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Abstract In this paper, by using the Avery-Peterson fixed point theorem,
we establish the existence result of at least three positive solutions of bound-
ary value problem of nonlinear differential equation with Riemann-Liouville’s
fractional order derivative. An example illustrating our main result is given.
Our results complements and extends previous work in the area of boundary
value problems of nonlinear fractional differential equations.
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1. Introduction

Due to the development of the theory of fractional calculus and its applications,
such as in the fields of physics, Bode’s analysis of feedback amplifiers, aerodynam-
ics and polymer rheology etc, many works on the basic theory of fractional calculus
and fractional order differential equations have been established [10,19–23,27]. Re-
cently, there have been many papers dealing with the solutions or positive solutions
of boundary value problems for nonlinear fractional differential equations(FBVPs)
with various boundary conditions [1, 5, 9, 13, 16, 17, 26, 32, 34, 36–39] and nonlocal
boundary conditions [2, 3, 6, 24,29,31,33] and references along this line.

In a recent paper [11], Moustafa El-Shahed considered a class of fractional
boundary value problem of the form

Dα
0+u(t) + λa(t)f(u(t)), t ∈ (0, 1),

u(0) = u′(0) = u′(1) = 0

where λ is a positive parameter, a(t) : (0, 1) → [0,∞) is continuous with
∫ 1

0
a(t)dt >

0 and f : [0, +∞) → f : [0, +∞) is continuous. Here Dα
0+ was the Riemann-

Liouville’s fractional derivative of order α. By using the fixed point theorem, the
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author established the existence and nonexistence of positive solutions for this non-
linear fractional boundary value problem.

However, in this work, the existence of positive solutions for FBVPs were es-
tablished under the assumption that the derivative of the unknown function was
not involved in the nonlinear term. To our best of knowledge, few papers can be
found in the literature for positive solutions of FBVPs where the derivative of the
unknown function is involved in the nonlinear term. The purpose of this paper is
to fill this gap.

In this paper, we will consider positive solutions for the following FBVPs

Dα
0+u(t) + f(t, u(t), Dβ

0+u(t)), t ∈ (0, 1), (1.1)

u(0) = u′(0) = u′(1) = 0 (1.2)

where 2 < α ≤ 3, 0 < β < 1 and f : C([0, 1]×R+ ×R→ R+.
Boundary value problems for differential equations of integer order where the

derivative of the unknown function is involved in the nonlinear term have been
studied by extensively, see Guo and Ge [14, 15], Avery and Peterson [4], Bai and
Ge [7, 8], Yang, Liu and Jia [35] etc. In [4], Avery and Peterson gave a new triple
fixed point theorem, which can be regarded as an extension of Leggett-Williams
fixed point theorem. Recently, this fixed point theorem has been used as a classical
method for seeking the positive solutions for BVPs of nonlinear differential equations
where the lower order derivatives of unknown function is involved in the nonlinear
term, see [4, 12, 18,25,28,31,35].

However, this classical method can not be used directly to investigate the ex-
istence of positive solutions of boundary value problems of nonlinear differential
equations of fractional order. The main reason is that we cannot derive the concav-
ity or convexity of the function u(t) by the sign of its fractional order derivative. In
this paper, by obtaining some new inequalities of the unknown function and defining
a special cone, we overcome the difficulties bringing by the lack of the concavity or
convexity of the the unknown function . By an application of Avery-Peterson fixed
point theorem, the existence of at least three positive solutions of problem (1.1-1.2)
is established. An example is given to illustrate the main results of this paper.
Our results extend and complements some previous works in the area of bound-
ary value problems of nonlinear fractional differential equations, such as Moustafa
El-Shahed [29].

2. Preliminaries

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
function u(t) is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds.

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function u(t) is given by

Dα
0+u(t) =

1

Γ(n− α)
(
d

dt
)n

∫ t

0

u(s)

(t− s)α−n+1
ds
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where n = [α] + 1. As examples, for λ > −1, we have

Dα
0+u

λ =
Γ(1 + λ)

Γ(1 + λ− α)
uλ−α.

Lemma 2.1. Let α > 0. The fractional differential equation Dα
0+u(t) = 0 has

solution
u(t) = C1t

α−1 + C2t
α−2 + ...+ Cnt

α−n

for some Ci ∈ R, i = 1, 2, · · · , n.

Lemma 2.2. Assume that u(t) with a fractional derivative of order α > 0. Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + ...+ Cnt

α−n,

for some Ci ∈ R, i = 1, 2, · · · , n.

