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Abstract In this paper, two stochastic ratio-dependent predator-prey sys-
tems are considered. One is just with white noise, and the other one is taken
into both white noise and color noise account. Sufficient criteria for extinction
and persistence in time average are established. The critical value between
persistence and extinction is obtained. Moreover, we show that there is sta-
tionary distribution for the stochastic system with regime-switching. Finally,
examples and simulations are carried on to verify these results.
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1. Introduction

The dynamic relationship between predators and their preys has long been and will
continue to be one of the dominant themes in both ecology and mathematical ecol-
ogy due to its universal existence and importance [13]. The functional response is
the important component depicting the predator-prey relationship [15]. Considering
predators have to search for food (and therefore have to share or compete for food),
Arditi etc [1,2,17] proposed a ratio-dependent function. And so the ratio-dependent
predator-prey system takes the form of ẋ(t) = x(t)

(
a− bx(t)− cy(t)

my(t)+x(t)

)
,

ẏ(t) = y(t)
(
−d+ fx(t)

my(t)+x(t)

)
.

(1.1)
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Here, x(t) and y(t) represent population densities of the prey and the predator
at time t, respectively; parameters a, b, c, d, f,m are positive constants. The prey
growth is of logistic type with growth rate a and carrying capacity rate a/b in the
absence of predation. c,m, f, d stand for the prey capturing rate, half capturing
saturation constant, conversion rate and the predator death rate, respectively.

The classical predator-prey theory relies on the functional response on prey
density, while the ratio-dependent predator-prey theory is based on the assumption
that a functional response depends on the ratio of prey to predator abundance,
which solves the problem of the paradoxes of enrichment [1, 3, 16]. Lots of authors
studied the dynamics of system (1.1). Hsu etc [18] and Kuang etc [24] showed that
the ratio-dependent model (1.1) is capable of producing richer and more reasonable
dynamics. Berezovskaya etc [4], Xiao etc [35], Tang etc [32] and Li etc [25] showed
that there exist numerous kinds of topological structures in a neighborhood of the
origin, which is a degenerate equilibrium.

As most of ecosystems are exposed within the open environment, the random-
ly fluctuating environmental forces are not ignored. Considering the continuous
fluctuations in the environment (e.g. variation in intensity of sunlight, tempera-
ture, water level, etc.), parameters involved in models are not absolute constants,
but they always fluctuate around some average value. Recently, a lot of authors
introduced environmental noise into predator-prey models, such as [5–7,22]. Espe-
cially, we [22] investigated the dynamics of the following stochastic ratio-dependent
predator prey system

dx(t) = x(t)

(
a− bx(t)− cy(t)

my(t) + x(t)

)
dt+ αx(t)dB1(t),

dy(t) = y(t)

(
−d+

fx(t)

my(t) + x(t)

)
dt+ βy(t)dB2(t),

(1.2)

where B1(t), B2(t) are mutually independent Brownian motions, α, β represent in-
tensities of white noises.

Due to seasonal effects of weather, food supply, mating habits, hunting or har-
vesting seasons, etc, Cushing [8] pointed out that it is necessary and important to
consider models with periodic ecological parameters or perturbations which might
be quite naturally exposed. Thus, the assumption of periodicity of parameters is
a way of incorporating the periodicity of the environment. Lots of authors consid-
ered the behavior of non-autonomous predator-prey models (see [9,10,26,34,37] for
example). Fan etc [14] assumed that all of parameters in system (1.1) are not con-
stants but are T -periodic functions, and investigated its dynamics. They obtained
sufficient conditions for existence, uniqueness and stability of a positive periodic
solution. In detail,

• If f̂ > ď, m̂â > č, then there is a periodic solution of the deterministic system,
and it is persistent;

• If f̌ > d̂ or
ĉ

m̌
> ǎ+ ď, then the deterministic system is not persistent;

• If
ĉ

m̌
> ǎ+ ď, then lim

t→∞
(x(t), y(t)) = (0, 0).

Therefore, this paper incorporates the varying property of parameters and s-
tochastic fluctuation of environment into the model, and considers the following
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non-autonomous stochastic ratio-dependent predator-prey system
dx(t) = x(t)

(
a(t)− b(t)x(t)− c(t)y(t)

m(t)y(t) + x(t)

)
dt+ α(t)x(t)dB1(t),

dy(t) = y(t)

(
−d(t) +

f(t)x(t)

m(t)y(t) + x(t)

)
dt+ β(t)y(t)dB2(t),

(1.3)

where B1(t), B2(t) are mutually independent Brownian motions, α(t), β(t) repre-
sent intensities of white noises, which are continuous functions in time t with T -
periodicity, and other parameters are all T -periodic functions with the same mean-
ing as in system (1.1). Recently, non-autonomous stochastic population models are
considered [19, 21, 33, 36, 38]. As far as we know, the stochastic ratio-dependent
predator-prey system with periodic coefficients is not considered. The purpose of
the present paper is to investigate the dynamics of system (1.3).

Apart from white noise, variability of the environment regimes (such as tempera-
ture, rainfall, humidity, wind etc.) may have an important impact on the dynamics
of population. The effects of environment regimes in memoryless conditions to
population are called color noise and can be illustrated as a Markovian switching
between two or more regimes of environment. Hence, the traditional stochastic
epidemic models cannot describe this phenomena. There are lots of works have
been done on the population dynamics with regime-switching [11,12,27–29]. In this
paper, we also take the regime-switching into account, and we get the following
system:
dx(t) = x(t)

(
a(ξ(t))− b(ξ(t))x(t)− c(ξ(t))y(t)

m(ξ(t))y(t) + x(t)

)
dt+ α(ξ(t))x(t)dB1(t),

dy(t) = y(t)

(
−d(ξ(t)) +

f(ξ(t))x(t)

m(ξ(t))y(t) + x(t)

)
dt+ β(ξ(t))y(t)dB2(t),

(1.4)
where ξ(t) is a continuous time Markov chain with a finite state space M =
{1, 2, · · · , N}, 1 ≤ N < ∞. Lv etc [29] discussed the dynamics of this system.
They showed that it is persistent in mean under some conditions, and it is extinc-
tion when white noise is stronger. But they did not obtain the threshold value for
the persistence and extinction of the population. We fill this gap in this paper.

The main focus of this article is to discuss how white noise and color noise
affect the population dynamics. Due to the degeneration of the zero equilibrium,
there is some difficult to investigate the dynamics around the origin. The rest of
this paper is organized as follows. In Sec. 2, we recall some results for stochastic
dynamical systems and introduce some notations. Sec. 3 discusses the dynamics
of system (1.3). The existence and uniqueness of a positive solution is shown, and
conditions for persistence and extinction of system (1.3) are given. Sec. 4 discusses
the dynamics of system (1.4). Apart from showing the persistence and extinction
of the population, we mainly show that there is a stationary distribution of system
(1.4). Finally, in Sec. 5, some examples and simulations are given to illustrate
obtained results.

