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OSCILLATORY BEHAVIOR OF A
FRACTIONAL PARTIAL DIFFERENTIAL

EQUATION∗
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Abstract In this paper, a fractional partial differential equation subject
to the Robin boundary condition is considered. Based on the properties of
Riemann-Liouville fractional derivative and a generalized Riccati technique,
we obtained sufficient conditions for oscillation of the solutions of such equa-
tion. Examples are given to illustrate the main results.
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1. Introduction

Fractional differential equations are generalizations of classical differential equa-
tions of integer order and have gained increasing attention due to their various
applications in various fields of engineering, chemical physics, electrical networks,
control theory of dynamical systems, industrial robotics, economics and so on. The
research of fractional differential equations and their applications have received more
and more attention very recently, see the monographs [7, 14,17].

Recently, the oscillation behavior of solutions for partial differential equation
has been developed rapidly and some results are established. However, to the best
of our knowledge very little is known about the oscillatory behavior of fractional
partial differential equations up to now. Some articles about oscillation theory of
partial differential equations and fractional partial differential equations have been
published, such as [1–6,8–13,15,16,18–21].

A few paper studied the oscillation of fractional partial differential equations
which involve the Riemann-Liouville fractional derivative. Prakash et al. [15] con-
sidered the oscillation of the fractional differential equation

∂

∂t

(
r(t)Dα

+,tu(x, t)
)
+ q(t)f

(∫ t

0

(t− v)−αu(x, v)dv

)
=a(t)∆u(x, t), (1.1)

†the corresponding author. Email address:fwmeng@mail.qfnu.edu.cn(F.
Meng)

1School of Mathematical Science, Qufu Normal University, No.57 Jingxuanxi
Road, Qufu 273165, Shandong, China

2Department of Mathematics, Jining University, No.1 Xingtan Road, Qufu,
273155, Shandong, China

∗The authors were supported by Natural Science Foundation of China (Grants
11671227), the Natural Science Foundation of Shandong Province (Grant
ZR2014AL007, ZR2015PA005, ZR2017BF021) and the Science and Technol-
ogy Project of High Schools of Shandong Province (Grant J14LJ09).

http://dx.doi.org/10.11948/2018.1011


1012 J. Wang & F. Meng

where (x, t) ∈ G = Ω× R+.
Harikrishnan et al. [6] established the oscillation of the fractional differential

equation of the form

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)
+ q(x, t)f (u(x, t)) = a(t)∆u(x, t) + g(x, t), (x, t) ∈ G. (1.2)

Li [11] studied the forced oscillation of fractional partial differential equations
with the damping term of the form

∂

∂t

(
Dα

+,tu(x, t)
)
+p(x, t)Dα

+,tu(x, t) = a(t)∆u(x, t)−q(x, t)u(x, t)+f(x, t), (x, t) ∈ G.

(1.3)
However, to the best of our knowledge, very little is known regarding the os-

cillatory behavior of fractional differential equations. To develop the qualitative
properties of fractional partial differential equation, it is of great interest to study
the oscillatory behavior of fractional partial differential equation. In this paper, we
establish several oscillation criteria for fractional partial differential equation by ap-
plying a generalized Riccati transformation technique and by using the properties of
the Riemann-Liouville fractional derivative. These results are considered essentially
new. Examples are given to illustrate the main results.

In this paper, we consider the oscillatory properties of solutions to the fractional
partial differential equations of the form

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)
+ p(t)Dα

+,tu(x, t) + q(x, t)f

(∫ t

0

(t− v)−αu(x, v)dv

)
=a(t)∆u(x, t), (x, t) ∈ G = Ω× R+, (1.4)

with the Robin boundary condition

∂u(x, t)

∂N
+ g(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω× R+, (1.5)

where α ∈ (0, 1) is a constant, Dα
+,t is the Riemann-Liouville fractional derivative

of order α of u with respect t, Ω is a bounded domain in Rn with piecewise smooth
boundary ∂Ω, ∆ is the Laplacian operator and N is the unit exterior normal vector
to ∂Ω, and g(x, t) is a nonnegative continuous function on ∂Ω× R+.

