] for instance.
To identify X in Theorem 3.3, we consider the singular decomposition of AC

1
2

as AC
1
2 = UΣV T . In this case,
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Â = KA = CATA = C
1
2 (AC

1
2 )TAC

1
2C− 1

2 = C
1
2V ΣTΣ(C

1
2V )T ,

and where

Σ = [Dσ, O]T , O is 0(m−n)×n, Dσ = diag{σ1, σ2, ..., σn}, σn ≥ σn−1 ≥, ...,≥ σ1 ≥ 0

are the singular values of AC
1
2 . Hence we have X easily that X = C

1
2V and notice

V is an unit matrix so that κ2(X) = κ2(C
1
2V ) =

√
κ(C). Now the convergence

bound of KAGMRES writes as follow.

∥r̂m∥2 ≤ 2
√
κ(C)(1− 2√

κ(Â) + 1
)m∥r̂0∥2. (3.6)

We notice that the convergence bound of KAGMRES mainly depend on the
condition number of Â, the smaller the better. However, if the system matrix A of
(1.1) is ill-conditioned, that is to say the condition number of A is large, and C is
choosed without considering the diminution of the condition number of KA, that
is Â, the condition number of Â will be equal to, or even larger than, the original
one κ(A). That hampers the convergence rate of KAGMRES, so a preconditioner
aimed to improve the condition number is necessary in this situation. The deflation
and balancing preconditioners are suitable choices for this purpose. These two
preconditioners will be presented in the next section.

4. Deflation and balancing preconditioners
In this section, we will assume, for simplicity at first, that the deflation subspace
is combined with the eigenvector columns in spectral analysis, although we just
need to ensure the deflation subspaces, denoted by Y and Z, are full-ranked in
practice. At the beginning, we will give a theorem to show the spectral distribution
of a matrix A with the deflation preconditioner and balancing preconditioner in a
special case that the deflation subspaces consist of the eigenvectors.

Theorem 4.1. Z = [z1, z2, ..., zr] and Y = [y1, y2, ..., yr] satisfy that Âzi = λizi
and ÂT yi = λiyi respectively. The deflation preconditioner Pdef and the balancing
preconditioner Pbal are defined as (1.4) and (1.6) respectively. Then we have the
following that

σ(Pdef Â) = {0, ..., 0, λr+1, ..., λn},

σ(PbalÂ) = {1, ..., 1, λr+1, ..., λn}.

Proof. E = Y T ÂZ = diag(λ1, λ2, ..., λr) and Y TZ = I. For i = 1, 2, ..., r,

Pdef Âzi = Âzi − ÂZ(diag(λ1, λ2, ..., λr))
−1Y T Âzi = 0.

For i = r + 1, r + 2, ..., n, Y T zi = 0 and we give that

Pdef Âzi = Âzi − ÂZ(diag(λ1, λ2, ..., λr))
−1Y T Âzi = λizi.

The first conclusion σ(Pdef Â) = {0, ..., 0, λr+1, ..., λn} could be easily summarized.
Similarly, for i = 1, 2, ..., r expanding PbalÂzi we have the following that

PbalÂzi = (I − ZE−1Y T )(I − ÂZE−1Y T )Âzi + ZE−1Âzi = zi
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and, for i = r + 1, r + 2, ..., n,

PbalÂzi = λizi.

Hence, we have σ(PbalÂ) = {1, ..., 1, λr+1, ..., λn}.
To compare the convergence bound with (3.5) in Theorem 3.3, we will give the

convergence bound of the linear system

Pdef Âx = Pdefb. (4.1)

It is obvious that the condition number of (4.1) is smaller than the one of (3.4),
since the condition number of (4.1) is λn

λr+1
, where λn

λ1
of (3.4) and λ1 ≤ λr+1. Under

this prerequisite, if the spectral decomposition of Pdef Â is of this form that Â =

XΛdefX
−1 where X is the eigenvectors of Â and Λdef = diag(0, ..., 0, λr+1, ..., λn),

we chould easily have the convergence bound of (4.1) as follow

∥Pdef r̂m∥2 ≤ 2κ2(X)(1− 2√
κ(Pdef Â)

)m∥Pdef r̂0∥2. (4.2)

It exists thatÂ and Pdef Â share the same eigenvectors, this is Pdef Â = XΛdefX
−1.

(See details in [4]) With κ(Pdef Â) < κ(Â) as stated above, we could, therefore, have
conclusion that the KAGMRES with deflation preconditioner, formed as (4.1) for
example, have a faster convergence than (3.4).