2. Preliminary

Throughout this paper, unless otherwise specified, let (Ω,F , {F t}t≥0
, P ) be a com-

plete probability space with a filtration {F t}t≥0 satisfying the usual conditions (i.e.
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it is right continuous and F0 contains all P-null sets). Let B1(t) and B2(t) denote
the independent standard Brownian motions defined on this probability space, and
ξ(t) is independent of Bi(t), i = 1, 2.

Suppose the generator Γ = (γij)N×N of the Markov chain is given by

P{ξ(t+ ∆) = j|ξ(t) = i} =

{
γij∆ + o(∆), if i 6= j,

1 + γii∆ + o(∆), if i = j,

where ∆ > 0, γij ≥ 0 is the transition rate from i to j if i 6= j, while γii = −
∑
i 6=j γij .

Assume further that Markov chain ξ(t) is irreducible and has a unique stationary
distribution π = {π1, π2, · · · , πN} which can be determined by equation

πΓ = 0 (2.1)

subject to

N∑
l=1

πl = 1, and πl > 0,∀ l ∈M.

Let (X(t), ξ(t)) be the diffusion process described by the following equation:

dX(t) = b(X(t), ξ(t))dt+ σ(X(t), ξ(t))dB(t), X(0) = x0, ξ(0) = ξ, (2.2)

where b(·, ·) : Rn×M→ Rn, σ(·, ·) : Rn×M→ Rn×n, andD(x, l) = σ(x, l)σ>(x, l) =
(dij(x, l)). For each l ∈M, let V (·, l) be any twice continuously differentiable func-
tion, the operator L can be defined by

LV (x, l) =

n∑
i=1

bi(x, l)
∂V (x, l)

∂xi
+

1

2

n∑
i,j=1

dij(x, l)
∂2V (x, l)

∂xi∂xj
+

N∑
j=1

γljV (x, j).

Now, we recall some results on the stationary distribution for stochastic differen-
tial equations under regime switching. For more details, readers can refer to [31,39].

Lemma 2.1 ( [31]). If the following conditions are satisfied:
(i) γij > 0 for any i 6= j;
(ii) for each l ∈M, D(x, l) = (dij(x, l)) is symmetric and satisfies

λ|ζ|2 ≤ 〈D(x, l)ζ, ζ〉 ≤ λ−1|ζ|2 for all ζ ∈ Rn,

with some constant λ ∈ (0, 1] for all x ∈ Rn;
(iii) there exists a nonempty open set D with compact closure, satisfying that, for
each l ∈ M, there is a nonnegative function V (·, l) : Dc → R̄+ such that V (·, l) is
twice continuously differential and that for some α > 0,

LV (x, l) ≤ −α, (x, l) ∈ Dc ×M,

then (X(t), ξ(t)) of system (2.2) is positive recurrent and ergodic. That is to say,
there exists a unique stationary distribution µ(·, ·) such that for any Borel measur-
able function f(·, ·) : Rn ×M→ R satisfying

N∑
l=1

∫
Rn
|f(x, l)|µ(dx, l) <∞,
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we have

P

(
lim
t→∞

1

t

∫ t

0

f(X(s), ξ(s))ds =

N∑
l=1

∫
Rn
f(x, l)µ(dx, l)

)
= 1.

At last of this section, we introduce some notations used in this paper.
If f(t) is a continuous T -periodic function defined on [0,+∞), then define

f̌ = sup
0≤t<+∞

f(t), f̂ = inf
0≤t<+∞

f(t), 〈f〉 =
1

T

∫ T

0

f(s)ds.

While if f(l) is a function defined on M, then define

f̌ = max
l∈M

f(l), f̂ = min
l∈M

f(l).

Let R2
+ = {(x, y) ∈ R2 : x > 0, y > 0}. Define

λ1 =

N∑
κ=1

πκ

(
a(κ)− c(κ)

m(κ)
− α2(κ)

2

)
, λ2 =

N∑
κ=1

πκ

(
f(κ)− d(κ)− β2(κ)

2

)
.

3. The Dynamics of System (1.3)

To investigate the long time behavior of system (1.3), the existence of a positive
solution should be discussed first. From results in [22], it is easy to get the following
conclusions.

Theorem 3.1. There is a unique positive local solution (x(t), y(t)) for t ∈ [0, τe)
a.s. of system (1.3) for any initial value (x(0), y(0)) ∈ R2

+.

Let Φ(t), φ(t),Ψ(t), ψ(t) be solutions of the following equations

dΦ(t) = Φ(t) (a(t)− b(t)Φ(t)) dt+ α(t)Φ(t)dB1(t),

dφ(t) = φ(t)

(
a(t)− c(t)

m(t)
− b(t)φ(t)

)
dt+ α(t)φ(t)dB1(t),

dΨ(t) = Ψ(t)

(
−d(t) +

f(t)Φ(t)

m(t)Ψ(t)

)
dt+ β(t)Ψ(t)dB2(t),

dψ(t) = ψ(t)

(
−d(t) + f(t)− f(t)m(t)

φ(t)
ψ(t)

)
dt+ β(t)ψ(t)dB2(t),

with initial values Φ(0) = φ(0) = x(0) and Ψ(0) = ψ(0) = y(0), respectively,
where coefficients are all continuous T -periodic functions. For t ∈ [0, τe), using the
comparison theorem of stochastic differential equations, gives

φ(t) ≤ x(t) ≤ Φ(t),

ψ(t) ≤ y(t) ≤ Ψ(t) a.s.

Besides, expressions of Φ(t), φ(t),Ψ(t), ψ(t) are [23,30]

Φ(t) =
e

∫ t
0

(
a(s)−α

2(s)
2

)
ds+α(s)dB1(s)

1
x(0) +

∫ t
0
b(s)e

∫ s
0

(
a(r)−α

2(r)
2

)
dr+α(r)dB1(r)dr

ds

,



480 C. Ji, D. Jiang & Y. Zhao

φ(t) =
e

∫ t
0

(
a(s)− c(s)

m(s)
−α

2(s)
2

)
ds+α(s)dB1(s)

1
x(0) +

∫ t
0
b(s)e

∫ s
0

(
a(r)− c(r)

m(r)
−α

2(r)
2

)
dr+α(r)dB1(r)dr

ds

,

Ψ(t) = e

∫ t
0

(
−d(s)− β

2(s)
2

)
ds+β(s)dB2(s)(

y(0) +

∫ t

0

f(s)Φ(s)

m(s)
e

∫ s
0

(
d(r)+

β2(r)
2

)
dr−β(r)dB2(r)

ds

)
,

ψ(t) =
e

∫ t
0

(
f(s)−d(s)− β

2(s)
2

)
ds+β(s)dB2(s)

1
y(0) +

∫ t
0
f(s)m(s)
φ(s) e

∫ s
0

(
f(r)−d(r)− β

2(r)
2

)
dr+β(r)dB2(r)dr

ds

.