Throughout this paper, we assume that:
(A1) r(t) ∈ C1(R+,R+), p(t) ∈ C(R+, R), a(t) ∈ C(R+,R+);
(A2) q(x, t) ∈ C(Ḡ,R+) and min

x∈Ω
q(x, t) = q(t)

(A3) f : R → R is a continuous function such that f(x)/x > µ for certain
constant µ > 0 and for all x ̸= 0.

By a solution of (1.4) we mean a nontrivial function u(x, t) ∈ C1+α(Ω̄× [0,∞))

such that
∫ t

0
(t − v)−αu(x, v)dv ∈ C1(Ḡ;R), Dα

+,tu(x, t) ∈ C1(Ḡ;R) and satisfies

(1.4) on Ḡ.
A solution u(x, t) of (1.4) is called oscillatory in G if it is neither eventually

positive nor eventually negative. Otherwise, it is called non-oscillatory. Equation
(1.4) is said to be oscillatory if all its solutions are oscillatory.

2. Preliminaries and lemmas

In this section, we recall several definitions of fractional integral and fractional
derivative, which will be used in the following proof. There are several kinds of
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definitions of fractional integral and fractional derivatives [7]. In this article, we use
Riemann-Liouville definition. For convenience, throughout the rest of this article,
we denote

v(t) =
1

|Ω|

∫
Ω

u(x, t)dx, |Ω| =
∫
Ω

dx. (2.1)

Definition 2.1 ( [7]). The Riemann-Liouville fractional integral Iα+y of order α ∈
R+ is defined by

(Iα+y)(t) =
1

Γ(α)

∫ t

0

(t− v)α−1y(v)dv, t > 0. (2.2)

Here Γ(α) is the gamma function defined by Γ(α) =
∫ +∞
0

sα−1e−sds for α > 0.
This integral is called left-sided fractional integral.

Definition 2.2 ( [7]). The Riemann-Liouville fractional partial derivative of order
0 < α < 1 of a function u(x, t) is defined by

(Dα
+,tu)(x, t) =

∂

∂t

1

Γ(1− α)

∫ t

0

(t− v)−αu(x, v)dv, t > 0, (2.3)

provided the right hand side is pointwise defined on R+, where Γ is the gamma
function.

Definition 2.3 ( [7]). The Riemann-Liouville fractional derivative of order α > 0
of a function y : R+ → R on the half-axis R+ is given by

(Dα
+y)(t) :=

d[α]

dx[α]
(I

[α]−α
+ y)(t) =

1

Γ([α]− α)

d[α]

dx[α]

∫ t

0

(t− v)[α]−α−1y(v)dv, t > 0,

(2.4)
provided the right hand side is pointwise defined on R+, where [α] is the ceiling
function of α.

Lemma 2.1 (Lemma 2.4, [2]). Let y be a solution of (1.1) and

F (t) :=

∫ t

0

(t− v)−αy(v)dv for α ∈ (0, 1) and t > 0. (2.5)

Then

F ′(t) = Γ(1− α)(Dα
+y)(t). (2.6)

3. Main result

We define the following functions that will be used in the proof of our results,
suppose that there exists a function φ ∈ C1 [[t0,∞), (0,∞)], let ξ(t) = r(t)φ′(t) −
p(t)φ(t),η(t)= 1

r(t)φ(t) . Also we recall a class function defined onD={(t, s) : t≥s≥ t0}.
A function H ∈ C (D,R) is said to belong to the class ℘ if

(i) H(t, t) = 0 for t ≥ t0 and H(t, s) > 0 when t ̸= s;
(ii) H(t, s) has partial derivatives on D such that
∂H
∂t (t, s) = h1(t, s)

