
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 8, Number 5, October 2018, 1385–1395 DOI:10.11948/2018.1385

ON KINK AND ANTI-KINK WAVE
SOLUTIONS OF SCHRÖDINGER EQUATION
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Abstract This paper deals with existence problem of traveling wave solutions
of a class of nonlinear Schrödinger equation having distributed delay with a
strong generic kernal. By using the geometric singular perturbation theory
and the Melnikov function method, we establish results of the existence of
kink and anti-kink wave solutions of the nonlinear Schrödinger equation with
time delay when the average delay is sufficiently small.
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1. Introduction

The nonlinear Schrödinger (NLS) equation [1,25] that describes the propagation of
picoseconds light pulses in optical fiber is of great importance to applied mathemat-
ics and many fields of physics, including nonlinear quantum field theory, condensed
matter, plasma physics, nonlinear optics, quantum electronics, and fluid mechan-
ics [2, 6, 24]. This equation is completely integrable and allows both bright and
dark solitons [11] depending on the coefficients of linear GVD and SPM. Lots of
methods, especially traveling wave solution methods are employed to the NLS equa-
tion and all kinds of generalizations, such as extended direct algebraic method [7],
Hirota bilinear method [27, 28], modified simple equation method [3, 20, 26, 38],
Backlund transformation method [31], tanh-function method [16], the first inte-
gral method [8, 9, 39], the homogeneous balance method [12], extended auxiliary
equation method [32, 40], the Jacobi elliptic function expansion method [41], the
(G′/G)-expansion method [42], and many more.
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With systems evolving there usually occur aftereffect phenomena, about which
many time-delay systems are found and investigated in engineering science fields
[17, 21, 23, 33, 34]. In [4, 5, 22], the numerical analysis is applied to study the effect
of time delay on the solution of the NLS equation. Yang et al [35, 36] studied
the NLS equation with delay term that has much actual significance. The solitary
wave solutions are found and related physical problems are also discussed in details.
Zhao and Ge [37] investigate the NLS equation with distributed delay and give the
conditions that assure existence of the solitary wave and periodic solutions by the
homoclinic and periodic orbits. We’ll investigate the heteroclinic orbits of the NLS
equation with distributed delay, and existence of kink and anti-kink wave solutions
in the distributed delay equation will be obtained.

In this paper, we consider the following NLS equation with distributed delay,

iUt + Uxx − f ∗ U |U |2 − τU(|U |2)x = 0,−∞ < t < +∞,−∞ < x < +∞, (1.1)

where τ =
∫ +∞
0

tf(t)dt > 0 is time delay, τU(|U |2)x means the nonlinear response
delay term [35,36], here the convolution f ∗ U is defined by

(f ∗ U)(x, t) =

∫ t

−∞
f(t− s)U(x, s)ds, (1.2)

and the kernel f : [0,+∞) → [0,+∞), that satisfies the following normalization

assumption: f(t) ≥ 0 for all t ≥ 0 and
∫ +∞
0

f(t)dt = 1, tf(t) ∈ L1((0,+∞), R).

Remark 1.1. If the parameter τ = 0 and f(t) = δ(t), Eq. (1.1) becomes the
corresponding undelayed and undisturbed NLS equation. That is the following
form

iUt + Uxx − U |U |2 = 0. (1.3)

Remark 1.2. Here we point out that if the different delay kernels were chosen, then
the different types equations can be derived from Eq. (1.3). For example, when we
take the kernel to be f(t) = δ(t), where δ denotes Dirac δ function, then Eq. (1.1)

becomes the corresponding NLS equation iUt + Uxx − U |U |2 − τU(|U |2)x = 0.