It is clear that all these solutions are well defined for all t ∈ [0, τe) a.s. and arbitrarily
large magnitude of τe, which in turn implies that τe =∞. Thus a positive solution
is global existence.

Theorem 3.2. There is a unique positive solution (x(t), y(t)) for t ≥ 0 a.s. of
system (1.3) for any initial value (x(0), y(0)) ∈ R2

+. Furthermore, for all t ≥ 0,

φ(t) ≤ x(t) ≤ Φ(t),

ψ(t) ≤ y(t) ≤ Ψ(t) a.s.

It is shown that the solution (x(t), y(t)) is between (φ(t), ψ(t)) and (Φ(t),Ψ(t)),
respectively. By Lemma A.1 of [22], one can conclude the following results.

Lemma 3.1. If 〈a− α2

2 〉 > 0, then

lim
t→∞

log Φ(t)

t
= 0, lim

t→∞

1

t

∫ t

0

b(s)Φ(s)ds = 〈a− α2

2
〉 a.s.

Lemma 3.2. If 〈a− c
m −

α2

2 〉 > 0, then

lim
t→∞

log φ(t)

t
= 0, lim

t→∞

1

t

∫ t

0

b(s)φ(s)ds = 〈a− c

m
− α2

2
〉 a.s.

By the similar reasoning as in section 3.1 of [22], one can get the following
results.

Lemma 3.3. If 〈a− α2

2 〉 > 0, then

lim sup
t→∞

log Ψ(t)

t
≤ 0 a.s.

Lemma 3.4. If 〈a− c
m −

α2

2 〉 > 0 and 〈f − d− β2

2 〉 > 0, then

lim inf
t→∞

logψ(t)

t
≥ 0 a.s.

As the ratio-dependent function depends on the ratio of prey to predator, it is

necessary and interesting to consider the long time behavior of x(t)
y(t) or y(t)

x(t) . For

convenience, set u(t) = x(t)
y(t) , v(t) = y(t)

x(t) .
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Theorem 3.3. Let (x(t), y(t)) be a solution of system (1.3) with any initial value
(x(0), y(0)) ∈ R2

+. If

f(t) ≥ c(t)

m(t)
or

α2(t)

2
≥ a(t) + d(t) +

β2(t)

2
− f(t) for all t ≥ 0

and

〈a+ d− c

m
− α2

2
+
β2

2
〉 < 0

then

lim
t→∞

x(t)

y(t)
= 0, lim

t→∞
x(t) = 0, lim

t→∞
y(t) = 0 a.s.

Proof. Applying Itô’s formula to the second equation of system (1.3), yields

d
1

y(t)
= − 1

y2(t)
dy(t) +

1

y3(t)
(dy(t))2

=
1

y(t)

(
d(t) + β2(t)− f(t)x(t)

m(t)y(t) + x(t)

)
dt− β(t)

y(t)
dB2(t).

Then

du(t) =
1

y(t)
dx(t) + x(t)d

1

y(t)
+ dx(t)d

1

y(t)

=
x(t)

y(t)

(
a(t) + d(t) + β2(t)− b(t)x(t)− f(t)x(t) + c(t)y(t)

m(t)y(t) + x(t)

)
dt

+
x(t)

y(t)
(α(t)dB1(t)− β(t)dB2(t))

≤ u(t)

(
a(t) + d(t) + β2(t)− f(t)u(t) + c(t)

m(t) + u(t)

)
dt

+ u(t)(α(t)dB1(t)− β(t)dB2(t)),

and

d log u(t) ≤
(
a(t) + d(t) +

β2(t)

2
− α2(t)

2
− f(t)u(t) + c(t)

m(t) + u(t)

)
dt

+ α(t)dB1(t)− β(t)dB2(t)

=


(
a(t) + d(t) + β2(t)

2 − α2(t)
2 − f(t)

)
u(t)

m(t) + u(t)(
a(t) + d(t) + β2(t)

2 − α2(t)
2

)
m(t)− c(t)

m(t) + u(t)

 dt
+ α(t)dB1(t)− β(t)dB2(t).

If f(t) ≥ c(t)
m(t) or α2(t)

2 ≥ a(t) + d(t) + β2(t)
2 − f(t) for all t ≥ 0, then

d log u(t) ≤
(
a(t) + d(t)− c(t)

m(t)
− α2(t)

2
+
β2(t)

2

)
dt+ α(t)dB1(t)− β(t)dB2(t),



482 C. Ji, D. Jiang & Y. Zhao

which implies that

log u(t)− log u(0)

t
≤ 1

t

∫ t

0

(
a(s) + d(s)− c(s)

m(s)
− α2(s)

2
+
β2(s)

2

)
ds

+
M1(t)

t
− M2(t)

t
,

(3.1)

where M1(t) =
∫ t

0
α(s)dB1(s),M2(t) =

∫ t
0
β(s)dB2(s). They are local martingales

whose quadratic variations are 〈M1,M1〉t =
∫ t

0
α2(s)ds ≤ α̌t and 〈M2,M2〉t =∫ t

0
β2(s)ds ≤ β̌t, respectively. Then according to the strong law of large numbers

for martingales (see e.g. [20]), one can derive that

lim
t→∞

Mi(t)

t
= 0 a.s., i = 1, 2. (3.2)

Taking the superior limit of (3.1) and applying (3.2), yields

lim sup
t→∞

log u(t)

t
≤ 〈a+ d− c

m
− α2

2
+
β2

2
〉 < 0.

Therefore,

lim
t→∞

u(t) = 0 a.s.

which implies that for a arbitrary 0 < ε < 1, there exists a τ1 > 0 and a set Ω̃1

satisfying P{Ω̃1} ≥ 1 − ε, for t ≥ τ1 and ω ∈ Ω̃1, u(t) ≤ ε. In this situation, it is
easy to have

dx(t) = x(t)

(
a(t)− c(t)

m(t)
− b(t)x(t) +

c(t)u(t)

m2(t) +m(t)u(t)

)
dt+ α(t)x(t)dB1(t)

≤ x(t)

(
a(t)− c(t)

m(t)
− b(t)x(t) +

c(t)u(t)

m2(t)

)
dt+ α(t)x(t)dB1(t)

≤ x(t)

(
a(t)− c(t)

m(t)
+

c(t)

m2(t)
ε

)
dt+ α(t)x(t)dB1(t),

and

dy(t) = y(t)

(
−d(t) +

f(t)u(t)

m(t) + u(t)

)
dt+ β(t)y(t)dB2(t)

≤ y(t)

(
−d(t) +

f(t)

m(t)
u(t)

)
dt+ β(t)y(t)dB2(t)

≤ y(t)

(
−d(t) +

f(t)

m(t)
ε

)
dt+ β(t)y(t)dB2(t).

