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STABILITY AND HOPF BIFURCATION OF A
MODIFIED DELAY PREDATOR-PREY MODEL

WITH STAGE STRUCTURE

Jing Li1,†, Shaotao Zhu1, Ruilan Tian2,†, Wei Zhang3 and Xin Li1

Abstract In this paper, a modified delay predator-prey model with stage
structure is established, which involves the economic factor and internal com-
petition of all the prey and predator populations. By the methods of normal
form and characteristic equation, we obtain the stability of the positive equi-
librium point and the sufficient condition of the existence of Hopf bifurcation.
We analyze the influence of the time delay on the equation and show the oc-
currence of Hopf bifurcation periodic solution. The simulation gives a visual
understanding for the existence and direction of Hopf bifurcation of the model.

Keywords Delayed differential equation, hypernormal form, equilibrium point,
stability, Hopf bifurcation.
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1. Introduction

In the ecosystem, many systems of interest such as the predator-prey models in
population dynamics involve time delay [7, 17]. The study of dynamical behavior
(Hopf bifurcation, periodic solution, chaos, etc.) for differential equations with delay
has significant biological and mathematical meaning.

Hopf bifurcation is a very important phenomenon occurs in the differential equa-
tions with delay. It seems that the existence of Hopf bifurcations for delayed dif-
ferential equations can be dated back to the work of Chafee [5] in 1971. However,
the first proof of the Hopf bifurcation theorem for delay differential equations un-
der analytically computable condition was presented by Chow and Mallet-Paret in
1977 [4]. Since then there have been various contributions on the stability and
existence of Hopf bifurcation for time delay equations, especially for the delayed
population dynamical equations. Shao and Dai [20] established an impulsive delay
predator-prey model with stage structure and Beddington-type functional response
concerning ratio-dependent. They obtained the existence and global attractivity
of the predator-extinction periodic solution by using the discrete dynamical system
determined by the stroboscopic map. Niu and Jiang [15] researched a predator-prey
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equation with two delays and stage structure for the prey according to the theory of
bifurcation analysis of neutral delay differential equations. They obtained the sta-
bility and Hopf bifurcation of the positive equilibrium, and showed how the neutral
terms affect the dynamical behavior of the prey and the predator in the equation.
They found that the neutral delay which makes the predator-prey equation more
complicated may induces double Hopf bifurcations. Meng and Huo [13] investi-
gated a class of Lotka-Volterra mutualistic equation with time delays of benefit and
feedback. The local stability of the positive equilibrium and the existence of Hopf
bifurcation were obtained by analyzing the characteristic equation. They obtained
explicit formulas to determine the properties of the Hopf bifurcation by using the
normal form method and center manifold theorem. Guo et al. [8] investigated a
class of three dimensional delayed Gause-type predator-prey models. They pre-
sented the boundedness of solutions and the permanence of system, and gave the
global asymptotically stability of the positive equilibrium under some parameter
conditions by the Lyapunov function.

In predator-prey models, as mentioned in [20], many species usually go through
two or more life stages as they proceed from birth to death. Thus it is practical
to introduce the stage structure into models. Bandyopadhyay and Banerjee [1]
presented a class of predator-prey equation with time delay and stage structure as
follows

ẋ = Lx+ F (x), (1.1)

where x = (xJ , xA, xP )
T, and

L =

(
−d1−α r1 0

α −d2 0
0 0 −d3

)
, F (x) =

(
−s1x

2
J−βxJxP

0
βxJ (t−τ)xP (t−τ)−s3x

2
P

)
.

Here xJ , xA and xP represent the population density of juvenile prey, adult prey and
predator respectively. They obtained the sufficient condition for the local stability
of the equation (1.1) near the positive equilibrium point based on the bifurcation
theory of dynamical systems.

On the basis of the economic theoretical relationship of public fishery proposed
in 1954 [9], Zhang et al. [22] added a term of harvest E about predator xP into
equation (1.1). Then it can be described by a differential-algebraic equation due to
economic factor.

ẋ = L̃x+ F (x),

m = E(pxP − c), (1.2)

where L̃ =

(
−d1−α r1 0

α −d2 0
0 0 −d3−E

)
. E represents the harvest effort about predator

xP . p and c represent the unit price of predator and the unit cost of harvest process
respectively. m is the economic profit obtained from the harvest process. They
found that the increase of delay destabilized the positive equilibrium point of the
system and bifurcated into small amplitude periodic solution.