Usually, Gamma distribution delay kernel is used

f(t) =
λntn−1e−λt

(n− 1)!
, n = 1, 2, ...,

where λ > 0 is a constant, n is a integer, with the average delay τ = n/λ > 0.
Two special cases f(t) = 1

τ e
−t/τ (n = 1)and f(t) = t

τ2 e
−t/τ (n = 2) are called

the weak generic kernel and the strong generic kernel, respectively.
In this paper, the distributed delay kernel f(t) of Eq. (1.1) has the following

form

f(t) =
t

τ2
e−t/τ−iwt, (1.4)

where the parameter w > 0.
Under the assumption that the distributed delay kernel f(t) is the strong gener-

ic kernel, our main concern is to ascertain existence of the traveling wave solution
for Eq. (1.1). The remaining parts are organized as follows. In Section 2, some
preliminary theory and discussion are devoted. The phase portraits of wave equa-
tion and traveling waves for the non-delay equation (1.3) are given. In Section 3,
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by using the linear chain trick, Eq. (1.1) with the strong generic kernel can be
transformed into a non-delay four-dimensional ordinary differential system. Since
the delay τ is sufficiently small, the four-dimensional ordinary differential system
is a standard singular perturbed system. By the singular perturbation theory, the
four-dimensional ordinary differential system is reduced to the two-dimensional or-
dinary differential system. We’ll prove that there exist the kink and anti-kink wave
solutions of system (1.1) with the Melnikov function method.

2. Preliminaries

In order that Eq. (1.1) can be viewed as perturbation of Eq. (1.3), it is necessary
to give some facts about unperturbed nonlinear traveling wave Eq. (1.3).

To study the traveling wave solution of Eq. (1.3), we suppose that U(x, t) =
ϕ(ξ)eiθ, ξ = x − ct, θ = ax − wt, and c > 0, where ϕ is real valued function
and represents the amplitude of the traveling wave with wave number a > 0 and
frequency w > 0.

Now substituting U(x, t) = ϕ(ξ)eiθ = ϕ(x− ct)ei(ax−wt) into the non-delay Eq.
(1.3), we get two equations from the real part and the imaginary part of it.

wϕ+ ϕ′′ − a2ϕ+ ϕ3 = 0,

−cϕ′ + 2aϕ′ = 0,
(2.1)

where ′ denotes the derivative with respect to the variable ξ.
Let a = c/2 and µ = w − c2

/
4, then the Eq. (2.1) becomes

φ′′ = −µφ+ φ3. (2.2)

Taking u = ϕ
/√

µ and z =
√
µξ to the Eq. (2.2), it turns to

ü = −u+ u3, (2.3)

where · denotes the derivative with respect to the variable z.
Then we have the following equivalent form

u̇ = v,

v̇ = −u+ u3.
(2.4)

In the following lemma, we’ll obtain the phase orbit expressions of a kink wave
and an anti-kink wave solutions of the non-delay equation (1.3) (The existence of a
kink wave and an anti-kink wave of Eq (1.3) can refer to [29,30]).

Lemma 2.1. In the (u, v) phase plane, Eq. (2.4) has two heteroclinic orbits con-
necting the two critical points (±1, 0), so the phase orbit expressions of the kink
wave and the anti-kink wave solutions of non-delay equation (1.3) can be obtained.

Proof. It’s easy to see that Eq. (2.4) has three critical points (0, 0), (±1, 0). The
origin is a center and (±1, 0) are saddles. Eq. (2.4) is a Hamiltonian system with
the Hamiltonian function

H(u, v) = u4 − 2u2 − 2v2. (2.5)
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Let H(u, v) = k, and when k = −1, it has a heteroclinic loop connected by the
two critical points (±1, 0), namely v = ±

√
2
/

2(u2 − 1), so the corresponding kink
wave and anti-kink wave solutions of the non-delay equation (1.3) exist. When −1 <

k < 0, system (2.4) has a periodic orbit v = ±
√

2
/

2
√
u4 − 2u2 − k,−

√
1−
√

1 + k ≤
u ≤

√
1−
√

1 + k, so the corresponding periodic wave solution of non-delay equa-
tion (1.3) exists.