Then

log x(t)− log x(τ1)

t
≤ 1

t

∫ t

τ1

(
a(s)− c(s)

m(s)
− α2(s)

2
+

c(s)

m2(s)
ε

)
ds+

M1(t)−M1(τ1)

t
,

log y(t)− log y(τ1)

t
≤ 1

t

∫ t

τ1

(
−d(s)− β2(s)

2
+
f(s)

m(s)
ε

)
ds+

M2(t)−M2(τ1)

t
.
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Taking (3.2) together implies

lim sup
t→∞

log x(t)

t
≤ 1

T

∫ T

0

(
a(s)− c(s)

m(s)
− α2(s)

2
+

c(s)

m2(s)
ε

)
ds,

lim sup
t→∞

log y(t)

t
≤ 1

T

∫ T

0

(
−d(s)− β2(s)

2
− α2(s)

2
+
f(s)

m(s)
ε

)
ds.

Then letting ε→ 0, gives

lim sup
t→∞

log x(t)

t
≤ 1

T

∫ T

0

(
a(s)− c(s)

m(s)
− α2(s)

2

)
ds = 〈a− c

m
− α2

2
〉 < 0 a.s.

lim sup
t→∞

log y(t)

t
≤ 1

T

∫ T

0

(
−d(s)− β2(s)

2

)
ds = −〈d+

β2

2
〉 < 0 a.s.

Therefore

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0 a.s.

Remark 3.1. Theorem 3.3 shows two situations which will make both the prey

and the predator dying out. In the first case, f(t) ≥ c(t)
m(t) is needed. In fact, f(t) =

l(t)c(t), where l(t) represents the efficiency at which consumed prey is converted

into predator births. So f(t) ≥ c(t)
m(t) equals to l(t) ≥ 1

m(t) , that is to say that

the conversion efficient is not less than 1
m(t) at time t. While, in the other one,

white noise Ḃ1(t) is so large that α2(t)
2 ≥ a(t) + d(t) + β2

2 − f(t). From simulations,
Examples 5.2, 5.3 also illustrate that whether the prey population is persistent or
both the prey and the predator are persistent of the corresponding deterministic
system, the large white noise can always cause the population to die out.

Besides, in general, when the prey dies out, the predator will always tend to zero,
because there is no food, which is verified by the dynamics of many prey-predator
systems. But for the ratio-dependent prey-predator system, it is difficulty to prove
this phenomena. In the proof of Theorem 3.3, the extinction of the prey y(t) is

obtained by showing that x(t)
y(t) will tend to zero.

Theorem 3.4. Let (x(t), y(t)) be a solution of system (1.3) with any initial value
(x(0), y(0)) ∈ R2

+. If

f(t) ≥ c(t)

m(t)
or

β2(t)

2
≥ c(t)

m(t)
− d(t) for all t ≥ 0

and

〈a− α2

2
〉 > 0, 〈f − d− β2

2
〉 < 0

then

lim
t→∞

v(t) = 0, lim
t→∞

1

t

∫ t

0

b(s)x(s)ds = 〈a− α2

2
〉, lim

t→∞
y(t) = 0 a.s.
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Proof. Also applying Itô’s formula, one can get

dv(t) = d
1

u(t)
= −v2(t)du(t) + v3(t)(du(t))2

= v(t)

(
−a(t)− d(t) + α2(t) + b(t)x(t) +

c(t)v(t) + f(t)

m(t)v(t) + 1

)
dt

− v(t)(α(t)dB1(t)− β(t)dB2(t))

and

d log v(t) =

(
−a(t)− d(t) +

α2(t)

2
− β2(t)

2
+ b(t)x(t) +

c(t)v(t) + f(t)

m(t)v(t) + 1

)
dt

− α(t)dB1(t) + β(t)dB2(t)

=

(
−a(t) +

α2(t)

2
+ b(t)x(t)

+
(c(t)− d(t)m(t)− β2(t)

2 m(t))v(t) + f(t)− d(t)− β2(t)
2

m(t)v(t) + 1

)
dt

− α(t)dB1(t) + β(t)dB2(t)

≤
(
−a(t) +

α2(t)

2
+ f(t)− d(t)− β2(t)

2
+ b(t)x(t)

)
dt

− α(t)dB1(t) + β(t)dB2(t),

where the last inequality is base on the condition f(t) ≥ c(t)
m(t) or β2(t)

2 ≥ c(t)
m(t) − d(t)

for all t ≥ 0. Then

log v(t)− log v(0)

t
≤ 1

t

∫ t

0

(
−a(s) +

α2(s)

2
+ f(s)− d(s)− β2(s)

2

)
ds

+
1

t

∫ t

0

b(x)x(s)ds− M1(t)

t
+
M2(t)

t
,

(3.3)

where M1(t) and M2(t) are the same as in the proof of Theorem 3.3. On the other
hand, using results of Theorem 3.2 and Lemma 3.1 together, yields

lim sup
t→∞

1

t

∫ t

0

b(s)x(s)ds ≤ 1

T

∫ T

0

(
a(s)− α2(s)

2

)
ds = 〈a− α2

2
〉 a.s. (3.4)

if 〈a − α2

2 〉 > 0. Taking the superior limit in (3.3) and using (3.2), (3.4), one can
conclude that

lim sup
t→∞

log v(t)

t
≤ 1

T

∫ T

0

(
f(s)− d(s)− β2(s)

2

)
ds = 〈f − d− β2

2
〉 < 0 a.s.

That is to say, for any 0 < ε < 1, there is a τ2 > 0 and a set Ω̃2 such that
P{Ω̃} ≥ 1 − ε, for t ≥ τ2, ω ∈ Ω̃, v(t) ≤ ε a.s. Now referring to the first equation
in system (1.3) again, it is true that

dx(t) = x(t)

(
a(t)− b(t)x(t)− c(t)v(t)

m(t)v(t) + 1

)
dt+ α(t)x(t)dB1(t)
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≥ x(t) (a(t)− čε− b(t)x(t)) dt+ α(t)x(t)dB1(t)

for t ≥ τ2 and ω ∈ Ω̃2. Together with Lemma 3.1, if 〈a− čε− α2

2 〉 > 0, then

lim inf
t→∞

1

t

∫ t

0

b(s)x(s) ≥ 1

T

∫ T

0

(
a(s)− α2(s)

2

)
ds− čε a.s.

Letting ε→ 0, yields

lim inf
t→∞

1

t

∫ t

0

b(s)x(s) ≥ 1

T

∫ T

0

(
a(s)− α2(s)

2

)
ds a.s.

which together with (3.4) implies

lim
t→∞

1

t

∫ t

0

b(s)x(s) =
1

T

∫ T

0

(
a(s)− α2(s)

2

)
ds = 〈a− α2

2
〉 a.s.