In [1] and [22], the stage structure and economic factor were considered, but
the internal competition behavior of the adult prey population was not taken into
account. From this point, we add the harvest terms in all the juvenile prey, adult
prey and predator, and also consider the internal competitive term in the equation.
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Then the differential-algebraic equation becomes

ẋ = L̂x+ F̃ (x),

m = E3(pxP − c), (1.3)

where

L̂ =

(
−d1−α−E1 r1 0

α −d2−E2 0
0 0 −d3−E3

)
, F̃ (x) =

( −s1x
2
J−βxJxP

−s2x
2
A

βxJ (t−τ)xP (t−τ)−s3x
2
P

)
.

r1 is the birth rate of juvenile prey, α is the conversion rate of juvenile prey trans-
forms to the adult prey, β is the capture rate of juvenile prey by predator. The
mortality of juvenile prey, adult prey and the predator is proportional to its own
population density, the ratio coefficients are di(i = 1, 2, 3). In general, the predator
will not transfer the energy to the next generation immediately and we noted that
the gestation time delay is τ . Ei(i = 1, 2, 3) represent the harvest effort about
juvenile prey, adult prey and predator respectively. sj(j = 1, 2, 3) represent the
internal competitive coefficient of juvenile prey, adult prey and predator population.
All of these parameters are positive.

The purpose of this paper is to study the stability of the positive equilibrium
point of the modified equation (1.3), and analyze the parameter conditions of the
existence of Hopf bifurcation as well as the direction of bifurcation. Due to the
complexity of the equation, firstly, we should simplify equation (1.3) into a sim-
pler one by normal form (hypernormal form) theory. The theories and calculation
methods can refer to [11, 14, 16, 21] and references therein. And then we will focus
on the stability and bifurcation analysis. According to the latest literatures, there
are two common methods for studying the Hopf bifurcation of delayed differential
equations. One is Lyapunov function (functional) and the other is the analysis ap-
proach based on the characteristic root of the characteristic equation for the delayed
differential equation [6, 12, 18]. There is no general rule for constructing Lyapunov
function (functional). Here we choose the latter method to analyze the distribution
of the roots of characteristic equation. We obtain the varied conditions of the real
part of characteristic root and it provides theoretical basis for the property analysis
of Hopf bifurcation.

The rest of the present paper is organized as follows: In section 2, we obtain ex-
plicit expressions for the hypernormal form in terms of the original delay differential
equation. This enables us to obtain not only existence but also stability and bifur-
cation direction. In section 3, we analyze the stability of the positive equilibrium
point of equation that reduced by normal form method and obtain the existence
condition of the Hopf bifurcation. In section 4, we research the properties of the
Hopf bifurcation by combining the normal form theory and the center manifold
method. In section 5, we present the numerical simulation of the Hopf bifurcation
under given parameter conditions.

2. Hypernormal form of equation (1.3)

Based on the normal form theory, equation (1.3) is simplified in this section. Let
Hn be the linear space spanned by all monomials of degree n, then equation (1.3)
can be expressed as the following formal series

V (0) = V
(0)
1 + V

(0)
2 ,
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where V
(0)
m ∈ Hm(m = 1, 2) yield

V
(0)
1 =(r1xA − (d1 + α+ E1)xJ )∂xJ

+ (−(d2 + E2)xA + αxJ)∂xA
− (d3xP + E3xP )∂xP

,

and

V
(0)
2 =(−s1x2J − βxJxP )xJ)∂xJ

+ (−s2x2A)∂xA

− (βxJ(t− τ)xP (t− τ)− s3x
2
P )∂xP

.

Denote the linear operator L(1),

L(1) : H2 → H2, Y2 7→ [Y2, V
(0)
1 ], Y2 ∈ H2,

where operator [·, ·] defined by [u, v] = Du · v −Dv · u (u, v ∈ H2).