To study the problem of existence of traveling solution of Eq. (1.1), we will
transform Eq. (1.1) into a four-dimensional singular perturbed ordinary differen-
tial system and study the existence problem of heteroclinic orbit of the singular
perturbed ODE, so we need to use the following Geometric Singular Perturbation
Theorem [15,18].

Lemma 2.2 (Geometric Singular Perturbation Theorem). For the system

x′(t) = f(x, y, ε),

y′(t) = εg(x, y, ε),
(2.6)

where x ∈ Rn, y ∈ Rl and ε is a real parameter, f, g are C∞ on the set V ×I, where
V ∈ Rn+l and I is an open interval, containing 0. If when ε = 0, the system has a
compact, normally hyperbolic manifold of critical points M0, which is contained in
the set {f(x, y, 0) = 0}. Then for any 0 < r < +∞, if ε > 0, but sufficiently small,
there exists a manifold Mε:

(i) which is locally invariant under the flow of (2.6);

(ii) which is Cr in x, y and ε;

(iii) Mε = {(x, y) : x = hε(y)} for some Cr function hε(y) and y in some
compact K;

(iv) there exist locally invariant stable and unstable manifolds W s(Mε) and
Wu(Mε) that lie within O(ε), and are diffeomorphic to W s(M0) and Wu(M0) re-
spectively.

3. Existence of solitary wave of the equation with
delay

3.1. Existence of a locally invariant two-dimensional manifold
Mτ

Now we consider Eq. (1.1) with distribution delay. With traveling wave transforma-
tion, let U(x, t) = ϕ(ξ)eiθ = ϕ(x − ct)ei(ax−wt), and substituting it into Eq. (1.1),
we get a real and an imaginary component of Eq. (1.1) with (1.4) respectively

wϕ+ ϕ′′ − a2ϕ− (g ∗ ϕ)ϕ2 − 2τϕ2ϕ′ = 0,

−cϕ′ + 2aϕ′ = 0,
(3.1)

where

(g ∗ ϕ)(ξ) =

∫ ∞
0

s

τ2
e−

s
τ ϕ(ξ + cs)ds. (3.2)
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Let a = c/2 and µ = w − c2
/

4, the system (3.1) with (3.2) is rewritten as

ϕ′′ − µϕ− (g ∗ ϕ)ϕ2 − 2τϕ2ϕ′ = 0, (3.3)

where ′ denotes the derivative with respect to the variable ξ.
Taking u = ϕ

/√
µ and z =

√
µξ to Eq. (3.3) with (3.2), it becomes

ü = −u+ (g ∗ u)u2 + 2τ
√
µu2u̇, (3.4)

where · denotes the derivative with respect to the variable z and

(g ∗ ϕ)(z) =

∫ ∞
0

s

τ2
e−

s
τ ϕ(

z
√
µ

+ cs)ds. (3.5)

We introduce a new variable p given by

p(z) = (g ∗ u)(z).

Differentiating p with respect to z, we get that

dp

dz
=

1
√
µcτ

(p− q), (3.6)

where

q(z) =

∫ +∞

0

1

τ
e−

s
τ u(

z
√
µ

+ cs)ds.

Differentiating q with respect to z, we get that

dq

dz
=

1
√
µcτ

(q − u). (3.7)

If let v = u̇ and noting (3.6), (3.7), then Eq. (3.4) can be rewritten into the
following system

u̇ = v,

v̇ = −u+ u2p+ 2τ
√
µu2v,

√
µcτ ṗ = p− q,
√
µcτ q̇ = q − u.

(3.8)

When τ = 0, the above-mentioned system (3.8) is transformed into the following
differential-algebraic system

u̇ = v,

v̇ = −u+ u2p,

0 = p− q,

0 = q − u.