Lemma 2.3. Let α > 0, β > 0 and f ∈ Lp(0, 1)(1 ≤ p ≤ ∞), then for almost
everywhere on [0, 1], we have

IαIβf(t) = Iα+βf(t).

Definition 2.3. Let E be a real Banach space. A nonempty convex closed set P
is called a cone provided that:
(1) au ∈ P , for all u ∈ P, a ≥ 0;
(2) u,−u ∈ P implies u = 0.

Definition 2.4. The map α is said to be a nonnegative continuous convex func-
tional on the cone P of a Banach space E provided that α : P → [0,+∞) is
continuous and

α(tx+ (1− t)y) ≤ tα(x) + (1− t)α(y), x, y ∈ P, t ∈ [0, 1].

Definition 2.5. The map β is said to be a nonnegative continuous concave func-
tional on the cone P of a Banach space E provided that β : P → [0,+∞) is
continuous and

β(tx+ (1− t)y) ≥ tβ(x) + (1− t)β(y), x, y ∈ P, t ∈ [0, 1].

Let γ, θ be nonnegative continuous convex functionals on P , α be a nonnegative
continuous concave functional on P and ψ be a nonnegative continuous functional
on P. Then for positive numbers a, b, c and d, we define the following convex sets:

P (γ, d) = {x ∈ P |γ(x) < d},
P (γ, α, b, d) = {x ∈ P |b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P |b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

and a closed set

R(γ, ψ, a, d) = {x ∈ P |a ≤ ψ(x), γ(x) ≤ d}.

Lemma 2.4. Let P be a cone in Banach space E. Let γ, θ be nonnegative continu-
ous convex functionals on P , α be a nonnegative continuous concave functional on
P , and ψ be a nonnegative continuous functional on P satisfying

ψ(λx) ≤ λψ(x), for 0 ≤ λ ≤ 1, (2.1)
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α(x) ≤ ψ(x), ∥x∥ ≤ lγ(x) for x ∈ P (γ, d), (2.2)

Suppose T : P (γ, d) → P (γ, d) is completely continuous and there exist positive
numbers a, b, c with a < b such that

(S1) {x ∈ P (γ, θ, α, b, c, d)|α(x) > b} ≠ ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);

(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;

(S3) 0 ̸∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that:

γ(xi) ≤ d, i = 1, 2, 3; b < α(x1); a < ψ(x2), α(x2) < b; ψ(x3) < a. (2.3)

3. Main results

Lemma 3.1. Given y(t) ∈ C[0, 1]. Then the following FBVPs

Dα
0+u(t) + y(t) = 0, t ∈ (0, 1), (3.1)

u(0) = u′(0) = u′(1) = 0, (3.2)

is equivalent to operator equation

u(t) =

∫ 1

0

G(t, s)y(s)ds,

where

G(t, s) =


tα−1(1− s)α−2

Γ(α)
0 ≤ t ≤ s ≤ 1

tα−1(1− s)α−2

Γ(α)
− (t− s)α−1

Γ(α)
0 ≤ s ≤ t ≤ 1

Lemma 3.2. Let G(t, s) be given as in the statement of Lemma 3.1. Then we find
that

(1) G(t, s) is a continuous and nonnegative function on the unit square [0, 1]×[0, 1];

(2) tα−1G(1, s) ≤ G(t, s) ≤ G(1, s) =
(1− s)α−2 − (1− s)α−1

Γ(α)
, t, s ∈ [0, 1].

Lemma 3.3. Assume that y(t) > 0 and u(t) is a solution of problem (3.1-3.2).
Then

max
0≤t≤1

|u(t)| ≤ γ1 max
0≤t≤1

|Dβ
0+u(t)|,

where γ1 =
Γ(α− β)

Γ(α)

1

1− β
> 0.

Proof. Considering Lemma 2.1-2.3 and the boundary conditions (3.2), we have

u(t) =

∫ 1

0

tα−1(1− s)α−2

Γ(α)
y(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
y(s)ds

≤ 1

Γ(α)

∫ 1

0

[(1− s)α−2 − (1− s)α−1]y(s)ds.
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Then, from the definition of the fractional derivative of Riemann-Liouvile, we have

Dβ
0+u(t) = − 1

Γ(α− β)

∫ t

0

(t− s)α−β−1y(s)ds+
tα−β−1

Γ(α− β)

∫ 1

0

(1− s)α−2y(s)ds.