In addition, note that

log y(t)− log y(0)

t
=

1

t

∫ t

0

(
f(s)− d(s)− β2(s)

2

)
ds− 1

t

∫ t

0

f(s)m(s)y(s)

m(s)y(s) + x(s)
ds

+
1

t

∫ t

0

β(s)dB2(s)

≤ 1

t

∫ t

0

(
f(s)− d(s)− β2(s)

2

)
ds+

1

t

∫ t

0

β(s)dB2(s),

then

lim
t→∞

log y(t)

t
≤ 1

T

∫ T

0

(
f(s)− d(s)− β2(s)

2

)
ds = 〈f − d− β2

2
〉 < 0 a.s. (3.5)

where (3.2) is used. Hence lim
t→∞

y(t) = 0 a.s.

Remark 3.2. Theorem 3.4 also gives two cases in which the phenomena will hap-
pen. One is the stochastic system has the similar dynamics as the deterministic
system. The other is the large white noise Ḃ2(t) makes the system non-persistent,
even if the deterministic system is persistent. Also see Examples 5.4, 5.5.

Theorem 3.5. Let (x(t), y(t)) be a solution of system (1.3) with any initial value
(x(0), y(0)) ∈ R2

+. If

〈a− c

m
− α2

2
〉 > 0, 〈f − d− β2

2
〉 > 0

then

lim
t→∞

log x(t)

t
= 0, lim

t→∞

log y(t)

t
= 0 a.s.

and

lim
t→∞

1

t

∫ t

0

(
b(s)x(s) +

c(s)y(s)

m(s)y(s) + x(s)

)
ds = 〈a− α2

2
〉 a.s.

lim
t→∞

1

t

∫ t

0

f(s)y(s)

m(s)y(s) + x(s)
ds = 〈d+

β2

2
〉 a.s.
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Proof. When 〈a− c
m −

α2

2 〉 > 0, 〈f − d− β2

2 〉 > 0, then from Lemma 3.1-Lemma
3.4, it is easy to get

lim
t→∞

log x(t)

t
= 0, lim

t→∞

log y(t)

t
= 0 a.s. (3.6)

Applying Itô’s formula to the first equation of system (1.3), yields

d log x(t) =

(
a(t)− α2(t)

2
− b(t)x(t)− c(t)y(t)

m(t)y(t) + x(t)

)
dt+ α(t)dB1(t),

d log y(t) =

(
−d(t)− β2(t)

2
+

f(t)x(t)

m(t)y(t) + x(t)

)
dt+ β(t)dB2(t),

which together with (3.6) tells us that the result is true.

Remark 3.3. The asymptotic behavior of system (1.3) shows that 〈a − c
m −

α2

2 〉, 〈f − d −
β2

2 〉 is the critical value between persistence and extinction of the
population in system (1.3).

4. The Dynamics of System (1.4)

In this section, we discuss the dynamics of system (1.4). Lv etc [29] pointed out
there is a unique positive solution of system (1.4). As the arguments in the previ-
ous section, we can obtain the results about the persistence and extinction of the
population.

Theorem 4.1. Let (x(t), y(t), ξ(t)) be a solution of system (1.4) with any initial
value (x(0), y(0), ξ(0)) ∈ R2

+ ×M. If

f(l) ≥ c(l)

m(l)
or

α2(l)

2
≥ a(l) + d(l) +

β2(l)

2
− f(l) for each l ∈M

and

N∑
κ=1

πκ

(
a(κ) + d(κ)− c(κ)

m(κ)
− α2(κ)

2
+
β2(κ)

2

)
< 0,

then

lim
t→∞

x(t)

y(t)
= 0, lim

t→∞
x(t) = 0, lim

t→∞
y(t) = 0 a.s.

Theorem 4.2. Let (x(t), y(t), ξ(t)) be a solution of system (1.4) with any initial
value (x(0), y(0), ξ(0)) ∈ R2

+ ×M. If

f(l) ≥ c(l)

m(l)
or

β2(l)

2
≥ c(l)

m(l)
− d(l) for each l ∈M

and

N∑
κ=1

πκ

(
a(κ)− α2(κ)

2

)
> 0,

N∑
κ=1

πκ

(
f(κ)− d(κ)− β2(κ)

2

)
< 0
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then

lim
t→∞

v(t) = 0, lim
t→∞

1

t

∫ t

0

b(ξ(s))x(s)ds =

N∑
κ=1

πκ

(
a(κ)− α2(κ)

2

)
, lim
t→∞

y(t) = 0 a.s.

Theorem 4.3. Let (x(t), y(t), ξ(t)) be a solution of system (1.4) with any initial
value (x(0), y(0), ξ(0)) ∈ R2

+ ×M. If

N∑
κ=1

πκ

(
a(κ)− c(κ)

m(κ)
− α2(κ)

2

)
> 0,

N∑
κ=1

πκ

(
f(κ)− d(κ)− β2(κ)

2

)
> 0

then

lim
t→∞

log x(t)

t
= 0, lim

t→∞

log y(t)

t
= 0 a.s.

and

lim
t→∞

1

t

∫ t

0

(
b(ξ(s))x(s) +

c(ξ(s))y(s)

m(ξ(s))y(s) + x(s)

)
ds =

N∑
κ=1

πκ

(
a(κ)− α2(κ)

2

)
a.s.

lim
t→∞

1

t

∫ t

0

f(ξ(s))y(s)

m(ξ(s))y(s) + x(s)
ds =

N∑
κ=1

πκ

(
d(κ) +

β2(κ)

2

)
a.s.

In the remain of this section, we mainly investigate the existence of a stationary
distribution of system (1.4).

Theorem 4.4. Assume that γij > 0 for any i 6= j, and λ1 > 0, λ2 > 0. Then for
any initial value (x(0), y(0), ξ(0)) ∈ R2

+×M, the solution (x(t), y(t), ξ(t)) of system
(1.4) admits a unique ergodic stationary distribution.

Proof. It is easy to see if all conditions in Lemma 2.1 are satisfied, then system
system (1.4) is positive recurrent. Obviously, condition (i) in Lemma 2.1 is true.
By using the same method as those in [31], we obtain that condition (ii) holds.
Now we mainly verify condition (iii).