Theorem 2.1. The first order normal form (hypernormal form) of equation (1.3)
with the parameter condition (d1 + α+ E1)(d2 + E2)− αr1 = 0 is

ẏ = L̂y + F ∗(y),

m = E3(pyP − c), (2.1)

where y = (yJ , yA, yP )
T, F ∗(y) =

(
a1y

2
J+a2yJyP

b1y
2
A

c1yJ (t−τ)yP (t−τ)

)
, a1 = −s1, a2 = −β, b1 =

−s2, c1 = β − αr1 + (d1 + α+ E1)(d2 + E2).

Proof. Let the basic vector Y2 in linear space H2 is

Y2 =(xJ (xJ + xA + xP ) + xA(xA + xP ) + x2P )∂xJ

+ (xJ(xJ + xA + xP ) + xA(xA + xP ) + x2P )∂xA

+ (xJ(xJ + xA + xP ) + xA(xA + xP ) + x2P )∂xP
,

we have

[Y2, V
(0)
1 ] =(m2 +m1(d3 + E3))∂xJ

+ (m2 − αm1 +m1(d2 + E2))∂xA

+ (m2 +m1(d1 + α+ E1)− r1m1)∂xP
,

where

m1 = xJ (xJ + xA + xP ) + xA(xA + xP ) + x2P ,

and

m2 =(−(xA + 2xJ + xP )(d1 + α+ E1) + α(2xA + xJ + xP ))xJ

+ (r1(xA + 2xJ + xP )− (2xA + xJ + xP )(d2 + E2))xA

− (xA + xJ + 2xP )(d3 + E3)xP .

With the Maple software, under following parameter condition

(d1 + α+ E1)(d2 + E2)− αr1 = 0,
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we get the complementary space C
(1)
2 to ImL(1) in H2,

C
(1)
2 = (x2J + xJxP )∂xJ

+ x2A∂xA
+ xJ (t− τ)xP (t− τ)∂xP

.

According to the proof of theorem 3.1 in paper [16], the first order normal form
(2.1) is the hypernormal form of equation (1.3).

Theorefore, we obtain the complementary space C
(1)
2 to ImL(1) in H2 with the

parameter condition above based on normal form theory in this section, and get the
first order normal form (hypernormal form) of equation (1.3). The normal form can
give the critical information about not only the stability of a positive equilibrium
point but also the existence and direction of bifurcation.

3. The stability of a positive equilibrium point and
the existence of Hopf bifurcation

In this section, we detect the positive equilibrium point of system (2.1), and consider
time delay τ as the bifurcation parameter. We obtain bifurcation parameter value τ0
according to the distribution of roots of the characteristic equation of the linearized
system near the positive equilibrium point, and give the sufficient condition of the
existence of Hopf bifurcation near the positive equilibrium point.

3.1. The positive equilibrium point of equation (2.1)

Let the right side of equation (2.1) be zero and solving these nonlinear equations.
We have that system (2.1) has a boundary equilibrium point P0(0, 0, 0). If Q1 < 0,
system (2.1) has only one positive equilibrium point P+(y

∗
J , y

∗
A, y

∗
P ), where y

∗
J =

d3+E3

c1
, y∗A = Q2

2b1
, y∗P =

(d1+α+E1)y
∗
J−a1(y

∗
J )

2−r1y
∗
A

a2y∗
J

, Q1 = 2b1c1(d1 + α + E1)(d3 +

E3)− 2a1b1(d3 + E3)
2 − r1c

2
1Q2, Q2 = (d2 + E2)−

√
(d2 + E2)2 − 4b1

d3+E3

c1
.

3.2. The characteristic equation of (2.1) at P+ and the type of
the equilibrium point

Let ỹJ = yJ − y∗J , ỹA = yA − y∗A, ỹP = yP − y∗P , system (2.1) becomes

˙̃y = L̄1ỹ + L̄2ỹ(t−τ) + F̄ (ỹ),

m = E3(pỹP − c), (3.1)

where

L̄1 =

(
n1 r1 n2
α n3 0
0 0 n6

)
, L̄2 =

(
0 0 0
0 0 0
n4 0 n5

)
, F̄ (ỹ) =

(
a1ỹ

2
J+a2ỹJ ỹP

b1ỹ
2
A

c1ỹJ (t−τ)ỹP (t−τ)

)
.

