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1. Introduction and main results

In this section, we will give some background material that is needed for later chap-
ters. We assume that our readers are familiar with the foundation of real analysis.
Since it is impossible to squeeze everything into just a few pages, sometimes we will
refer the interested readers to some papers and references.

Notation. Let z = (z1,22,...,2,), § = (£1,&2,...,&,) ... etc. be points of the

n
real n-dimensional space R". Let x.£ = infi stand for the usual dot product in
i=1

n 2
R™ and |z| = (Zm?) for the Euclidean norm of x.
i=1

e By 2/, we always mean the unit vector corresponding to z, i.e. ' = ﬁ for
any x # 0.

e 5771 = {x € R" :|z| = 1} represents the unit sphere and dz’ is its surface
measure.
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e By B(z,r), we always mean the open ball centered at = of radius r and by

(B(z,7))¢, we always mean its complement and |B(z,r)| is the Lebesgue
measure of the ball B(z,r) and |B(x,r)| = v,r", where v, = |B(0, 1)|.

e '~ G means F' 2 G 2 F; while F 2 G means F' > CG for a constant C' > 0;
and p’ and s’ always denote the conjugate index of any p > 1 and s > 1, that

is, i::l—%and%::l—%.

e (' stands for a positive constant that can change its value in each statement
without explicit mention.

e The Lebesgue measure of a measurable set E is denoted as |E|. Roughly
speaking: in one-dimension |E| is the length of E, in two-dimension it is the
area of F/, and in three dimension (or higher) it is the “volume” of E.

1
o 1901, (gn1) = (ot Q)] dor ()
In this paper we consider the differential Schrodinger operator
L=-A+V(z) onR", n>3

where V () is a nonnegative potential belonging to the reverse Holder class RHy,
for some exponent ¢ > %; that is, a nonnegative locally L, integrable function V' (z)
on R™ is said to belong to RH, (¢ > 1) if there exists a constant C such that the

reverse Holder inequality

<|;/sz(3;)‘de>é < |;/BV(I) dz, (1.1)

holds for every ball B C R"™; see [11,12]. Obviously, RH,, C RH,,, if ¢1 < go.

We introduce the definition of the reverse Hélder index of V' as go =sup{q:VeRH,}.
It is worth pointing out that the RH, class is that, if V' € RH, for some ¢ > 1,
then there exists ¢ > 0, which depends only on n and the constant C' in (1.1), such
that V' € RHg .. Therefore, under the assumption V' € RH=z, we may conclude
qo > 5. Throughout this paper, we always assume that 0 # V € RH,,.

First of all, we recall some explanations and notations used in the paper.

In 1938, Marcinkiewicz [9] introduced the expression p (f) (z) given by

n(f) (x) = (/0”|F(x+t)+F(x—t)—2F(g;)| dt) . xzelo,27],

+3

where F (z) = / f(t) dt. After that, in 1944, Zygmund [15] proved that
0

HN(JC)HLP SC||f||1;pv 1<p<oo.

The integral p; (f) is called the Marcinkiewicz integral of F' and is related in a
rather natural way to the Hilbert transform of f. In fact, proceeding formally,

| a0 == ero-re-0

:—/Ooojt[F(x+t)+F(x—t)—2F(a:)]C?f
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:_/"O (F(ar+t)+F(a:—t)—2F(x)) dt

" =

s

This relation led Stein [13] to define an n-dimensional version of the Marcinkiewicz
integral. Let Q (x) be a function which is homogenous of degree 0 and which, in
addition, satisfies a suitable Lipschitz condition and the zero average condition on
S"~1 the unit sphere of R”. Again proceeding formally, the singular integral

! &7 7) |§_(Z,3” dz = “n/ooo ( A t2)Q (') do () dt)

t
- [ EEn G
et

Q(z)

‘Z|n71

where

Fy(z) = (r —2) dz.

|z|<t

In analogy with the 1-dimensional situation, Stein [13] set

umﬁu»=<lm”ﬁ?'w>

= /OOO / Wf(y)dy

e—yl<e |2 —
and proved that if f € L, (R™), then

Nl

2
dt
3

e (Dllp, <Clfll,, 1<p<2,
when p =1,
G0 () > M < S Al alA>0.
Later, Benedek, Calderén and Panzone [3] showed that if Q is continuously differ-
entiable in x # 0, then above result holds for 1 < p < 0.