Thus

max
0≤t≤1

|Dβ
0+u(t)| ≥ |Dβ

0+u(1)| =
1

Γ(α− β)

∫ 1

0

[(1− s)α−2 − (1− s)α−β−1]y(s)ds.

Define the function

h(s) =
(1− s)α−2 − (1− s)α−1

(1− s)α−2 − (1− s)α−β−1
, s ∈ (0, 1).

The fact that h(s) is decreasing on (0, 1) and

lim
s→0

h(s) = lim
s→0

(1− s)α−2 − (1− s)α−1

(1− s)α−2 − (1− s)α−β−1
=

1

1− β

ensures that

h(s) <
1

1− β
, 0 < s < 1.

Then

max
0≤t≤1

u(t) =
1

Γ(α)

∫ 1

0

[(1− s)α−2 − (1− s)α−1]y(s)ds

≤ Γ(α− β)

Γ(α)

1

Γ(α− β)

1

1− β

∫ 1

0

[(1− s)α−2 − (1− s)α−β−1]y(s)ds

≤ γ1 max
0≤t≤1

|Dβ
0+u(t)|.

Let the Banach space E = {u(t) ∈ C[0, 1], Dβ
0+u(t) ∈ C[0, 1]} be endowed

with the norm

∥u∥ = max{max
0≤t≤1

|u(t)|, max
0≤t≤1

|Dβ
0+u(t)|}, u ∈ E.

Let γ0 = ( 13 )
α−1. We define the cone P ⊂ E by

P ={u∈E | u(t)≥0, min
1/3≤t≤2/3

u(t)≥γ0 max
0≤t≤1

u(t),max
0≤t≤1

u(t)≤γ1 max
0≤t≤1

|Dβ
0+u(t)|}.

Lemma 3.4. Let T : P → E be the operator defined by

Tu(t) :=

∫ 1

0

G(t, s)f(s, u(s), Dβ
0+u(s))ds.

Then T : P → P is completely continuous.
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Proof. The operator T is nonnegative and continuous obviously. Let Ω ⊂ K be
bounded. Then there exist a positive constant R1 > 0 such that ∥u∥ ≤ R1, u ∈ Ω.
Denote

R = max
0≤t≤1, u∈Ω

|f(t, u(t), Dβ
0+u(t)|+ 1.

Then for u ∈ Ω, we have

|(Tu)(t)| ≤
∫ 1

0

G(t, s)|f(s, u(s), Dβ
0+u(s))|ds

≤
∫ 1

0

G(1, s)|f(s, u(s), Dβ
0+u(s))|ds

≤ R

(α− 1)Γ(α+ 1)
,

|Dβ
0+(Tu)(t)| = | t

α−β−1

Γ(α− β)

∫ 1

0

(1− s)α−2f(s, u, Dβ
0+u)ds

− 1

Γ(α− β)

∫ t

0

(t− s)α−β−1f(s, u, Dβ
0+u)ds|

≤ R

(α− β)Γ(α− β)
+

R

Γ(α− β)(α− 1)
.

Hence T (Ω) is bounded. On the other hand, for u ∈ Ω, t1, t2 ∈ [0, 1], one has

|Tu(t2)− Tu(t1)| =|
∫ 1

0

(1− s)α−2

Γ(α)
f(s, u(s), Dβ

0+u(s))ds× (tα−1
2 − tα−1

1 )

+

∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, u(s), Dβ

0+u(s))ds

−
∫ t2

0

(t2 − s)α−1

Γ(α)
f(s, u(s), Dβ

0+u(s))ds|

≤ R

Γ(α)(α− 1)
× |tα−1

2 − tα−1
1 |+ R

Γ(α+ 1)
× |tα2 − tα1 |,

|Dβ
0+(Tu)(t2)−Dβ

0+(Tu)(t1)|

=| 1

Γ(α− β)

∫ 1

0

(1− s)α−2f(s, u(s), Dβ
0+u(s))ds× |tα−β−1

2 − tα−β−1
1 |

+
1

Γ(α− β)
(

∫ t1

0

(t1 − s)α−β−1f(s, u(s), Dβ
0+u(s))ds

−
∫ t2

0

(t2 − s)α−β−1f(s, u(s), Dβ
0+u(s))ds)|

≤ R

Γ(α− β)(α− 1)
× |tα−β−1

2 − tα−β−1
1 |+ R

Γ(α− β)(α− β)
× |tα−β

2 − tα−β
1 |.

Thus,

∥Tu(t2)− Tu(t1)∥ → 0, for t1 → t2.