Namely

ü = −u+ u3. (3.9)
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When τ > 0, system (3.8) determines a system of ODEs and its solutions exist in
the four-dimensional (u, v, p, q) phase space in which system (3.9) has three critical
points: (0, 0, 0, 0), (1, 0, 1, 1) and (−1, 0,−1,−1).

By introducing a new variable η defined by z = τη, system (3.8) becomes the
following fast system:

u′ = τv,

v′ = τ(−u+ u2p+ 2τ
√
µu2v),

√
µcp′ = p− q,
√
µcq′ = q − u.

(3.10)

where ′denotes the derivative by η. If τ > 0, the slow system (3.8) and the fast
system (3.10) are equivalent.

In the slow system (3.8), if τ = 0, the flow of this system is confined to the
following set

M0 = {(u, v, p, q) ∈ R4, p = q = u},

which is a two-dimensional invariant manifold for system (3.8). It’s easy to obtain
that M0 is normally hyperbolic by the method of the linearization matrix [10,15,37].
According to the Geometric Singular Perturbation Theorem, there exists a locally
invariant two-manifold Mτ of system (3.8) with sufficiently small τ > 0, which can
be expressed as

Mτ = {(u, v, p, q) ∈ R4 : p = q + φ(u, v, τ), q = u+ ψ(u, v, τ)}, (3.11)

where φ, ψ depend smoothly on τ and satisfy

φ(u, v, 0) = ψ(u, v, 0) = 0.

The functions φ and ψ can be expanded into the form of Taylor series about τ

φ(u, v, τ) = τφ1(u, v) + τ2φ2(u, v) + · · · ,

ψ(u, v, τ) = τψ1(u, v) + τ2ψ2(u, v) + · · · .
(3.12)

Substituting (3.12) into the slow system (3.8), we get

√
µcτ

[
v + (∂φ∂u + ∂ψ

∂u )v + (∂φ∂v + ∂ψ
∂v )(−u+ u2(u+ φ+ ψ) + 2τ

√
µu2v)

]
= φ,

√
µcτ

[
v + ∂ψ

∂u v + ∂ψ
∂v (−u+ u2(u+ φ+ ψ) + 2τ

√
µu2v)

]
= ψ.

(3.13)
Substituting (3.12) into (3.13) and comparing coefficients of τ , we get

φ1 =
√
µcv, ψ1 =

√
µcv.

Thus the first order approximation of the invariant manifold Mτ of system (3.8)
with the small τ > 0 is given by

Mτ = {(u, v, p, q) ∈ R4 : p = u+2τ
√
µcv+O(τ2), q = u+τ

√
µcv+O(τ2)}. (3.14)
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Then the slow system (3.8) restricted to Mτ is given by

u′ = v,

v′ = −u+ u3 + 2τ
√
µ(c+ 1)u2v +O(τ2).

(3.15)

Note that when τ = 0, system (3.15) reduces to the wave equation (2.4) of the
corresponding non-delay system (1.3).

When τ = 0, the system (3.15) has a heteroclinic loop L(L = L1 + L2)(see
Figure 1). Generally speaking, the heteroclinic orbits will break as τ 6= 0 and small.
Consider the saddle points O1, O2 of system (3.15) whose connection is Li for τ = 0,
i = 1, 2. It’s easy to check that as τ 6= 0 and is small the two saddle points of system
(3.15) O1, O2 are well kept. Let Ls1,τ be a stable manifold of O2 and let Lu1,τ be an
unstable manifold of O1 for 0 < τ << 1. To study whether system (3.15) has saddle
connection near L1 for 0 < τ << 1, we choose M1 ∈ L1 and let l1 be a segment
normal to L1 at point M1. For 0 < τ << 1 suppose that the line l1 intersects Lsτ ,
Luτ transversally at points Ms

τ , Mu
τ respectively.

Let d(τ, L1)=−−→n1·
−−−−→
Ms
τM

u
τ , where−→n1 =(Hu(M1), Hv(M1))/|(Hv(M1),−Hu(M1))|.