Similar to pq, we define the Marcinkiewicz integral operator with rough kernel
,uﬁQ associated with the Schrodinger operator L by

Mﬁszf(x) = /0

L B AZ AZ . _ 0 —1
where K (v,y) = K} (2,y) |z —y| and K7 (z,y) is the kernel of R; = 8sz 7,

2 3

dt
[ ee-viE@niwa) &)
T—Y|>

j=1,...,n. In particular, when
V=0,
K7 (,y) = K (z,9) [« — ]
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= (x5 —y;) [ le—y) / |z —y" "

and KjA (x,y) is the kernel of R; = %A*%, j=1,...,n. In this paper, we write
J
K (z,y) = K& (z,y) and ;0 = p5 and so, pf is defined by

piof (z) = /0C><>

Now we give the definition of the commutator generalized by pqo and b by

1
2 3
dt
3

/ 0@l K ) S @)y

2
dt
3

now(F) (@) = / Oo/l ST =Y 1) — b)) £ (9)dy

z—y|<t |37 - y|n !

Given an operator uﬁﬂ, and a function b, we define the commutator of uﬁﬂ and
bb
Y L _ L _ L L
iapf (@) = [b, uyolf(z) = b(z) pjof(x) = nya(bf)(z).

If /13 q is defined by integration against a kernel for certain z, such as when u] q is
Marcinkiewicz integral operator with rough kernel associated with the Schrodinger
operator L, we have that this becomes

Mﬁsz,bf(x) = [b,/iﬁsﬂf(x)

:/0”

for all z for which the integral representation of uﬁg holds. It is worth noting that

2 2

[ oGl epbe @l o b ]

for a constant C, if /i]LQ is linear we have,

b+ C, Mﬁa]f =0+0) Mﬁﬂf - Mﬁg((b +C) f)
= bNiQf + CHJL,Qf - Hﬁﬂ (bf) — C#ﬁ@f
= [b’ MJL,Q]f

This leads one to intuitively look to spaces for which we identify functions which
differ by constants, and so it is no surprise that b € BMO (bounded mean oscil-
lation space) or LC;?;’} (R™) (local Campanato space) has had the most historical
significance.

In this paper, we consider multilinear local Campanato estimates of following
multilinear commutator of Marcinkiewicz integral with rough kernel associated with
schrédinger operators Nﬁg on generalized local Morrey space:

pho o f (@) = [0 ubalf ()

/O“

(NI

2
- dt

/| KtH[bi(I)*bi(y)]\Q(mfy)IKf(z,y)f(y)dy <]
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where Q€ Ls(S"71) (s> 1) is homogeneous of degree zero on R™, let D= (b1, .. bm)
be a vector-valued locally integrable function such that b; € L°¢(R") for 1 < i < m.

The classical Morrey space was introduced by Morrey in [10], since then a large
number of investigations have been given to them by mathematicians. Recently,
some authors established the boundedness of some Marcinkiewicz integrals asso-
ciated with schrodinger operator on the Morrey type spaces from a various point
of view provided that the nonnegative potential V' belonging to the reverse Holder
class (see [1,6,7,12]). Motivated by these results, our aim in this paper is to establish
the boundedness for the multilinear commutators of Marcinkiewicz integrals with
rough kernel associated with Schrodinger operators on generalized local Morrey s-
paces provided that the nonnegative potential V' belonging to the reverse Holder
class.

We recall the definition of generalized local (central) Morrey space LM, {ff} in
the following.