Similarly we have the convergence bound of KAGMRES with balancing precon-
ditioner as below

∥Pbalr̂m∥2 ≤ 2κ2(X)(1− 2√
κ(PbalÂ)

)m∥Pbalr̂0∥2. (4.3)

That is to say the balancing preconditioner have a property to fast the convergence
of GMRES resembling deflation. However we notice that the system matrix Â
in (3.4) preconditioned by deflation may be singular. To guarantee KAGMRES
convergence, it is necessary to obtain morn properties about Pdef and Pbal. For
λn

λ1
≥ λn

λr+1
, the deflation preconditioner is better than the balancing precondition

from the angle of improving condition numbers. And Yogi A. Erlangga and Reihard
Nabben have proved it in [4]. Furthermore Pbal do not make PbalÂ singular so
that KAGMRES with balancing preconditioner will converge. We, hence, have the
proposition next.

Proposition 4.1. KAGMRES with deflation preconditioner will converge and is
faster than KAGMRES with balancing preconditioner.

We have discussed some properties of deflation and balancing preconditioners
under an assumption that the deflation subspaces, Z and Y , is combined with the
eigenvectors of Â. Under this precondition, it is manifest that these two precon-
ditioners could improve the condition numbers effectively through changing the
spectral distributions. Nevertheless we have to compute the eigenvalues and the
corresponding eigenvectors at first. Even though we do not consider the round-off
error in floating-point calculation, the expensive computation and storage for the
eigenvalues and eigenvectors lead such an idea which is more in theory but not in
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practice. For this reason the effection of the two preconditioners with arbitrary full-
ranked matrix Z and Y as deflation subspace turns to importance. For generality,
the spectral distributions of Pdef Â and PbalÂ with arbitrary full-ranked matrix Z
and Y will be presented in the following.

Theorem 4.2. The deflation preconditioner and the balancing preconditioner are
defined as (1.4) and (1.6) respectively. Z and Y are arbitrary full-ranked matrices
of size n× r where r ≪ n. Assume the spectrum of Pdef Â is of this form

σ(Pdef Â) = {0, ..., 0, µr+1, ..., µn},

we have the spectrum of PbalÂ as

σ(PbalÂ) = {1, ..., 1, µr+1, ..., µn},

vice versa.

Proof. Z and Y are arbitrary full-ranked matrices. Expand Pdef ÂZ with E =

Y T ÂZ and we have

Pdef ÂZ = ÂZ − ÂZE−1Y T ÂZ = 0.

Similarly we have

PbalÂZ = QdefPdef ÂZ + ZE−1Y T ÂZ = Z.

Here we obtain the first r eigenvalues of Pdef Â and PbalÂ. For i = r+1, r+2, ..., n,
we set µi as eigenvalues of Pdef Â and z̃i as corresponding eigenvectors, that is
Pdef Âz̃i = µiz̃i. We consider Qdef z̃i ̸= 0 and we have the relation next

PbalÂQdef z̃i = QdefPdef ÂQdef z̃i + ZE−1Y T ÂQdef z̃i

= QdefPdef ÂQdef z̃i = QdefPdef Âz̃i = µiQdef z̃i.

PbalA have eigenvectors as the form of Qdef z̃i corresponding to µi and we obtain
the conclusion stated above.

Similarly we could conclude, on the condition

σ(PbalÂ) = {1, ..., 1, µr+1, ..., µn},

that

σ(Pdef Â) = {0, ..., 0, µr+1, ..., µn}.

We realize, with Theorem 4.1 and Theorem 4.2, that no matter what full-ranked
matrices we choose as the deflation subspace the spectral distributions are similar in
form. To any linear system Ax = b, we take the condition number of system matrix
A, abstractly, as the main criterion to judge convergence rate in Krylov iterative
methods. And a small condition number is better than a large one in the sense of
convergence. In a general case, we just select full-ranked matrices Y and Z, but not
such matrices consisted of the eigenvectors of Â and ÂT respectively, as the deflation
subspaces utilized in (1.4) and (1.6). The condition numbers, in this situation, of
Pdef Â and PbalÂ are expressed as κ(Pdef Â) = µn

µr+1
and κ(PbalÂ) = max{ µn

µr+1
, µn

1 }
respectively.
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Along with a feasible and theoretical angle of view, we give the following two
assumptions.

Assumption 4.1 The system matrix Â of (3.4) has real eigenvalues. The eigen-
values of the system matrix Â, without preconditioning, are denoted as λi, where
λi < λj if and only if i ≤ j. There is existing a j so that there is also existing i’s
satisfying λi ≤ 1.

If all eigenvalues of the system matrix Â are larger than one, the balancing pre-
conditioner is insignificance. Also, the effection of the deflation preconditioner is
hampered in some sense.