The distance between Ls1,τ and Lu2,τ can be measured by d(τ, L1), and if d(τ, L1)=0,
then we conclude that system (3.15) has a saddle connection starting from the sad-
dle point O1 and ending at the saddle point O2 for 0 < τ << 1. Similar process
can be applied to study whether system (3.15) have saddle connection near L2 for
0 < τ << 1.

Figure 1. Saddle connections of system (3.15) for the case τ = 0 and 0 < τ << 1.

3.2. Maintenance of the heteroclinic orbits and existence of
the kink and anti-kink wave solutions

As regards the expression for d(τ, Li), i = 1, 2, we have the following lemma.

Lemma 3.1. For τ > 0, but sufficiently small, we have

d(τ, L) = τ ·N ·M(L) +O(τ2), (3.16)

where the Melnikov function M(L) = 4
√
2µ

15 (c+ 1) +O(τ), and N > 0 is a constant.
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Proof. Rewrite system (3.15) into

u′ = v + τP (u, v),

v′ = −u+ u3 + τQ(u, v),
(3.17)

where

P (u, v) = 0,

Q(u, v) = 2
√
µ(c+ 1)u2v +O(τ).

Form [10,13,19,29] and noticing that system (3.17)|τ=0 is Hamiltonian, we have
(3.16), and

M(L) =

∫
L

[HvQ− (−HuP )]Xi(s)ds =

∫
L

Q(u, v(u))du−
∫
L

P (u(v), v)dv,

where Xi(s), −∞ < s < +∞, is a parametric expression for Li, i = 1, 2.
By lemma 2.2, we have the expression for L1, L2:

L1 : v+(u) =

√
2

2
(u2 − 1), − 1 ≤ u ≤ 1,

L2 : v−(u) = −
√

2

2
(u2 − 1), − 1 ≤ u ≤ 1.

Hence,

M(L1) =

∫ 1

−1
Q(u, v+(u))du

=

∫ 1

−1

√
2µ(c+ 1)u2(−u2 + 1)du+O(τ)

=
4
√

2µ

15
(c+ 1) +O(τ),

where µ = w − c2

4 .

Theorem 3.1. Consider the NLS equation with distributed delay having form Eq.
(1.1), as 0 < τ << 1. The following conclusions hold.

1. There exists φ1(τ) = −1 + O(τ), and as the wave speed satisfies c = φ1(τ),
then Eq. (1.1) has a kink wave solution.

2. There exists φ2(τ) = −1 + O(τ), and as the wave speed satisfies c = φ2(τ),
then Eq. (1.4) has an anti-kink wave solution.

Proof. Noting that as c = −1, τ = 0 and M(L1) = 0, we get

∂M(L1)

∂c

∣∣
(c,τ)=(−1,0) =

4

15

√
2µ0, µ0 = w − 1

4
6= 0.

For 0 < τ << 1, when c ∈ U(−1), according to the Implicit Function Theorem,
we have that there exists a function c = φ1(τ) = −1 +O(τ) such that d(τ, L1) = 0.
From the definition of the function d(τ, L1), we conclude that system (3.15) has a
heteroclinic orbit for 0 < τ << 1. In other words, system (1.1) has a kink wave
solution for 0 < τ << 1.
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Similarly, For 0 < τ << 1, there exists a function c = φ2(τ) = −1 + O(τ) such
that d(τ, L2) = 0. And we conclude that system (3.15) has a heteroclinic orbit
for 0 < τ << 1. In other words, system (1.1) has a anti-kink wave solution for
0 < τ << 1.

4. Conclusion

In this work, we establish existence of kink and anti-kink wave solutions for the NLS
equation with distributed delay having form (1.1) when 0 < τ << 1, c = −1+O(τ).
Our methods are geometrical singular perturbation theory and Melnikov function.
There is also other method to investigate the equation, but by the Melnikov function
plenty of calculation is decreased.
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