Definition 1.1 (see [2,5,6]). (generalized local (central) Morrey space) Let
1 < p < oo, p(z,r) be a positive measurable function on R™ x (0, c0). Then, for any

fixed xg € R™ the generalized local (central) Morrey space LM;?} = LM;QZ,()}(R")
is defined by

LM} = LMo} (R™)
feLle®n):

_1
”f”LM,iig} = Slilg@(ﬂfoar)_1|3($oa7“)| P fllz, (B(zo,r)) < O

According to this definition, we recover the local Morrey space LM;KO} :

LLI% = Luft | —_

plzo.r)=r 7

For the properties and applications of generalized local (central) Morrey spaces
LMZEfDO}, see also [2,5,6].

Now, we recall that the definition and some properties of local Campanato space
LC’;f;} (R™) that we use in the following sections.

Definition 1.2 (see [2,5,6]). Let 1 < p < co and 0 < A < . A function b €
Lloe (R™) is said to belong to the LCZEfo} (R™), if

S =

1
Hb”LngAo} = sup (W /B( ) |b(y) - bB(wo,r)|pdy> < 00, (12)
B T ZTo,T

>0 o, T

where
bia ) = / b(y)d
Blor) ‘B(.To,r)‘ B(zo,r) v

Define
LOf (R = {b e Ll (R) : 18] ,ctz0r < oo} .
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Remark 1.1 (see [2,5,6]). If two functions which differ by a constant are regarded
as a function in the space LC{zO} (R™), then LC{zO} (R™) becomes a Banach space.

The space LC{I“} (R™) when A = 0 is just the LC{mO}(R"). Apparently, (1.2) is
equivalent to the following condition:

1 P
sup inf —/ b(y) —cdy| < oo
r>0c€C <|B ((Eo, T)|1+)\p B(xo,r) | ( ) |

Also, in [8], Lu and Yang introduced some new Hardy space H Ap related to the

homogeneous Herz space A, and obtained that dual space of HA, was the central

BMO space CBMO,(R") = LCLY (R™). Note that BMO(R™) ¢ (] LCS™}(R™),
p>1

1<p<oo.

Lemma 1.1 (see [2,5,6]). Let b be function in LC;:T} (R"),1<p<oo,0<A<
and r1, ro > 0. Then

1
! / P ’ 1
— b(y) = bBGaor| Ay | <C {1+ |In—| )bl cte0
<|B(95077’1)|1+)\p B(zo,71) ’ Bleo. 2)| T2 Loy
(1.3)
where C' > 0 is independent of b, r1 and r.
From this inequality (1.3), we have
1 A
bt~ botanr| < € (14107 ) 18 (o) Wl (1)
and it is easy to see that
b= )l ) < O 1Bl o0 (15)
Remark 1.2. From Lemma 1.1, it is easy to see that
Lo
1= 60) 1, ) < B Wl g (1.6)

and

b = B0 gllz, om < (16 = Balls, s + 1005 = Gasly, o)

LN
S 1B ) ol - an

~

Gao and Tang [4] have shown that Marcinkiewicz integral pf is bounded on
L,(R"), for 1 < p < oo, and is bounded from L;(R™) to WL;(R™). Later, Akbulut
and Kuzu [1] have shown that the Marcinkiewicz integral operators with rough
kernel uﬁﬂ, j=1,...,n, associated with the Schrédinger operator L are bounded
on L,(R"), for 1 < p < oo, and are bounded from L;(R™) to WL;(R") that we
need. Their results can be formulated as follows.

Theorem 1.1 (see [1]). Let 1 < p < 0o, Q € Ls(S" 1), 1 < 5 < o0, Quzx) =
Q(x) for any p> 0,2 e R"\ {0} and V € RH,,. If s <p,p#1 orp< s, then the
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operator uﬁﬂ is bounded on L,(R™). Also the operator “ﬁﬂ is bounded from Li(R™)
to WLy (R™). Moreover, we have for p > 1

l5efll,, <1,

and forp =1
L
lezaflly,, <CIflL, .
where C does not depend on f.