Assumption 4.2 The dimension of deflation subspace r is large enough to guar-
antee µr+1, the (r+1)-th eigenvalue of the preconditioned system matrix Pdef Â or
Pdef Â, is larger than or equal to one.

Under this assumption, the deflation and the balancing preconditioners both
effectively discard the smallest eigenvalues, which may course a bad condition num-
ber, from spectrum.

With the above two assumptions, naturally we could obtain the theorem next.

Theorem 4.3. κ(Â), κ(Pdef Â) and κ(PbalÂ) are condition numbers of the system
matrix in (3.4), preconditioned system matrices κ(Pdef Â) and κ(PbalÂ) respectively.
Then they hold the relationship as below,

κ(Â) ≥ κ(PbalÂ) ≥ κ(Pdef Â).

Proof. We set the eigenvalues, except zero and one, of Pdef and Pbal as µi and
the eigenvalues of Â as λi. Under assumption 4.4 and assumption 4.5, we have
µr+1 ≥ 1 ≥ λ1, and then κ(PbalÂ) = µn

1 ≥ µn

µr+1
= κ(Pdef Â). Obvious is µi ≤ λi.

(details in [11]) Hence, it holds that κ(Â) = λn

λ1
≥ µn

1 = κ(PbalÂ). In summary, we
could conclude that κ(Â) ≥ κ(PbalÂ) ≥ κ(Pdef Â).

In conclusion, utilizing any full-ranked matrices with an appropriate dimension
as deflation subspace, the deflation and the balancing preconditioners could both im-
prove the solving system through optimizing condition numbers. For a least squares
problem with an ill-conditioned system matrix, if the auxiliary matrix K is con-
structed without consideration of optimizing condition number, it is necessary to use
the deflation preconditioner or the balancing preconditioner for improving the spec-
tral distribution of Â in order to accelerate Krylov subspace methods, KAGMRES
as example. In the following section, details in implementation of preconditioned
Krylov subspace methods for least squares problems will be presented.

5. Preconditioned Krylov subspace methods for least
squares problems

Through the past sections, we found that we select an auxiliary matrix K to trans-
late the least squares problem (1.1) into (3.2) and solve (3.2) by applying KAGM-
RES to (3.4). When the system matrix A of original linear system is ill-conditioned
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and the auxiliary matrix K can not make the condition number of KA, or Â,
smaller, we utilize the deflation or the balancing preconditioners to accelerate the
iterative Krylov subspace methods, KAGMRES in this paper. Hence, we have to
focus on the following two questions that (i) determination of deflation subspace Z
and Y , and (ii) the process of computation for solving the least squares problem
(1.1).

5.1. Choice of deflation subspace Z and Y

Choosing zi and yi as columns of Z and Y respectively, where Âzi = λizi and
ÂT yi = λiyi, is a appropriate option in theory, but the approach is hard to achieve.
For generality, we just need to construct a matrix of full rank. In this paper, we
construct the deflation subspace Y and Z based on domain decomposition, which
has been proposed by Mansfield in [14] and cited by Nicolaides in [15].

We describe the construction of Z and Y along with Frank’s work in [6]. The
domain Ω is decomposed into k subdomains Ωj , j = 1, 2, ..., k. Meanwhile we set
up an index set θj and define it as θj = {i|ui ∈ Ωj}. There exists a one-to-one
correspondence relationship between the index set θj and the subdomain Ωj . And
we just consider Ωj ’s are connected, but nonoverlapping, subdomains covering Ω
for simplicity. Therefore, we define elements of Z next,

zij =

1, i ∈ θj ,

0, i /∈ θj .

And we assume that another deflation subspace Y is equal to Z, with the feasi-
bility proved by Franck and Vuik in [6]. Next we will give the algorithm to obtain Z.

Algorithm 3 Deflation subspace computation
1. Assume the dimension of Â is n, and the deflation subspace Z is of size n× r.

2. α = n/r

3. if α ̸= 0

4. end

5. for i = 1, 2, ..., n; j = 1, 2, ..., r

6. zij = 0

7. end

8. for j = 1, 2, ..., r

9. for k = 1, 2, ..., α

10. i = k + α(j − 1)

11. zij = 1

12. endfor

13. endfor
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5.2. Computation process
Recall that we avoid solving least squares problems (1.1) directly, but make it into
(3.4) and handle it with preconditioned KAGMRES. Notice that the process of
applying GMRES, with deflation preconditioners, to (3.4) performs in three steps
one by one. At first, we rewrite x as

x = (I −Qdef )x+Qdefx.