Let (x(t), y(t), ξ(t)) be a solution of system (1.4) with the initial value
(x(0), y(0), ξ(0)) ∈ R2

+ ×M. By Itô’s formula, yields

d
1

x(t)
= − 1

x(t)

(
a(l)− α2(l)− b(l)x(t)− c(l)y(t)

m(l)y(t) + x(t)

)
+
α(l)

x(t)
dB1(t),

and

dx−θ(t) = θ

(
1

x(t)

)θ−1

d
1

x(t)
+
θ(θ − 1)

2

(
1

x(t)

)θ−2(
d

1

x(t)

)2

= −θx−θ(t)
(
a(l)− θ + 1

2
α2(l)− b(l)x(t)− c(l)y(t)

m(l)y(t) + x(t)

)
dt

+ θα(l)x−θ(t)dB1(t)

≤ −θx−θ(t)
(
a(l)− θ + 1

2
α2(l)− b(l)x(t)− c(l)

m(l)

)
dt+ θα(l)x−θ(t)dB1(t)
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:= −θx−θ(t)
(
Q1(l)− θ

2
α2(l)− b(l)x(t)

)
dt+ θα(l)x−θ(t)dB1(t).

Define V1(x, l) = 1
θ e
θς1(l)x−θ, where 0 < θ < 1 determined later, and ς1(l) =

(ς1(1), ς1(2), · · · , ς1(N))> satisfying the following Poisson system

Γς1 = −
N∑
κ=1

πκQ1(κ) +Q1(l).

Then

LV1 ≤ −eθς1(l)x−θ(t)

(
N∑
κ=1

πκQ1(κ)− θ

2
α2(l)− b(l)x(t)

)

≤ −eθς1(l)x−θ(t)

(
λ1 −

θ

2
α̌2 − b̌x(t)

)
≤ eθς1(l)x−θ(t)

(
b̌x(t)− λ1

2

)
provided 0 < θ < min{1, λ1

α̌2 }. Besides,

d(f̌x(t) + ĉy(t)) =

(
f̌x(t)(a(l)− b(l)x(t))− ĉd(l)y(t) +

ĉf(l)− f̌ c(l)
m(l)y(t) + x(t)

x(t)y(t)

)
dt

+ f̌α(l)x(t)dB1(t) + ĉβ(l)y(t)dB2(t),

and so

L(f̌x(t) + ĉy(t)) ≤ f̌x(t)(a(l)− b(l)x(t))− ĉd(l)y(t)

≤ − f̌ b(l)
2

x2(t) +
f̌a2(l)

2b(l)
− ĉd(l)y(t)

≤ − f̌ b̂
2
x2(t) +

f̌ ǎ2

2b̂
− ĉd̂y(t).

Besides, note that

d(− log y(t)) =

(
d(l) +

β2(l)

2
− f(l) +

f(l)m(l)y(t)

m(l)y(t) + x(t)

)
dt− β(l)dB2(t)

≤
(
d(l) +

β2(l)

2
− f(l) +

f̌ m̌y(t)

m̂y(t) + x(t)

)
dt− β(l)dB2(t)

:=

(
−Q2(l) +

f̌ m̌y(t)

m̂y(t) + x(t)

)
dt− β(l)dB2(t).

Let ς2(l) = (ς2(1), ς2(2), · · · , ς2(N))> satisfying the following Poisson system

Γς2 = −
N∑
κ=1

πκQ2(κ) +Q2(l).

Thus

L(− log y + ς2) ≤ −
N∑
κ=1

πκQ2(κ) +
f̌ m̌y(t)

m̂y(t) + x(t)
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= −λ2 +
f̌ m̌y(t)

m̂y(t) + x(t)
.

Define a C2-function Ṽ : R2
+ ×M→ R by

Ṽ (x, y, ξ(t)) =
1

θ
e−θς1(l)x−θ + f̌x+ ĉy +M(− log y + ς2(l)),

where M > 0 to be determined later. Note that for each l ∈M, the function Ṽ (·, l)
is not only continuous, but also tends to +∞ as (x, y) approaches the boundary of
R2

+ and as ‖(x, y)‖ → ∞, where ‖ · ‖ denotes the Euclidean norm of a point in R2
+.

Thus it must be lower bounded and achieve this lower bound at a point (x0, y0, l) in
the interior of R2

+. Therefore V (x, y) = Ṽ (x, y) − min
l∈M

Ṽ (x0, y0, l) is a nonnegative

C2 function: R2
+ → R̄+. Then

LV ≤ eθς1(l)x−θ(t)

(
b̌x(t)− λ1

2

)
− f̌ b̂

2
x2(t) +

f̌ ǎ2

2b̂
− ĉd̂y(t)

+M

(
−λ2 +

f̌ m̌y(t)

m̂y(t) + x(t)

)
.

Now choose M > 0 so large that sup
x∈(0,+∞),l∈M

b̌eθς1(l)x1−θ− f̌ b̂
4 x

2 + f̌ ǎ2

2b̂
−Mλ2 ≤

−2. For arbitrary 0 < ε1, ε2 < 1, define a bounded open domain Dε ⊂ R2
+ as follows:

D = {(x, y) ∈ R2
+ : ε1 ≤ x ≤ 1/ε1, ε2 ≤ y ≤ 1/ε2}.

The remainder of the proof only needs to verify that LV is negative in R2
+ \ D,

where R2
+ \ D is the following sets:

Dc1 = {(x, y) ∈ R2
+ : 0 < x < ε1}, Dc2 = {(x, y) ∈ R2

+ : ε1 ≤ x ≤ 1/ε1, 0 < y < ε2},
Dc3 = {(x, y) ∈ R2

+ : x > 1/ε1}, Dc4 = {(x, y) ∈ R2
+ : ε1 ≤ x ≤ 1/ε1, y > 1/ε2}.

Case (i): For (x, y, l) ∈ Dc1 ×M,

LV ≤ eθς1(l)x−θ(t)

(
b̌x(t)− λ1

2

)
− f̌ b̂

2
x2(t) +

f̌ ǎ2

2b̂
− ĉd̂y(t)

+M

(
−λ2 +

f̌ m̌y(t)

m̂y(t) + x(t)

)

≤ −2− λ1e
θ min
l∈M

ς1(l)

2εθ1
+M

f̌m̌

m̂
.

Choose

0 < ε1 ≤

λ1m̂e
θ min
l∈M

ς1(l)

2Mf̌m̌

1/θ

≤

λ1e
θ min
l∈M

ς1(l)

2Mf̌

1/θ

,

such that

λ1e
θ min
l∈M

ς1(l)

2εθ1
≥M f̌m̌

m̂
.
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Then
LV ≤ −1.

Case (ii): For (x, y, l) ∈ Dc2 ×M,

LV ≤ eθς1(l)x−θ(t)

(
b̌x(t)− λ1

2

)
− f̌ b̂

2
x2(t) +

f̌ ǎ2

2b̂
− ĉd̂y(t)

+M

(
−λ2 +

f̌ m̌y(t)

m̂y(t) + x(t)

)
≤ −2 +M

f̌m̌ε2
m̂ε2 + ε1

≤ −2 +Mf̌m̌ε1

provided ε2 = ε21. It is clear that in order to make

LV ≤ −1,

it only needs to satisfy

0 < ε1 <
1

Mf̌m̌
.