Our main result can be formulated as follows.

Theorem 1.2. Suppose that zg € R", Q € Ly(S" 1), 1 < s < oo, Quz) =
Qx )foranyu>0 xz e R\ {0} andVERH Let1 <p,q,p1,...,pm < 0o with
1= ;; +1 and by € LCS(R™) for0< X< L i=1,...,m.
Let also, for s' < q the pair (@1, p2) satisfies the condition

n

oo L\ €8S inf 1 (xo,7)TP
/ @+m) ter<on " dt < C a(o,7), (1.8)
- r
n(;§:h)+1
n i=1

and for p < s the pair (1, p2) satisfies the condition

oo ANGAEE iTnfoocpl(:ro,T)T? )
/ <1+lnr) fereom dt < C pa(xo,m)1,

n(;_;_ZAi) 41
t i=1

where C' does not depend on r.

,j=1,...,n are bounded from LMéf}]l} to LMé{faOQ}.

Then, the operators ,u 7

7

Moreover,
m
L <1I
Hujyﬂ-,?fHLMI{fB; ~ l_:1||bl”LC;§f&}j ||f||LMI£>zV91} ' (1.9)

Corollary 1.1. (see [6]) Suppose that xo € R™, 1 < p < o0, Q € Ly(S" 1)1 <s<
00, Q(yx) = Q(x) for any ,u >0,z ¢ R"\ {0} and V € RH,,. Letb e LC’;;")\} (R™),
=14 Lgnd0o<A <

p P2
Let also, for s’ <p the pair (¢1,p2) satisfies the condition

oo " esst<17p<f o1 (20, 7) TPT
/7- <1+ln r) i dt < Cosy (x9,71),

and for p1 < s the pair (¢1,p2) satisfies the condition

oo " esst<171r1foo ©1 (20, 7) TPT .
/ (1+1n> dt < Cyg (xg,7)77,
” T

tﬁ—ﬂ—i-l n

where C does not depend on r.
Then, the operators ij)Q’b, j=1,...,n are bounded from LMéﬁ(;}l to LM;?Z?;.
Moreover,
L
Hujﬂ:beLMéﬂ); S Hb”LC}f;g} Hf”LMp{ffL}l :
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2. A Key Lemma

In order to prove the main result (Theorem 1.2), we need the following lemma with
its proof.

Lemma 2.1. Suppose that zg € R", Q € Ly(S"71), 1 < s < o0, Quz) = Q(z) for
any ,u > 0,z € R*"\ {0} and V € RH,. Let 1 < p,q,p1,-..,Pm < 00 with

Z —&—7 and b; € LC;T?\}(R”) for0< Xy < =, i=1,...,m. Then, fors' <q
the mequalzty

* T
i 3 At S [Tl geg 75 L (1w ) M laBeon g 4

- T
=1 n (—ZA ) +1
t
holds for any ball B (xg,7) and for all f € LLOC(R"). Also, for p < s the inequality

w [ " L, (B oty
||“;Q,?f||Lq(B(T07T))NH”b”LC{IO}T{Z / (Hlnr) N

2r L
n 57§7§ A | +1
i=1

t
holds for any ball B (xg,7) and for all f € LLOC(R"),
Proof. Without loss of generality, it is sufficient to show that the conclusion
2
holds for uiﬂjf = 15 ey [ Let 1< g, p1,p2,p < 00 with | = ; -+ 5 and

bi € LCL"SH(R™) for 0 < A\; < L, i =1,2. Set B = B (o, ) for the ball centered at
zo and of radius r and 2B = B (xg, 2r). We represent f as