The linearization equation of equation (3.1) at P+ is

˙̃y = L̄1ỹ + L̄2ỹ(t−τ), (3.2)

whose characteristic equation yields

λ3 − q1λ
2 − q2λ+ q3 − (n5λ

2 − q4λ+ q5)e
−λτ = 0. (3.3)
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And

λ1 = γ1, λ2,3 = γ2 ± iγ3, (3.4)

are the roots of the equation (3.3). Pn(n1, n2, n3, n4, n5, n6), Pq(q1, q2, q3, q4, q5)
and Pγ(γ1, γ2, γ3) denote the parameter condition in equation (3.1), equation (3.3)
and equation (3.4), respectively. The relations between them and the coefficients in
equation (2.1) are given in the appendix.

According to qualitative theory of differential equation, the type of the equilib-
rium point P+ of equation (2.1) are showed in Table 1.

Table 1. Characteristic equation of equation (2.1) at P+ and the type of P+.

Characteristic equation λ3 − q1λ
2 − q2λ+ q3 − (n5λ

2 − q4λ+ q5)e
−λτ = 0

Parameter condition γ1γ2 < 0 γ1 > 0, γ2 > 0 γ1 < 0, γ2 < 0
Type of p+ Saddle focus Unstable focus Stable focus

Remark 3.1. Hartman Grobman theorem ensures that when the singularities of
the linearized system is hyperbolic type, the trajectory of nonlinear system and
corresponding linearization system keep the topology equivalence in the neighbor-
hood of singular point. We analyze the type and the stability of singularities in
nonlinear system requires the center manifold approach when the singularities are
not hyperbolic type.

3.3. Computation of bifurcation parameter value τ0 of equa-
tion (2.1)

In order to study the Hopf bifurcation of equation (2.1), we denote λ = ±iω(ω > 0)
as the solution of characteristic equation (3.3). Hence,

−iω3 + q1ω
2 − iq2ω + q3 − (n2ω

2 − iq4ω + q5)e
−iωτ = 0

is obtained. By separating the real part and the imaginary part leads to{
−ω3 − q2ω + q4ωcos(ωτ)− (n2ω

2 − q5)sin(ωτ) = 0,

q1ω
2 + q3 + (n2ω

2 − q5)cos(ωτ) + q4ωsin(ωτ) = 0.

Clearly, the solution of equations mentioned above can be written as

cos(ωτ) = − (n2q1 − q4)ω
4 + (n2q3 − q1q5 − q2q4)ω

2 − q3q5
(n2ω2 − q5)2 + ω2q24

,

sin(ωτ) = −ω(n2ω
4 + (n2q2 + q1q4 − q5)ω

2 − q2q5 + q3q4)

(n2ω2 − q5)2 + ω2q24
,

and ω is the root of the equation

ω6 + p1ω
4 + p2ω

2 + p3 = 0. (3.5)

We use Pp(p1, p2, p3) denote the parameter condition in equation (3.5). The rela-
tionships between Pp and coefficients in equation (2.1) are showed in the appendix.
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Let z = ω2 and equation (3.5) becomes

z3 + p1z
2 + p2z + p3 = 0. (3.6)

Assume that equation (3.6) has three positive roots zk(k = 1, 2, 3). Then, equation
(3.5) has positive root ωk(=

√
zk) with

τ
(j)
k =

1

ωk
(arccos δ1 + 2jπ), (3.7)

and

τ
(j)
k =

1

ωk
(arcsin δ2 + 2jπ), (3.8)

where

δ1 = − (n2q1 − q4)ω
4 + (n2q3 − q1q5 − q2q4)ω

2 − q3q5
(n2ω2 − q5)2 + ω2q24

,

and

δ2 = −ω(n2ω
4 + (n2q2 + q1q4 − q5)ω

2 − q2q5 + q3q4)

(n2ω2 − q5)2 + ω2q24
,

k = 1, 2, 3, j = 0, 1, 2, · · · .
Solving equation (3.7) and (3.8), we obtain ω0 and bifurcation parameter τ0

ω0 = ω0(τ0), τ0 = min{τ0k} (1 ≤ k ≤ 3),

respectively.

3.4. The sufficient conditions of the Hopf bifurcation of equa-
tion (2.1) near P+

Let z0 = −p2+
√
∆

3 , ∆ = p21 − 3p2 and h(z) = z3 + p1z
2 + p2z + p3 in equation (3.6)

and we have the following lemma.