√
H(t, s), ∂H

∂s (t, s) = −h2(t, s)
√

H(t, s) for some h1, h2 ∈
L1
loc(D,R).
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Theorem 3.1. Let conditions (A1)-(A3) hold, suppose that there exists a function
φ ∈ C1

[
[t0,∞), (0,∞)

]
. If for every T ≥ t0, there exists an interval (a, b) ⊂ [T,∞)

and there exists c ∈ (a, b),H ∈ ℘,such that

1

H(c, a)

∫ c

a

[
µH(s, a)φ(s)q(s)− 1

4Γ(1− α)η(t)
Φ2

1(s, a)

]
ds

+
1

H(b, c)

∫ b

c

[
µH(b, s)φ(s)q(s)− 1

4Γ(1− α)η(t)
Φ2

2(b, s)

]
ds > 0 (3.1)

where

Φ1(s, a) = h1(s, a) + ξ(s)η(s)
√
H(s, a),

Φ2(b, s) = h2(b, s)− ξ(s)η(s)
√
H(b, s). (3.2)

Then every solution u(x, t) of (1.4) is oscillatory in G.

Proof. Suppose to the contrary that u is a non-oscillatory solution of (1.4). With-
out loss of generality, we can assume that there exists u(x, t) > 0 in G× [t0,∞) for
some t0 > 0. Integrating (1.4) with respect x over the domain Ω, we obtain

d

dt

[
r(t)(

∫
Ω

(Dα
+,tu)(x, t)dx

]
+

∫
Ω

p(t)Dα
+,tu(x, t)dx

+

∫
Ω

q(x, t)f(

∫ t

0

(t− v)−αu(x, v)dv)dx

=a(t)

∫
Ω

∆u(x, t)dx. (3.3)

Using Green’s formula, it is obvious that∫
Ω

∆u(x, t)dx =

∫
∂Ω

∂u(x, t)

∂N
ds = −

∫
∂Ω

g(x, t)u(x, t)ds ≤ 0, t ≥ t1. (3.4)

where ds is surface element on ∂Ω. By using Jensen’s inequality and (A2) , we can
obtain ∫

Ω

q(x, t)f

(∫ t

0

(t− µ)−αu(x, µ)dµ

)
dx

≥q(t)f

[∫
Ω

(∫ t

0

(t− µ)−αu(x, µ)dµ

)
dx

]
≥q(t)f

[∫ t

0

(t− µ)−α

(∫
Ω

u(x, µ)dx

)
dµ

]
≥q(t)

∫
Ω

dxf

[∫
Ω

(∫ t

0

(t− µ)−αu(x, µ)dµ

)
dx(

∫
Ω

dx)−1

]
=q(t)

∫
Ω

dxf

[∫ t

0

(t− µ)−α(

∫
Ω

u(x,mu)dx)(

∫
Ω

dx)−1dµ

]
=q(t) |Ω| f (G(t)) . (3.5)

Combining (3.3)-(3.5) and using definitions, we get

d

dt

[
r(t)Dα

+v(t)
]
+ p(t))Dα

+v(t) + q(t)f(G(t)) ≤ 0, (3.6)



Oscillatory behavior of FPDE 1015

where

v(t) =

∫
Ω
u(x, t)dx

|Ω|
,

G(t) =

∫ t

0

(t− ξ)−αv(ξ)dξ.

Define the function w(t) by

w(t) = φ(t)
r(t)Dα

+,tv(t)

G(t)
, for t ≥ t1. (3.7)

Then we have w(t) > 0 for t ≥ t1. Differentiating (3.7) for t ≥ t1, we have

w′(t)

=
φ′(t)

φ(t)
w(t) + φ(t)

(r(t)Dα
+v(t))

′

G(t)
−G′(t)

φ(t)r(t)Dα
+v(t)

G2(t)

≤φ′(t)

φ(t)
w(t) +

φ(t)
[
−p(t)Dα

+v(t)− q(t)f(G(t))
]

G(t)

− Γ(1− α)Dα
+v(t)