f=h+f, fily) = f W xes (), W) =FfWXxepe ), >0

and thus we have

H/lﬁn,(bl, Lo(B) = Hﬂﬁsz,(bl,@)fl L(B) + Hﬂﬁsz,(bl,@)fz LB F+G.
Let us estimate F' and G, respectively.
For /‘iﬂ,(bl,bg)fl (), we have the following decomposition,
17 (b ) J1 (@) = (b1 () = (b1) ) (b2 (2) = (b2) p) i f1 ()
— (b1 (2) = (b1) ) 0 (b2 (-) = (b2) 5) f1) (@)
+ (b2 (2) = (b2) ) Hjq (01 (-) = (b1) ) f1) ()
— 150 (b1 () = (01) ) (b2 () = (b2) ) f1) ().

Hence, we get

F= ‘ Miﬂ’(bl’bz)fIHLq(B)
Sl = 1)) (b2 = (2)5) i il 5y

+ [ (b1 = (01) ) 15 (b2 = (b2) ) fl)HLq(B)
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+ [|(b2 = (b2) p) 10 (b1 = (b)) fl)HLq(B)
+ s (b = (B1)5) (02 = (b2) 5) )l )
=F + Fy, + F3 + F}. (2.2)
One observes that the estimate of F; is analogous to that of F3. Thus, we will only

estimate Fy, Fy and Fy.

To estimate Fp, let 1 < ¢,7 < o0, such that % = %—&— %7 % = p% + p%' Then,
using Hélder’s inequality and by the boundedness of ,uﬁﬂ on L, (see Theorem 1.1)
it follows that:

|

(=

1= (b1)g) (b2 — (b2) 5) NiﬂflnLq(B)

(
(by — ( >B> (b2 = (02) )l 5y l150 1]l )

N

2/\

L1106 = @5l ) 112, 2m)

i=

2 o dt
Hl % B”L (B) ; Hf||Lp(B(a:U,t))7t%+1~

1=

=

[

Hence, by (1.6) we get

2 o] 2
n(Ll+ Lyl LN —nn(atag)—1
Fli-l_[lubi”mif&f s p)/zr <1+lnr) E DT L
1=

2 . 2

N N\ S, (Bo.t)
< . N q s _ 0 B&ptPATot))
N ‘l_llubZ”ch:};ir /2 (1 +1n r) m(E—(u+re))+1 di

r

To estimate Fy, let 1 < 7 < 00, such that % = p%+%' Then, similar to the estimates
for F1, we have

By S o = 0l oy e (B2 () = B2)p) P4,
<oy = B0l 02 () — (o) >f1|\Lk(Rn>

S o = (gl g 102 — €

where 1 < k < oo, such that § = -+ 1 = 1. By (1.6) and (1.7), we get

9 2
W [ t\" Iz, Bo.)
< ) : 2 M EeiPTot))
F S .|7|1||szch{):&}1‘7 /2 (1 +In 7«) tn(%—(,\1+>\2))+1 dt

T

b2)BHL (2B) ||f||L »(2B)>

In a similar way, I3 has the same estimate as above, so we omit the details. Then
we have that

2
n [ I £l (B(zo.t))
By < TTI0ill oo 75 14l ) WIE(Bant)
3 NgHszLC;i&}iT /2 ( + 7") 4 (;7(A1+>\2))+1dt

T

Now let us consider the term Fy. Let 1 < ¢, 7 < 00, such that % = l—i—% % = pil—s—p%.
Then by the boundedness of ,uﬁg on L, (see Theorem 1.1), Holder’s inequality and
(1.7), we obtain

Fy = |[ufa (b = (b)) (b2 = (02) ) D, 3
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S (b1 = (b1) g) (b2 = (b2) p) [l oy

2
S H 16: = i) pllL, 25y 1f1lL,2m)

2

Combining all the estimates of Fy, Fy, F3, Fy; we get

2
o [ t\" ISl (B0t
< I | , wg} T4 -
~ ._1||b1HLc,§jf;}ir /QT (1 +1n r) tn(%f(xl+/\2))+1dt