Lemma 3.1. Assuming that parameter conditions q1 + n5 < 0, q3 − q5 > 0 and
(q1 + n5)(q2 − q4)− q3 + q5 > 0 hold, then

(i) If p3 ≥ 0 and ∆ < 0, then all the roots of the characteristic equation (3.3)
have strict negative real part;

(ii) If p3 < 0 or (p3 ≥ 0,∆ ≥ 0, z0 > 0, h(z0) ≤ 0), then all the roots of the
characteristic equation (3.3) have strict negative real part with τ ∈ [0, τ0).

Proof. (i) According to τ = 0, equation (3.3) can be written as

λ3 − (q1 + n5)λ
2 − (q2 − q4)λ+ q3 − q5 = 0.

The necessary and sufficient conditions for all the roots of the equation (3.6) have
strict negative real part, according to Routh-Hurwitz criterion, is

q1 + n5 < 0, q3 − q5 > 0 (q1 + n5)(q2 − q4)− q3 + q5 > 0. (3.9)
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If p3 ≥ 0 and ∆ < 0, equation (3.6) has no positive real root and equation (3.3)
has no pure imaginary roots. From the proof of theorem 3.1 in paper [19], we know
that all roots of equation (3.3) have strict negative real parts for τ ∈ [0,∞).

(ii) If p3 < 0(p3 ≥ 0,∆ ≥ 0, z1 > 0, h(z1) ≤ 0), equation (3.6) has positive real
root and equation (3.3) has pure imaginary roots only when τ ∈ [0, τ0).

Let λ(τ) = α(τ) + iω(τ) be the root of equation (3.3) with condition α(τ0) = 0
and ω(τ0) = ω0. Denote that

G = −ω
2
0(ω

4
0f1 + ω2

0f2 + f3)

f4
,

and Pf1−4(f1, f2, f3, f4) is the parameter condition above. The relationships between
Pf1−4 and coefficients in equation (2.1) are showed in the appendix. Then, we have
the theorem as follows.

Theorem 3.1 (The sufficient condition of the existence of Hopf bifurcation). If the
conditions in Lemma 3.1(ii) hold and G > 0, we have

(i) The positive equilibrium point P+ of equation (2.1) is asymptotically stable
when 0 ≤ τ ≤ τ0;

(ii) The positive equilibrium point P+ of equation (2.1) is unstable when τ > τ0;

(iii) Equation (3.3) has a pair of pure imaginary roots when τ = τ0, and τ0 is the
Hopf bifurcation point of equation (2.1).

Proof. (i) From Lemma 3.1(ii), if p3 < 0 (p3 ≥ 0,∆ ≥ 0, z0 > 0, h(z0) ≤ 0),
all roots of the characteristic equation (3.3) have strict negative real part with
τ ∈ [0, τ0). According to qualitative theory of differential equation, the positive
equilibrium P+ of equation (2.1) is asymptotically stable.

(ii) For that λ(τ) = α(τ) + iω(τ) is the root of equation (3.3) with condition
α(τ0) = 0 and ω(τ0) = ω0, we calculate

dλ(τ)

dτ
|λ=iω0,τ=τ0 =

f5 + if6
f7 + if8

.

Denote that the parameter condition above is Pf5−8(f5, f6, f7, f8), Moreover, the
relationships between Pf5−8 and coefficients of equation (2.1) are showed in the
appendix. So, we have

dReλ(τ)

dτ
|λ=iω0,τ=τ0 =

f5f7 + f6f8
f27 + f28

= − ω2
0(ω

4
0f1 + ω2

0f2 + f3)

(q24ω
2
0 + n25ω

4
0 − 2n5ω2

0q5 + q25)(f
2
7 + f28 )

= −ω
2
0(ω

4
0f1 + ω2

0f2 + f3)

f4(f27 + f28 )

=
G

f27 + f28
.

If G > 0, we have that dReλ(τ)
dτ |λ=iω0,τ=τ0 > 0. Then, the Equation (3.3) has at least

one characteristic root with strict positive real part when τ > τ0, and the positive
equilibrium point P+ of equation (2.1) is unstable according to qualitative theory
of differential equation.
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(iii) Equation (3.3) has a pair of pure imaginary roots λ = ±iω0 when τ = τ0.
Combine (i) and (ii), we get the conclusion that τ = τ0 is the Hopf bifurcation point
of equation (2.1).