φ(t)r(t)Dα
+v(t)

G2(t)

=
φ′(t)

φ(t)
w(t)− p(t)

r(t)
w(t)− φ(t)q(t)

f(G(t))

G(t)
− Γ(1− α)

φ(t)r(t)
w2(t)

≤− µφ(t)q(t) + (
φ′(t)

φ(t)
− p(t)

r(t)
)w(t)− Γ(1− α)

φ(t)r(t)
w2(t)

≤− µφ(t)q(t) + ξ(t)η(t)w(t)− Γ(1− α)η(t)w2(t). (3.8)

Multiplying (3.8) byH(s, t) and integrating with respect to s from t to c for t ∈ (a, c],
we have ∫ c

t

µH(s, t)φ(s)q(s)ds ≤−
∫ c

t

H(s, t)w′(s)ds

+

∫ c

t

H(s, t)ξ(s)η(s))w(s)ds

−
∫ c

t

H(s, t)Γ(1− α)η(s)w2(s)ds. (3.9)

In view of (i) and (ii), we see that∫ c

t

H(s, t)w′(s)ds = H(c, t)w(c)−
∫ c

t

h1(s, t)
√
H(s, t)w(s)ds. (3.10)

Using (3.10) in (3.9) leads to∫ c

t

µH(s, t)φ(s)q(s)ds

≤−H(c, t)w(c)

−
∫ c

t

[
Γ(1− α)η(s)H(s, t)w2(s)−

(
h1(s, t)

√
H(s, t) + ξ(s)η(s)H(s, t)w(s)

)]
ds
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=−H(c, t)w(c)−
∫ c

t

(√
Γ(1− α)η(s)H(s, t)w(s)− 1

2
√
Γ(1− α)η(s)

Φ1(s, t)

)2

ds

+

∫ c

t

1

4Γ(1− α)η(s))
Φ2

1(s, t)ds

≤−H(c, t)w(c) +

∫ c

t

1

4Γ(1− α)η(s)
Φ2

1(s, t)ds. (3.11)

Similarly, if (3.8) is multiplied byH(t, s) and then integrated from c to t for t ∈ [c, b),
then we gets∫ t

c

µH(s, t)φ(s)q(s)ds

≤H(t, c)w(c)

−
∫ t

c

[
Γ(1− α)η(s)H(s, t)w2(s) +

(
h2(t, s)

√
H(s, t)− ξ(s)η(s)H(s, t)w(s)

)]
ds

=H(t, c)w(c)−
∫ t

c

(√
Γ(1− α)η(s)H(s, t)w(s) +

1

2
√

Γ(1− α)η(s)
Φ2(s)

)2

ds

+

∫ t

c

1

4Γ(1− α)η(s)
Φ2

2(t, s)ds

≤H(t, c)w(c) +

∫ t

c

1

4Γ(1− α)η(s)
Φ2

2(t, s)ds. (3.12)

Letting t → a+ in (3.11) and t → b− in (3.12) and adding the resulting inequalities
we have

1

H(c, a)

∫ c

a

[
µH(s, a)φ(s)q(s)− 1

4Γ(1− α)η(s)
Φ2

1(s, a)

]
ds

+
1

H(b, c)

∫ b

c

[
µH(b, s)φ(s)q(s)− 1

4Γ(1− α)η(s)
Φ2

2(b, s)

]
ds ≤ 0 (3.13)

which contradicts the assumption (3.1). The proof is complete.

Theorem 3.2. Let conditions (A1)-(A3) hold, suppose that there exists a function
φ ∈ C1 [[t0,∞), (0,∞)] , and there exists H ∈ ℘ such that

limsup
t→∞

∫ t

l

[
µH(s, l)φ(s)q(s)− 1

4Γ(1− α)η(s)
Φ2

1(s, l)

]
ds > 0, (3.14)

and

limsup
t→∞

∫ t

l

[
µH(t, s)φ(s)q(s)− 1

4Γ(1− α)η(s)
Φ2

2(t, s)

]
ds > 0, (3.15)

hold for every l ∈ [t0,∞), t1 > t0, where Φ1,Φ2 are the same in Theorem 3.1, then
every solution of (1.4) is oscillatory.