L T . [ N2 1l o)
F = Huj,ﬂ,(bl,bg)leLq(B) = HHbi”LC;f?g)v“ . 1+1n- tl—dt
i=1 A

r

n(gf()\1+)\2))+1

Now, let us estimate G = Hu]LQ (b1 bQ)fQHL 5 For G, it’s similar to (2.2) we
q

also write

G= “Mf’g’(bl’bz)fz“Lq(B)

S (01 = (01) ) (b2 (2) = (b2) ) i o, o(B)
+ (|61 = (b1) g) 50 (b2 = (02) 5) Sl )
+[[(b2 = (b2) ) i (01 = (b)) fo) I,

—(

+||N]Q ((by — (b ) ) (b2 b2) f2)HLq(B)
=G1 4+ G2+ Gs + Ga.

11
=

To estimate G1, let 1 < g,7 < o0, such that % = % +
Holder’s inequality and by (1.6), we have

G1 = [(b1 = (b1) p) (b2 () = (b2) p) w50 fa |, 5,
S 1 = (1) g) (b2 = (02) ) () 502l oy

2 e}
STL = Gnlly )77 [ Wyt

1
D’

A
?Q

PN

i=1
2 2
o0 t Ifllz, (B(zo.t)
3 1 [ 14 ) LaBeot) 40
S HWlegyrt L (o) ot

where in the second inequality we have used the following fact:
It’s clear that z € B, y € (ZB)C implies

| (<fo—yl <] |
=|zo — T — —|zo —yl.
g [P0~ YIS =5 l%—y

Hence, we get

Q(x —
a o) <2ie, [ VWG,

(2B)¢ lzo — ¥l

+ p%‘. Then, using

11 1) [ t _nagn
|bi HLC{IO}T <“+"2+p)/2 <1+lnr) TR AN 2y (B o)) dt
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By Fubini’s theorem, we have

Lf W2 (z —y)| < dt
/ Sy [ @l [
(2B)¢ |x0 y' (2B)¢ |zo—y|
dt
W2 (z =yl dy—
/ZT /27‘<|:1:0 y\<t trtt

dt
< Q(x—y)|d .
sff rwiee -l

Applying Holder’s inequality, we get

/ If(y)llﬂ(ar—y)ldy
(2B)¢ |zo —y|n

< / 11 ey 192 (@ — )]

-1 dt
LS(B(zo,t))|B(x07t)| ? 6@' (2.3)

Note that ¢ > 2r and |z — 20| < r, we have t+|z — x| < t+7r < 3t < 2t. Moreover,
noticing that € is homogenous of degree zero and Q € L,(S"7!), s > 1, we obtain

19.(2 — )| dy - ()1 dz %
/., ) - ([, )
< ( Lo 12 <z>|8dz>
s(/m| ()] dz)
([ [ewrae mdrf

= ClIQ L, (gn-1y |B (0, 20)[*

ol

(2.4)

Thus, by (2.4), it follows that:
o dt
ikafe @] 5 [ 1AL, o0 7557

Moreover, for all p € [1,00) the inequality

o [ dt
H#ﬁgszLP(B) S Tp/zr 111z, (B(xo.t)) pEuy

is valid.
On the other hand, for the estimates used in G, G3, we have to prove the below
inequality:

. o0 t dt
[15q ((ba = (b2) p) fo) (z)| S Hb2||Lc§;9§2 /QT (1 +1In T) 1Nz, (B(wo.t)) )
(2.5)
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Indeed, when s’ < g, for x € B, by Fubini’s theorem and applying Holder’s inequal-
ity and from (1.4), (1.5), (2.4) we have

’Miﬂ (b2 (-) = (b2) ) f2) (x)‘ < / b (y) — (ba) 5| 1z — )| |f_(y)|ndy
(2B)¢ |z — y