We get the positive equilibrium point P+ of equation (2.1) and discuss its type.
According to the distribution of roots of the characteristic equation for the linearized

system at P+, we obtain the bifurcation value τ0 and dReλ(τ)
dτ |λ=iω0,τ=τ0 across

τ = t0. Based on the differential equation qualitative theory, we get the sufficient
condition of the existence of Hopf bifurcation near P+.

4. The properties of the Hopf bifurcation

In this section, we transfer equation (2.1) into abstract ordinary differential equa-
tions by Riesz representation theorem and the infinitesimal generator approach of
functional differential equation. We apply normal form theory and center manifold
approach [2,3,10] to obtain the differential equations restricted to the flow of center
manifold of that abstract equations. We analyze the direction, stability and peri-
odicity of the periodic solution of Hopf bifurcation by means of the normal form
obtained above.

4.1. Calculation of eigenvectors q(θ) and q∗(θ)

Let τ = τ0 + µ and equation (2.1) exists Hopf bifurcation at µ = 0. We denote
u(t) = (ỹJ (t), ỹA(t), ỹP (t))

T = (uJ (t), uA(t), uP (t))
T and u(t) = u(t+θ), θ ∈ [−τ, 0].

The equation (2.1) can be rewritten as a functional differential equation with the
following form

u̇ = Lµu+ F (u), (4.1)

where
Lµu = B1u(t) +B2u(t− τ),

B1 =

(
n1 r1 n2
α n3 0
0 0 n6

)
, B2 =

(
0 0 0
0 0 0
n4 0 n5

)
, F (u) =

( −s1u
2
J−βuJuP

−s2u
2
A

βuJ (t−τ)uP (t−τ)

)
,

for any initial condition φ(θ) = (φ1(θ), φ2(θ), φ3(θ))
T ∈ C3 with φ(0) = u(t) and

φ(−τ) = u(t− τ), we have

Lµu = B1φ(0) +B2φ(−τ). (4.2)

According to spectral decomposition theory, infinitesimal generator A(0) asso-
ciated with linearized equation of equation (4.2)

A(0)φ(θ) =


dφ(θ)

dθ
, θ ∈ [−τ, 0),∫ 0

−τ

φ(s)dη(s), θ = 0,

(4.3)

where φ ∈ C3. And η(θ) is three order matrix function with

η(µ, θ) = B1δ(θ) +B2δ(θ + τ),
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where δ(θ) is Dirac-delta function. We also define operator R(0) as

R(0)φ(θ) =

{
0, θ ∈ [−τ, 0),
F (u), θ = 0.

Then, equation (4.1) is equivalent to the abstract differential equation

u̇ = A(0)u+R(0)u. (4.4)

Let ψ ∈ C3, we represent the formal adjoint operator of A(0) as A∗ and we have

A∗(0)ψ(s) =


− dψ(s)

ds
, s ∈ (0, τ ],∫ 0

−τ

ψ(−t)dηT(t), s = 0.

(4.5)

For ψ and φ, we define the bilinear form of the inner product as follows

⟨ψ,φ⟩ = ψ̄(0)φ(0)−
∫ 0

−τ

∫ θ

0

ψ̄(ξ − θ)φ(ξ)dη(θ)dξ. (4.6)

According to the bilinear inner product (4.6), we have ⟨ψ,Aφ⟩ = ⟨A∗ψ,φ⟩.

Theorem 4.1. Let q(θ) and q∗(θ) be eigenvectors of A(0) and A∗(0) associated
with iω0 and −iω0 respectively, we have

q(θ) = V eiω0θ, q∗(θ) = DV ∗eiω0θ,

and

⟨q∗(θ), q(θ)⟩ = 1, ⟨q∗(θ), q̄(θ)⟩ = 0,

where

V = (−1,−1, ρ1)
T, ρ1 =

n1 − iω0 + r1
n2

,

V ∗ = (ρ2,−1,−1)T, ρ2 =
n2 + r1
n1 + iω0

,

D̄ =
1

V̄ ∗TV + τe−iω0τ V̄ ∗TB2V
.