And then we could easily get that (I−Qdef )x = ZE−1Y T Âx = ZE−1Y T b̂. Finally
we apply GMRES to linear system Pdef Âu = Pdef b̂ to extract approximation solu-
tion ũ. Qdefx can be presented as Qdef ũ. Hence, with the deflation preconditioner
the ultimate solution of (1.1) is in this form that

x = ZE−1Y T b̂+Qdef ũ.

Choosing Pbal to precondition (3.4), we consider Pbal as a left-preconditioner and
solve (3.4) by Left-Preconditioned KAGMRES [20]. The approximate solution ex-
tracted from Left-Preconditioned KAGMRES is the ultimate solution to (1.1).

On the option of the auxiliary matrix, we set C based on diagonal scaling
by the utilization of the diagonal elements of ATA for simplicity. That is C =
[diag(ATA)]−1, and then we have the auxiliary matrix K = CAT .

6. Numerical experiment
In this section, the numerical experiments will be presented to illustrate the effection
of the deflation and balancing preconditioners when we select an iterative Krylov
method for solving least squares problems. The CGLS method, regarded as a
typical method for least squares problems, will be used as compare item. The main
function of deflation and balancing preconditioners are effective improvement on the
condition number for accelerating convergence rate. Hence, it is not necessary to
impose the preconditioners on a well-conditioned system matrix. In this numerical
experiment, we only select such least squares problems which have ill-conditioned
system matrix as examples. The system matrices are constructed by the MATLAB
routine “sprandn(m, n, density, rc)”, where sprandn(m, n, density, rc) is a random,
m-by-n, sparse matrix with approximately density × m × n normally distributed
nonzero entries. The last term “rc” presents the reciprocal of condition number
approximately, that is to say the smaller is “rc” the more ill-conditioned is the
system matrix of (1.1). The right-hand side vector b is generated by MATLAB
routine “randn(m, 1)”. Considering the special form of the preconditioned Krylov
subspace [4], in which we search for approximate solutions, the initial guesses are
presented

xdef
0 = (0, 0, ..., 0)T

and

xbal
0 = ZE−1Y T b̂

for deflation and balancing preconditioned KAGMRES respectively. The following
numerical experiments are performed with the dimension of deflation subspace r =
50 and precision τ = 1.1× 1016.
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Figure 1. ∥AT r∥2/∥AT b∥2 vs. iterations (m = 5000, n = 1000, density=0.01, condition number=106,
r = 50)
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Figure 2. ∥AT r∥2/∥AT b∥2 vs. iterations (m = 5000, n = 1000, density=0.01, condition number=106,
r = 50)

With an ill-conditioned system matrix marked by condition number=106, Fig.
1, Fig. 2 and Fig. 3 indicate that convergence rate of preconditioner KAGMRES
is much better than the one of CGLS, and effections of deflation and balancing
preconditioners are similar in the way of convergence.

The same conclusion could still be illustrated by Fig. 4, Fig. 5 and Fig. 6,
where the system matrix is more ill-conditioned for setting condition number=108.
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Figure 3. ∥AT r∥2/∥AT b∥2 vs. iterations (m = 5000, n = 1000, density=0.01, condition number=106,
r = 50)
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Figure 4. ∥AT r∥2/∥AT b∥2 vs. iterations (m = 5000, n = 1000, density=0.01, condition number=108,
r = 50)

The above six numerical experiments state the fact that the deflation and balancing
preconditioners improve the convergence rate of iterative Krylov subspace method,
KAGMRES as example, effectively through optimizing condition number.

7. Conclusions
For least squares problems, we choose GMRES, which is derived from the minimum
norm residual approach, as the main strategy because of the relationship between
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Figure 5. ∥AT r∥2/∥AT b∥2 vs. iterations (m = 5000, n = 1000, density=0.01, condition number=108,
r = 50)
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Figure 6. ∥AT r∥2/∥AT b∥2 vs. iterations (m = 5000, n = 1000, density=0.01, condition number=108,
r = 50)

such approach and the least squares problems. (See Proposition 2.1 for instance) In
order to utilize GMRES to solve the least squares problem min∥b−Ax∥2, we estab-
lish the principle that constructing auxiliary matrix K with a nonsingular matrix C
as the form K = CAT . Now, the least squares problem min∥b−Ax∥2 is translated
into min∥Kb−KAx∥2. We, then, have the Algorithm 2 KAGMRES, which handle
a new linear system as Âx = b̂ directly to extract the optimal approximate solu-
tion to min∥Kb − KAx∥2. To overcome the problems brought an ill-conditioned
system matrix A, we precondition the linear system Âx = b̂ by the deflation and
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the balancing preconditioners so that achieving a better convergence. Comparing
with CGLS, Krylov subspace methods with deflation and balancing preconditioners
are effective ways for the solving least squares problems, even though the system
matrix is ill-conditioned.
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