[ ) = Gl i )l

~ Jies)
> dt
~ b2 (y) — (b2) | 12z — )| If W) dy
2r J2r<|zo—y|<t t

<))
2r J B(xzg,t)
)

d
b2 (1) = (52) (| 126 = )11 W] dy s

dt
Uz —y)||f )| dy—
/Bm,t)' (e = W)I1f )] dy oy

122 = I, (Bwo.ty) 11 L, (B0

+L ‘(bz)B(mo,r) - (b2)B(acg,t)
by () — (b ’
‘ 20 = )aeonlly,, ey
11 dt

§ /27’
5"+]

+A ‘(bQ)B(xo,r) - (bQ)B(rg,t)

g /2T

tn+1
. ; dt
+ Hb||LC;;&} /2T (1 +In r) 1Nl L, (B(zo.t)) W
oo t dt
< ' 12 o«
~ ”b”LC,{,;f&} /2r (1 +1n r) Hf”Lp(B(IM)) tn(%—Ag)H'

This completes the proof of inequality (2.5).
Let 1 < 7 < o0, such that % = p% + % Then, using Holder’s inequality and from

(2.5) and (1.5), we get
Gy = [|(br = (b1) ) 112 (b2 — (b2) ) f2)||Lq(B)
S = sl i (B2 () = G2) ) PN
2 2
w [ t\" Mfllz, B
< . _ _0g UZpRPR000))
~ 11;[1||b1HLC;EiD>\};T ! /2; (1 + In r) tn(%*(>q+/\2))+1 dt

Similarly, G3 has the same estimate above, so here we omit the details. Then the
inequality

Hf||Lp(B(zo,t)) 192z — )] L.(B(zo,t))

1—Li_1
X |B (w0, t)] 7"

dt
‘b? () - (b2)B(”’U’t)HLpz(B(zo,t)) ||f||Lp(B(xo,t)) tn(%Jr%)H

Gy = | (b2 = (b2) ) 5 (B = (1)) £ 1 )

2
w [ t\" Sl Bo.)
< . — e AP0 ))
~ I l”bZHL(J,”O}M /z (1 —Hnr> (E=(ntre))+1 di

PisNg
i=1 oo r
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is valid.
Now, let us estimate G4 = H,uJLQ ((b1 — (b1) ) (b2 — (b2) 5 )f2)|| . It’s similar

to the estimate of (2.5), for any x € B, we also write

[k (b1 = (b1) ) (b2 — (b2) ) f2) ()]

dt
b (1) B(a )b b2) B(ao.ty | 1UT = W) 1f (W) dy—7
/QT/JBW)\l Dban)| P2 0) = (82 5|19 = )11 0] i
dt
o Soon " <y)*<l’1>3<wo,w! [02) 520y = (02) | 1205 =) 1 )]y
r Zot
dt

02 (5) = (02) (a0 19— 1 ()l dy iy

d
[9—y)I1] W)ldy s

bl B(a:g t) bl B(zo r)

Ar /B(zo t)

T o e,
. B(W)( UB(o.ty” (1) Bag.r)
=Gy41 + Gy + Gy3 + Gya-

‘ (b2 ) B(zo,t) (bQ)B(xo ,T)

Let us estimate Gy1, G42, G43, G44, respectively.
Firstly, to estimate G4, similar to the estimate of (2.5), we get

2 2
> 3 Iz, (Bo,t)
< 4 . 2} L (B@ot)
G41 ~ EHbz”Lcéig\}i /27‘ (1 o T) tn(%i()‘1+)‘2))+1 a
Secondly, to estimate G42 and Gag, from (2.5), (1.4) and (1.5), it follows that

2

2
o t\" Nfllz,(Bot)
Gao < b; . Ltln—) —F— o dt
42 5 HH Z”Lci{’ig‘}i »/27‘ ( +n ’I‘) tn(%—(k1+)\2))+1 ’

and
Gio 5 [Tlegeg [~ (1mt) WMloaen
e s L8 Jy 7)) r(F—(atre))+
Finally, to estimate G4, similar to the estimate of (2.5) and from (1.4) and (1.5),
we have
G <ﬁHb‘|| ” 1+1nf QMC&
e~ Hrofs) o r) (= (atre))+1
i=1
By the estimates of G4; above, where j = 1, 2, 3, we know that