Case (iii): For (x, y, l) ∈ Dc3 ×M, when

ε1 ≤

(
b̂m̂

4Mm̌

)1/2

≤

(
b̂

4M

)1/2

,

it can conclude that

LV ≤ eθς1(l)x−θ(t)

(
b̌x(t)− λ1

2

)
− f̌ b̂

2
x2(t) +

f̌ ǎ2

2b̂
− ĉd̂y(t)

+M

(
−λ2 +

f̌ m̌y(t)

m̂y(t) + x(t)

)
≤ −2− f̌ b̂

4ε21
+M

f̌m̌

m̂

≤ −1.

Case (iv): For (x, y, l) ∈ Dc4 ×M,

LV ≤ eθς1(l)x−θ(t)

(
b̌x(t)− λ1

2

)
− f̌ b̂

2
x2(t) +

f̌ ǎ2

2b̂
− ĉd̂y(t)

+M

(
−λ2 +

f̌ m̌y(t)

m̂y(t) + x(t)

)
≤ −2− ĉd̂

ε2
+M

f̌m̌

m̂
.

If ε2 ≤ ĉd̂m̂
Mf̌m̌

≤ ĉd̂
Mf̌

such that − ĉd̂ε2 +M f̌m̌
m̂ ≤ 0, then

LV ≤ −1.
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Hence, taking these four cases together, if ε2 = ε21 and

0 < ε1 ≤ min


λ1e

θ min
l∈M

ς1(l)

2Mf̌

1/θ

,
1

Mf̌m̌
,

(
b̂

4M

)1/2

,

(
ĉd̂

Mf̌

)1/2
 ,

then
LV ≤ −1

is always true.
Therefore, there is a unique ergodic stationary distribution of system (1.4) ac-

cording to Lemma 2.1.

5. Examples and simulations

In this section, examples and simulations are given to illustrate previous findings.

Example 5.1. Assume that parameters of system (1.3) are given by

a(t) = 1.1 + 0.4 cos t, b(t) = 0.5 + 0.4 cos t, c(t) = 2.7 + 0.1 sin t, d(t) = 0.8 + 0.2 sin t,

f(t) = 2.8 + 0.1 sin t,m(t) = 1, α(t) = 0.1 + 0.08 sin t, β(t) = 0.2 + 0.1 cos t,

and the initial value (x(0), y(0)) = (1.5, 2). Obviously, ĉ
m̌ = 2.6 > ǎ+ ď = 2.5, then

the corresponding deterministic system tends to origin. While for the stochastic

system (1.3), f(t) ≥ c(t)
m(t) and

1

2π

∫ 2π

0

(
a(t) + d(t)− c(t)

m(t)
− α2(t)

2
+
β2(t)

2

)
dt

=
1

2π

∫ 2π

0

(
−7841

104
+

21

50
cos t+

92

103
sin t+

41

104
cos 2t

)
dt < 0.

Hence, according to the result of Theorem 3.3, one can get lim
t→∞

x(t) = 0, lim
t→∞

y(t) =

0 a.s. See Figure 1.

Example 5.2. Assume that parameters of system (1.3) are given by

a(t) = 1.2 + 0.5 cos t, b(t) = 0.5 + 0.4 cos t, c(t) = 0.5 + 0.1 sin t, d(t) = 0.9 + 0.3 sin t,

f(t) = 1.4 + 0.1 sin t,m(t) = 1, α(t) = 1.85 + 0.1 sin t, β(t) = 0.2 + 0.1 cos t

with the same initial value as in Example 5.1. Note that f̂ = 1.3 > ď = 1.2
and m̂â = 0.7 > č = 0.6, then there is a periodic solution of the corresponding
deterministic system. While the large white noise Ḃ1(t) makes

a(t) + d(t) +
β2(t)

2
− f(t) =

289

4× 102
+

13 cos t

25
+

sin t

5
+

cos 2t

4× 102

≤ 25200

2× 104
+

37 sin t

2× 102

≤ 34275

2× 104
+

37 sin t

2× 102
− 5 cos 2t

2× 103
≤ α2(t)

2
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Figure 1. Simulation of paths of (x(t), y(t)) of system (1.3) (red solid line) and the corresponding
deterministic system (blue dotted line), respectively. Population in both systems will die out.

for all t ≥ 0, and

1

2π

∫ 2π

0

(
a(t) + d(t)− c(t)

m(t)
− α2(t)

2
+
β2(t)

2

)
dt

=
1

2π

∫ 2π

0

(
− 1825

2× 104
+

52 cos t

102
+

3 sin t

2× 102
+

cos 2t

2× 102

)
dt < 0,

then from Theorem 3.3, it shows that lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0 a.s. See Figure 2.

0 100 200 300
0

0.5

1

1.5

2

2.5

3

3.5

t

x(
t)

0 100 200 300
0

0.5

1

1.5

2

2.5

3

3.5

t

y(
t)

Figure 2. Simulation of paths of (x(t), y(t)) of system (1.3) (red solid line) and the corresponding
deterministic system (blue dotted line), respectively. In this situation, there is a periodic solution of the
corresponding deterministic system, while the large white noise makes both the prey and the predator
die out a.s.
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Example 5.3. Parameters and the initial value of system (1.3) are the same as in
Example 5.2 except

c(t) = 0.9 + 0.1 sin t, d(t) = 1.7 + 0.1 sin t, α(t) = 2 + 0.5 cos t, β(t) = 0.2 + 0.1 cos t.

In this situation,

a(t) + d(t) +
β2(t)

2
− f(t) =

30445

2× 104
+

104 cos t

2× 102
+

cos 2t

4× 102

≤ 33

16
+ cos t+

cos 2t

16
=
α2(t)

2

for all t ≥ 0, and

1

2π

∫ 2π

0

(
a(t) + d(t)− c(t)

m(t)
− α2(t)

2
+
β2(t)

2

)
dt

=
1

2π

∫ 2π

0

(
− 4

102
− 48 cos t

102
− 6 cos 2t

102

)
dt < 0,

then the large white noise Ḃ1(t) also makes conditions in Theorem 3.3 are satisfied,

and so lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0 a.s. While, f̌ = 1.5 < d̂ = 1.6, then the

corresponding deterministic system is not persistent. See Figure 3.
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Figure 3. Simulation of paths of (x(t), y(t)),
1

t

∫ t

0

b(s)x(s)ds of system (1.3) (red solid line) and the

corresponding deterministic system (blue dotted line), respectively. In both of two systems, the prey is
persistent, but the predator is not, and b(t)x(t) is stable in time average of system (1.3).

Example 5.4. Choose

c(t) = 0.1 + 0.1 sin t, f(t) = 0.4 + 0.1 sin t, α(t) = 0.1 + 0.08 sin t.