Proof. Suppose to the contrary that u is a non-oscillatory solution of (1.4). With-
out loss of generality, we can assume that there exists u(x, t) > 0 in G× [t0,∞) for
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some t2 ≥ t1. Set l = a ≥ t2 in (3.14). Clearly, we see from (3.14) that there exists
c > a such that∫ c

a

[
µH(s, a)φ(s)q(s)− 1

4Γ(1− α)η(s)
Φ2

1(s, a)

]
ds > 0. (3.16)

Similarly setting l = c ≥ t2 in (3.15), it follows that there exists b > c such that∫ b

c

[
µH(b, s)φ(s)q(s)− 1

4Γ(1− α)η(s)
Φ2

2(b, s)

]
ds > 0. (3.17)

From (3.16) and (3.17) we see that (3.11) is satisfied. Therefore, in view of Theorem
3.1, we may conclude that every solution of (1.4) is oscillatory.

If we choose H(t, s) = (t− s)λ, t ≥ s ≥ t0, where λ > 1 is a constant. Then, we
obtain the following useful oscillation criterion.

Corollary 3.1. Let conditions (A1)-(A3) hold, suppose that there exists a function
φ ∈ C1

[
[t0,∞), (0,∞)

]
, such that the following two inequalities hold:

limsup
t→∞

1

tλ−1

∫ t

l

(s− l)λ

{
µφ(s)q(s)− 1

4Γ(1− α)η(s)

(
λ

(s− l)
+ ξ(s)η(s)

)2
}
ds > 0

(3.18)
and

limsup
t→∞

1

tλ−1

∫ t

l

(t−s)λ

{
µφ(s)q(s)− 1

4Γ(1− α)η(s)

(
λ

(t− s)
− ξ(s)η(s)

)2
}
ds > 0

(3.19)
for each l ≥ t0, λ > 1, then Eq.(1.4) is oscillatory.

More generally, one may consider H(t, s) = [R(t)−R(s)]
λ
, where λ is constant

and R(t) =
∫ t

t1
1

r(s)ds and limt→∞ R(t) = ∞. If we choose φ(t) = 1, by Theorem

3.2, we have the following oscillatory criterion.

Theorem 3.3. Let conditions (A1)-(A3) hold, p(t) ≥ 0 and q(t) ≥ 0 for all
t ∈ [t0,∞) and limt→∞ R(t) = ∞. Then every solution of Eq.(1.3) is oscilla-
tory provided for each l ≥ t0, and for some λ > 1, the following two inequalities
hold:

limsup
t→∞

1

Rλ−1(t)

∫ t

l

{(
µq(s)− p2(s)

4Γ(1− α)r(s)

)[
R(s)−R(l)

]λ
+

λp(s)

2Γ(1− α)r(s)

[
R(s)−R(l)

]λ−1}
ds >

λ2

4Γ(1− α)(λ− 1)
(3.20)

and

limsup
t→∞

1

Rλ−1(t)

∫ t

l

{(
µq(s)− p2(s)

4Γ(1− α)r(s)

)[
R(t)−R(s)

]λ
+

λp(s)

2Γ(1− α)r(s)

[
R(t)−R(s)

]λ−1}
ds >

λ2

4Γ(1− α)(λ− 1)
. (3.21)
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Proof. Since H(t, s) = [R(t)−R(s)]
λ
, it is easy to see that

h1(t, s) = λ [R(t)−R(s)]
λ−2
2

1

r(t)
,

and

h2(t, s) = λ [R(t)−R(s)]
λ−2
2

1

r(s)
.