150 (b = (b)) (b2 — (b2) g) f2) (z)]
2 00 2
t 1Nz, (B(zo.t))
< : , Z) M0 PAToR))
NHIHbZHLCZE:OA}I /QT <1+1Hr> tn(%—()\1+kz))+ldt
Then, we have

Ga = [k (01 = (1) ) (b2 — (52)) £2)]| . 3

2
o [ 1 F 1|, (B(wo.0))
S b; v 1+In- | ——efed) gy
val;[lll HLCTgig}jQ/QT ( + r) e
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So, combining all the estimates for G1, G2, G3, G4, we get

2 2
a [ t\" 1L,
= ||ut < ; q 2 5B Tot))
¢ HMJ’Q’(bl’b2)f2HLq(B) ~ E”bl”LCS&}ir /QT <1 in 7~> tn(%—()\1+)\2))+1dt

Thus, putting estimates F' and G together, we get the desired conclusion

2 2
n [% N\ e, (Bo.t)
L ST Tbill, w0y 7 14+In- ) ——22200 g
HM]’Q’(bl’bz)fHLq(B) ~ ilj[lH Z||LC§;{,°A}7~,T /zr < g (5= (atr2))+1

For the case of p < s, we can also use the same method, so we omit the details.
This completes the proof of Lemma 2.1. O

3. Proof of the main result
Now we are ready to return to the proof of Theorem 1.2.

3.1. Proof of Theorem 1.2.

Proof. To prove Theorem 1.2, we will use the following relationship between es-
sential supremum and essential infimum

-1
ess inf f = (ess sup 1/f> , (3.1)
E E

where f is any real-valued nonnegative function and measurable on E (see [14],
page 143). Since f € LM;7$1}7 by (3.1) and it is also non-decreasing, with respect
to ¢, of the norm || fl|, (s> We get

1l 2, (B(zo.t)) 112, (B(zo.t))

= < ess  sup

ess inf @y (xg,T)TP 0<t<T<o0 <p1(x0,7')7'%

0<t<T<00

111z, (B0 r
<ess sup L 1LeBor)

i < {20} - 3.2
0<r<oo 1(xo,T)TP ”fHLMP#E)l (32)

For s’ < ¢ < o0, since (¢1, p2) satisfies (1.8) and by (3.2), we have

%) m f -
/ (1+1nt> Mleyweo 4,
r T

m
n<;_z&.)+1
¢ i=1

< /00 (1 +Iln t)m ||f||Lp(B(z0,t)) €ss t<lgl<f<x> w1(xo, T)TP »
< . : _ ’
T - t<17p<foo gpl(xo’T)Tp n(;lvz)u) +1
t i=1
= g\ ess nf oy (xo,T)Tv
§ CHf”LMéfBI} / (1 +1n T> t<T<o0 gt
' T

m
1 .
n (p E )\1) +1
=1

t



Generalized local Morrey spaces ... 1383

< C|\f||LMZ§3)1}902($077“)- (3.3)
Then by (2.1) and (3.3), we get
L _ -1 -2, L
‘ Nj,ﬂijLMq{fﬁBj B f«;”g 2 (wo,7) " | Blao, )] ‘ Mjﬂjf‘ Lo(B(zo,r))

Ay B 4,

m
1 .
n(p E )\1)+1
=1

m o) +
< Tl e (14 -
= ZZI_IIH l”LC;i&}i §1>II:O) %) (x07r) /T ( +In 7“>

t

m

< OT Tl ey 1l gt

i=1

For the case of p < s, we can also use the same method, so we omit the details.
Thus, we finish the proof of (1.9). O
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