By means of the Arzela-Ascoli theorem, T is completely continuous. Furthermore,
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for u ∈ P , we have

min
1
3≤t≤ 2

3

Tu(t) = min
1
3≤t≤ 2

3

∫ 1

0

G(t, s)f(s, u(s), Dβ
0+u(s))ds

≥ (
1

3
)α−1

∫ 1

0

G(1, s)f(s, u(s), Dβ
0+u(s))ds

= γ0 max
0≤t≤1

Tu(t),

max
0≤t≤1

Tu(t) =
1

Γ(α)

∫ 1

0

[(1− s)α−2 − (1− s)α−1]f(s, u(s), Dβ
0+u(s))ds

≤ Γ(α−β)
Γ(α)

1

Γ(α−β)
1

1−β

∫ 1

0

[(1−s)α−2−(1−s)α−β−1]f(s,u(s),Dβ
0+u(s))ds

≤ γ1 max
0≤t≤1

|Dβ
0+Tu(t)|.

Thus, T : P → P is completely continuous.
Let the nonnegative continuous concave functional α, the nonnegative continu-

ous convex functionals γ, θ and the nonnegative continuous functional ψ be defined
on the cone by

γ(u) = max
0≤t≤1

|Dβ
0+u(t)|, θ(u) = ψ(u) = max

0≤t≤1
|u(t)|, α(u) = min

1
3≤t≤ 2

3

|u(t)|.

By Lemmas 3.2 and 3.3, the functionals defined above satisfy

γ0θ(u) ≤ α(u) ≤ θ(u) = ψ(u), ∥u∥ ≤ γ2γ(u), u ∈ P,

where γ2 = max{γ1, 1}. Therefore condition (2.1, 2.2) of Lemma 2.4 are satisfied.
Assume that there exist constants 0 < a, b, d, c = b/γ0 with

3α−1(2α− β − 1)Γ(α+ 1)b < Γ(α− β + 1)d

such that

(A1) f(t, u, v) ≤ Γ(α−β)(α−1)(α−β)
2α−β−1 d, (t, u, v) ∈ [0, 1]× [0, γ2d]× [−d, d];

(A2) f(t, u, v) >
(α−1)Γ(α+1)

γ0
b, (t, u, v) ∈ [1/3, 2/3]× [b, b/γ0]× [−d, d];

(A3) f(t, u, v) < (α− 1)Γ(α+ 1)a, (t, u, v) ∈ [0, 1]× [0, a]× [−d, d].

Theorem 3.1. Under assumptions (A1)–(A3), the boundary value problem (1.1,
1.2) has at least three positive solutions u1(t), u2(t), u3(t) satisfying

max
0≤t≤1

|Dβ
0+u(t)| ≤ d, i = 1, 2, 3;

b < min
1/3≤t≤2/3

|u1(t)|; a < max
0≤t≤1

|u2(t)|, min
1/3≤t≤2/3

|u2(t)| < b;

max
0≤t≤1

|u3(t)| ≤ a.

Proof. Problem (1.1, 1.2) has a solution u = u(t) if and only if u solves the
operator equation

u(t) =

∫ 1

0

G(t, s)f(s, u(s), Dβ
0+u(s))ds = (Tu)(t).
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For u ∈ P (γ, d), we have γ(u) = max
0≤t≤1

|Dβ
0+u(t)| < d. From assumption (A1), we

obtain

f(t, u(t), Dβ
0+u(t)) ≤

Γ(α− β)(α− 1)(α− β)

2α− β − 1
d.

Thus

γ(Tu) = max
0≤t≤1

|Dβ
0+(Tu)|

= | t
α−β−1

Γ(α− β)

∫ 1

0

(1− s)α−2f(s, u(s), Dβ
0+u(s))ds

− 1

Γ(α− β)

∫ t

0

(t− s)α−β−1f(s, u(s), Dβ
0+u(s))ds|

≤ [
1

(α− β)Γ(α− β)
+

1

Γ(α− β)(α− 1)
]× Γ(α− β)(α− 1)(α− β)

2α− β − 1
d = d.

Hence, T : P (γ, d) → P (γ, d).
The fact that the constant function u(t) = c = b

γ0
∈ P (γ, θ, α, b, c, d) and

α
(

b
γ0

)
> b implies that {u ∈ P (γ, θ, α, b, c, d|α(u) > b)} ≠ ∅.

For u ∈ P (γ, θ, α, b, c, d), we have b ≤ u(t) ≤ b
γ0

and |Dβ
0+u(t)| < d, 0 ≤ t ≤ 1.