Other parameters and the initial value have the same values as in Example 5.2. For
the corresponding deterministic system, f̌ = 0.5 < d̂ = 0.6, then it is not persistent.
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For the stochastic system (1.3), it is clear that f(t) ≥ c(t)
m(t) for all t ≥ 0, and

1

2π

∫ 2π

0

(
f(t)− d(t)− β2(t)

2

)
dt

=
1

2π

∫ 2π

0

(
− 5

10
− 2 sin t

10
− (0.2 + 0.1 cos t)2

2

)
dt < 0.

Besides,

1

2π

∫ 2π

0

(
a(t)− α2(t)

2

)
dt

=
1

2π

∫ 2π

0

(
11934

104
− 8 sin t

103
+

16 cos 2t

104

)
dt

=
11934

104
> 0.

Theorem 3.4 shows that system (1.3) is also not persistent. That is

lim
t→∞

1

t

∫ t

0

b(t)x(s)ds =
11934

104
, lim

t→∞
y(t) = 0 a.s.

Figure 4 also illustrates this.

0 100 200 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

x(
t)

0 100 200 300
0

0.5

1

1.5

2

2.5

3

t

y(
t)

0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

1/
t∫ 0t b(

s)
x(

s)
ds

Figure 4. Simulation of paths of (x(t), y(t)),
1

t

∫ t

0

b(s)x(s)ds of system (1.3) (red solid line) and the

corresponding deterministic system (blue dotted line), respectively. In both of two systems, the prey is
persistent, but the predator is not, and b(t)x(t) is stable in time average of system (1.3).

Example 5.5. In this example, parameters and the initial value have the same
values as in Example 5.2 except

d(t) = 0.2 + 0.1 sin t, f(t) = 0.45 + 0.1 sin t,

α(t) = 0.1 + 0.08 sin t, β(t) = 1.1 + 0.2 cos t.
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Obviously, f̂ = 0.35 > ď = 0.3, m̂â = 0.7 > č = 0.6, and so the corresponding
deterministic system has a periodic solution. While, white noise Ḃ2(t) is so large
that

β2(t)

2
=

(11 + 2 cos t)2

2× 102
≥ 81

2× 102
≥ c(t)

m(t)
− d(t) =

3

10

for all t ≥ 0, and

1

2π

∫ 2π

0

(
f(t)− d(t)− β2(t)

2

)
dt

=
1

2π

∫ 2π

0

(
− 73

2× 102
− 22 cos t+ cos 2t

102

)
dt < 0.

In addition,

1

2π

∫ 2π

0

(
a(t)− α2(t)

2

)
dt > 0

is also satisfied. Therefore

lim
t→∞

1

t

∫ t

0

b(t)x(s)ds =
11934

104
, lim

t→∞
y(t) = 0 a.s.

which as Theorem 3.4 said. See Figure 5.
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Figure 5. Simulation of paths of x(t), y(t),
1

t

∫ t

0

b(s)x(s)ds of system (1.3) (red solid line) and the

corresponding deterministic system (blue dotted line), respectively. There is a periodic solution of the
corresponding deterministic system, but the large white noise makes the predator extinction and the
prey be stable in time average.

Example 5.6. Assume that parameters of system (1.3) are given by

a(t) = 1.2 + 0.5 cos(t), b(t) = 0.5 + 0.4 cos(t), c(t) = 0.4 + 0.2 sin(t),

d(t) = 0.4 + 0.3 sin(t), f(t) = 1.1 + 0.3 sin(t),m(t) = 1,
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α(t) = 0.5 + 0.3 sin(t), β(t) = 0.2 + 0.1 cos(t),

and the same initial value as in Example 5.1. It is easy to compute that

1

2π

∫ 2π

0

(
a(t)− c(t)

m(t)
− α2(t)

2

)
dt

=
1

2π

∫ 2π

0

(
261

400
+

1

2
cos t− 7

20
sin t+

9

400
cos 2t

)
dt > 0

and

1

2π

∫ 2π

0

(
f(t)− d(t)− β2(t)

2

)
dt

=
1

2π

∫ 2π

0

(
271

400
− 1

50
cos t− 1

400
cos 2t

)
dt > 0,

and so according to Theorem 3.5, system (1.3) is persistent. While, for the corre-

sponding deterministic system, f̂ = 0.8 > ď = 0.7 and m̂â = 0.7 > č = 0.6, there is
also a periodic solution. Fig. 6 shows that the path of system (1.3) is around the
periodic solution of the deterministic system after a long time (see the fist line in
Figure 6).
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Figure 6. Simulation of paths of (x(t), y(t)) of system (1.3) (red solid line) and the corresponding
deterministic system (blue dotted line), respectively, and the time average of the solution of system
(1.3) (green solid line).

Example 5.7. Consider (1.4) with Markov chain ξ(t) taking values inM = {1, 2, 3},
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Figure 7. Simulation of paths of x(t), y(t) (see the fist column in the second and third lines), and their
histogram (see the second column in the second and third lines) of system (1.4) with the Markov chain
(see the picture in the first line).

which is regarded as equations
dx(t) = x(t)

(
a(l)− b(l)x(t)− c(l)y(t)

m(l)y(t) + x(t)

)
dt+ α(l)x(t)dB1(t),

dy(t) = y(t)

(
−d(l) +

f(l)x(t)

m(l)y(t) + x(t)

)
dt+ β(l)y(t)dB2(t),

l = 1, 2, 3,

where

a(1) = 1.2, a(2) = 1.7, a(3) = 0.7, b(1) = 0.5, b(2) = 0.9, b(3) = 0.1,

c(1) = 0.4, c(2) = 0.6, c(3) = 0.2, d(1) = 0.4, d(2) = 0.7, d(3) = 0.1,

f(1) = 1.1, f(2) = 1.4, f(3) = 0.8,m(1) = 1.2,m(2) = 1.5,m(3) = 1,

α(1) = 0.1, α(2) = 0.12, α(3) = 0.08, β(1) = 0.09, β(2) = 0.1, β(3) = 0.06

switching according to the movement of the Markov chain ξ(t). Let the generator
Γ = (γij)3×3 of the Markov chain ξ(t) be

Γ =


−1

3

1

6

1

6
1

4
−1

2

1

4
1

4

1

4
−1

2

 .

By solving equation (2.1) we obtain the probability distribution is

π =

(
3

7
,

2

7
,

2

7

)
.



498 C. Ji, D. Jiang & Y. Zhao

Computer

λ1 =

3∑
κ=1

πκ

(
a(κ)− c(κ)

m(κ)
− α2(κ)

2

)
≈ 0.88 > 0,

λ2 =

3∑
κ=1

πκ

(
f(κ)− d(κ)− β2(κ)

2

)
≈ 0.67 > 0.

Therefore, according to Theorem 4.4, system (1.4) admits a unique stationary dis-
tribution. See Figure 7.
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