Proof. According to equation (4.3) and A(0)q(θ) = iω0q(θ), we have

A(0)q(θ) =


dq(θ)

dθ
= iω0q(θ), θ ∈ [−τ, 0),∫ 0

−τ

q(s)dη(s) = iω0q(θ), θ = 0,

and therefore

q(θ) = V eiω0θ, θ ∈ [−τ, 0],



Stability and Hopf bifurcation of . . . 583

where V = (v1, v2, v3)
T ∈ C3. From equation (4.5) and A∗(0)q∗(θ) = −iω0q

∗(θ),
we have

A∗(0)q∗(s) =


− dq∗(s)

ds
, s ∈ (0, τ ],∫ 0

−τ

q∗(−s)dηT(s), s = 0,

and therefore

q∗(θ) = DV ∗eiω0θ, θ ∈ [−τ, 0],

where D ∈ R. From equation (4.2), it follows that

B1V +B2V e
−iω0θ = iω0I,

where I is three order unit matrix. We solve the equation above and obtain the
solution as follows

V =
(
− 1,−1,

n1 − iω0 + r1
n2

)T

.

Similarly, we have

V ∗ =
( n2 + r1
n1 + iω0

,−1,−1
)T

.

From equation (4.8), the inner product of q∗(θ) with q(θ) is

⟨q∗(θ), q(θ)⟩ = q̄∗
T
(0)q(0)−

∫ 0

−τ

∫ θ

0

q̄∗
T
(ξ − θ)q(ξ)dη(θ)dξ

= D̄V̄ ∗TV −
∫ 0

−τ

∫ θ

0

D̄V̄ ∗Te−iω0(ξ−θ)V eiω0ξdη(θ)dξ

= D̄V̄ ∗TV −
∫ 0

−τ

D̄V̄ ∗Teiω0θV θdη(θ)

= D̄V̄ ∗TV − D̄V̄ ∗T(−τB2e
−iω0τ )V

= D̄(V̄ ∗TV + τe−iω0τ V̄ ∗TB2V ).

Let

D̄ =
1

V̄ ∗TV + τe−iω0τ V̄ ∗TB2V
,

we have

⟨q∗(θ), q(θ)⟩ = 1.

Similarly, we have

⟨q∗(θ), q̄(θ)⟩ = 0.

Therefore, the theorem is proved.
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We define the local coordinates of the equation (4.4) in the direction of q∗(θ)
and q̄∗(θ) as

z(t) = ⟨q∗, u⟩, (4.7)

where u is the solution of equation (4.4) at µ = 0. We denote the real space which
differ from eigenvalue ±iω0 of equation (4.4) is Q±iω0 . So, we obtain the following
equation on the center manifold Cµ=0 =W (z(t), z̄(t), θ) of equation (4.4),

W (z(t), z̄(t), θ) =W (t, θ)

= u(t)− z(t)q(θ)− z̄(t)q̄(θ)

= u(t)− 2Re(z(t)q(θ)), (4.8)

where W (t, θ) ∈ Q±iω0 and W (z(t), z̄(t), θ) could be expressed as power series
expansion about z(t) and z̄(t),

W (z(t), z̄(t), θ) =W20(θ)
z(t)2

2
+W11(θ)z(t)z̄(t) +W02(θ)

z̄(t)2

2
+ · · · .

According to equation (4.7) and (4.8), the flow of equation (14) on center man-
ifold Cµ=0 could be determined by

ż(t) = ⟨q∗, u̇⟩
= ⟨q∗, A(0)u+R(0)u⟩
= ⟨q∗, A(0)u⟩+ ⟨q∗, R(0)u⟩

= ⟨A∗(0)q∗, u⟩+ q̄∗
T
(0)F0

= iω0z(t) + q̄∗
T
(0)F0 (4.9)

where F0 = F (W (z(t), z̄(t), θ) + z(t)q(θ) + z̄(t)q̄(θ), 0).
Hence, we need to calculate the undetermined coefficients W20(θ), W11(θ) and

W02(θ), and bring these coefficients into equation (4.9). And then, we obtain the
equation restricted to the center manifold Cµ=0. We denote that

g(z(t), z̄(t)) =q̄∗
T
(0)F0

=q̄∗
T
(0)F (W (z(t), z̄(t), θ) + z(t)q(θ) + z̄(t)q̄(θ), 0)

=g20(θ)
z(t)2

2
+ g11(θ)z(t)z̄(t) + g02(θ)

z̄(t)2

2

+ g21
z(t)2z̄(t)

2
+ · · · . (4.10)

From equation (4.10), we know that, as long as the coefficients g20, g11, g02 and
g21 were calculated, the equation restricted to the center manifold (4.9) will be
obtained.