Noting that∫ t

l

r(s)h2
1(s, l)ds =

∫ t

l

r(s)λ2 [R(s)−R(l)]
λ−2 1

r2(s)
ds =

λ2

λ− 1
[R(t)−R(l)]

λ−1

and∫ t

l

r(s)h2
2(s, l)ds =

∫ t

l

r(s)λ2 [R(t)−R(s)]
λ−2 1

r2(s)
ds =

λ2

λ− 1
[R(t)−R(l)]

λ−1
.

In view of limt→∞ R(t) = ∞, it follows that

lim
t→∞

1

4Γ(1− α)Rλ−1(t)

∫ t

l

r(s)h2
1(s, l)ds =

λ2

4Γ(1− α)(λ− 1)
(3.22)

and

lim
t→∞

1

4Γ(1− α)Rλ−1(t)

∫ t

l

r(s)h2
2(s, l)ds =

λ2

4Γ(1− α)(λ− 1)
. (3.23)

From (3.20) and (3.22), we have that

lim sup
t→∞

1

Rλ−1(t)

∫ t

l

{
H(s, l)µq(s)− r(s)

4Γ(1− α)

[
h1(s, l)−

p(s)

r(s)

√
H(s, l)

]2}
ds

=lim sup
t→∞

1

Rλ−1(t)

∫ t

l

{[
R(s)−R(l)

]λ
µq(s) +

λp(s)

2Γ(1− α)r(s)

[
R(s)−R(l)

]λ−1

− p2(s)

4Γ(1− α)r(s)

[
R(s)−R(l)

]λ}
ds− limsup

t→∞

1

Rλ−1(t)

∫ t

l

r(s)

4Γ(1− α)
h2
1(s, l)ds

=lim sup
t→∞

1

Rλ−1(t)

∫ t

l

{(
µq(s)− p2(s)

4Γ(1− α)r(s)

)[
R(s)−R(l)

]λ
+

λp(s)

2Γ(1− α)r(s)

[
R(s)−R(l)

]λ−1}
ds− λ2

4Γ(1− α)(λ− 1)
> 0, (3.24)

i.e., (3.14) holds. Similarly, (3.21) implies that (3.15) holds. By Theorem 3.2, every
solution of (1.4) is oscillatory. The proof is complete.

4. Example

Example 4.1. Consider the fractional partial differential equations

Dα
+,t

(
Dα

+,tu(x, t)
)
− 1

t
Dα

+,tu(x, t) +
ex

t2
f

(∫ t

0

(t− ξ)−αu(x, v)dv

)
=
et

8
∆u(x, t), (x, t) ∈ (0, π)× (0,∞) (4.1)
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with the Robin boundary condition

ux(0, t) = ux(π, t) = 0, (4.2)

where α ∈ (0, 1), p(t) = −1
t , q(t) = min

x∈Ω
q(x, t) = min

x∈(0,π)

ex

t2 = 1
t2 , r(t) = 1, a(t) =

et

8 , f(u) = u. Set t0 ≥ 0 and µ = 1. Thus all the conditions of the theorem (3.1)
hold. Therefore every solution of (4.1) is oscillatory.

Example 4.2. Consider the fractional partial differential equations

D
1
2
+,t

(
D

1
2
+,tu(x, t)

)
−D

1
2
+,tu(x, t) + (x2 +

1

t
)f

(∫ t

0

(t− ξ)−
1
2u(x, v)dv

)
=3e−t∆u(x, t), (x, t) ∈ (0, π)× (0,∞) (4.3)

with the Robin boundary condition

ux(0, t) = ux(π, t) = 0, (4.4)

where α ∈ (0, 1), p(t) = −1, q(x, t) = (x2 + 1
t ), q(t) = min

x∈Ω
q(x, t) = min

x∈(0,π)
(x2 + 1

t ) =

1
t , r(t) = 1, a(t) = 3e−t, f(u) = u. Set t0 ≥ 0 and µ = 1. Thus all the conditions of
the theorem (3.1) hold. Therefore every solution of (4.3) is oscillatory.
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