From assumption (A2),

f(t, u(t), Dβ
0+u(t)) >

(α− 1)Γ(α+ 1)

γ0
b.

Thus

α(Tu) = min
1
3≤t≤ 2

3

∫ 1

0

G(t, s)f(s, u(s), Dβ
0+u(s))ds

≥ γ0

∫ 1

0

G(1, s)f(s, u(s), Dβ
0+u(s))ds

≥ γ0

∫ 1

0

G(1, s)ds× (α− 1)Γ(α+ 1)

γ0
b = b,

which means α(Tu) > b, ∀u ∈ P (γ, θ, α, b, b
γ0
, d). These ensure that condition (S1)

of Lemma 2.4 is satisfied. Also, for all u ∈ P (γ, α, b, d) with θ(Tu) > b
γ0
,

α(Tu) ≥ γ0θ(Tu) > γ0 × c = γ0 ×
b

γ0
= b.

Thus, condition (S2) of Lemma 2.4 holds. Finally we show that (S3) also holds.
We see that ψ(0) = 0 < a and 0 ̸∈ R(γ, ψ, a, d). Suppose that u ∈ R(γ, ψ, a, d) with
ψ(x) = a. Then by assumption (A3),

ψ(Tu) = max
0≤t≤1

|(Tu)(t)| =
∫ 1

0

G(t, s)f(s, u(s), Dβ
0+u(s))ds

≤
∫ 1

0

G(1, s)ds× (α− 1)Γ(α+ 1)a

= a.
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Thus, all conditions of Lemma 2.4 are satisfied. Hence problem (1.1, 1.2) has at
least three positive solutions u1(t), u2(t), u3(t) satisfying

max
0≤t≤1

|Dβ
0+u(t)| ≤ d, i = 1, 2, 3;

b < min
1/3≤t≤2/3

|u1(t)|; a < max
0≤t≤1

|u2(t)|, min
1/3≤t≤2/3

|u2(t)| < b;

max
0≤t≤1

|u3(t)| ≤ a.

4. Example

Consider the nonlinear FBVP

Dα
0+u(t) + f(t, u(t), Dβ

0+u(t)) = 0, t ∈ (0, 1), (4.1)

u(0) = u′(0) = u′(1) = 0, (4.2)

where α = 2.7, β = 0.6, n = 3 and

f(t, u, v) =


1

20
et + 5u4 +

1

100
sin

(
v

10000

)
, 0 ≤ u ≤ 6,

1

20
et + 6480 +

1

100
sin

(
v

10000

)
, u > 6.

Choose a = 1, b = 3, d = 10000. By a simple computation, we obtain that

γ0 =

(
1

3

)1.7

, γ1 =
5

2

Γ(2.1)

Γ(2.7)
≈ 1.6937, γ2 = max{γ1, 1} = γ1,

(α− 1)Γ(α+ 1)a ≈ 7.0901,
(α− 1)Γ(α+ 1)

γ0
b ≈ 137.6830,

Γ(α− β)(α− 1)(α− β)

2α− β − 1
d ≈ 9831.

We can check that the nonlinear term f(t, u, v) satisfies

(1) f(t, u, v)<
Γ(α− β)(α− 1)(α− β)

2α− β − 1
d, (t, u, v)∈ [0, 1]×[0, 16937]×[−10000, 10000];

(2) f(t, u, v) >
(α− 1)Γ(α+ 1)

γ0
b, (t, u, v) ∈ [

1

2
, 1]×[3, 3×31.7]×[−10000, 10000];

(3) f(t, u, v) < (α− 1)Γ(α+ 1)a, (t, u, v) ∈ [0, 1]× [0, 1]× [−10000, 10000].

Then all assumptions of Theorem 3.1 are satisfied. Thus problems (4.1–4.2) has at
least three positive solutions u1(t), u2(t), u3(t) satisfying

max
0≤t≤1

|Dβ
0+u(t)| ≤ 10000, i = 1, 2, 3;

3 < min
1/2≤t≤1

|u1(t)|, 1 < max
0≤t≤1

|u2(t)|,

min
1/2≤t≤1

|u2(t)| < 3, max
0≤t≤1

|u3(t)| ≤ 1.
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Remark. We see that the fractional derivative of the function u(t) of order β is
involved in the nonlinear term of problems (4.1–4.2). The early results for positive
solutions of FBVPs, to author’s best knowledge, are not applicable to this prob-
lem. Our results complements some previous works in the area of FBVPS, such as
Moustafa El-Shahed [29].
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