4.2. Computation of coefficients g20, g11 and g02 on center man-
ifold Cµ=0

From equation (4.8), we have

Ẇ (t, θ) = u̇(t)− ż(t)q(θ)− ˙̄z(t)q̄(θ). (4.11)
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According to equation (4.4) and (4.9), it follows that

Ẇ (t, θ) =

{
AW (t, θ)− 2Re(q̄∗

T
(0)F0q(θ)), θ ∈ [−τ, 0),

AW (t, θ)− 2Re(q̄∗
T
(0)F0q(θ)) + F0, θ = 0.

(4.12)

Further more, the equation (4.12) could be expresses as

Ẇ (t, θ) = AW (t, θ) +H(z(t), z̄(t), θ),

where

H(z(t), z̄(t), θ) = H20(θ)
z(t)2

2
+H11(θ)z(t)z̄(t) +H02(θ)

z̄(t)2

2
+ · · · . (4.13)

On the other hand, from equation (4.13), we have

Ẇ (z, z̄, θ) =Wz(t)ż(t) +Wz̄(t) ˙̄z(t)

=(W20(θ)z +W11(θ)z̄)ż + (W20(θ)z +W11(θ)z̄) ˙̄z

=(W20(θ)z +W11(θ)z̄)(iω0z + q̄∗
T
(0)F0)

+ (W20(θ)z +W11(θ)z̄)(−iω0z + q̄∗
T
(0)F0)

=iω0W20(θ)z
2 − iω0W02(θ)z̄

2 + · · · . (4.14)

Substituting equation (4.14) into equation (4.12) and comparing the coefficients

about the term z2

2 and zz̄, we have{
(A− 2iω0I)W20(θ) = −H20(θ), θ ∈ [−τ, 0),
(A− 2iω0I)W20(θ) = g20q(0) + ḡ02q̄(0)− Fz2 , θ = 0,

(4.15)

and {
AW11(θ) = −H11(θ), θ ∈ [−τ, 0),
AW11(θ) = g11q(0) + ḡ11q̄(0)− Fzz̄, θ = 0.

(4.16)

From (4.8), we have

u(t) = u(t+ θ) =W (t, θ) + z(t)q(θ) + z̄(t)q̄(θ),

and

uJ(t+ θ) =W (1)(t, θ) + z(t)(−1) + z̄(t)(−1)

=W
(1)
20 (θ)

z2

2
+W

(1)
11 (θ)zz̄ +W

(1)
02 (θ)

z̄2

2
− z(t)eiω0θ − z̄(t)e−iω0θ,

uA(t+ θ) =W (2)(t, θ) + z(t)(−1) + z̄(t)(−1)

=W
(2)
20 (θ)

z2

2
+W

(2)
11 (θ)zz̄ +W

(2)
02 (θ)

z̄2

2
− z(t)eiω0θ − z̄(t)e−iω0θ,

uP (t+ θ) =W (3)(t, θ) + z(t)ρ1 + z̄(t)ρ̄1

=W
(3)
20 (θ)

z2

2
+W

(3)
11 (θ)zz̄ +W

(3)
02 (θ)

z̄2

2
− z(t)ρ1e

iω0θ − z̄(t)ρ̄1e
−iω0θ.
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For equation (4.1), we denote that

F (φ) =


−s1u2J − βuJuP

−s2u2A
βuJ (t− τ)uP (t− τ)

 =


K1 K2 K3 K4

K5 K6 K7 K8

K9 K10 K11 K12



z2

zz̄

z̄2

z2z̄

 ,

where φ(J), φ(A), φ(P ) and Ki(i = 1, 2, · · · , 12) are showed in the appendix.
According to equation (4.10), it follows that

g(z(t), z̄(t)) =q̄∗
T
(0)F0

=D̄V̄ ∗T


K1 K2 K3 K4

K5 K6 K7 K8

K9 K10 K11 K12



z2

zz̄

z̄2

z2z̄


=D̄(ρ̄2K1 −K5 −K9)z

2 + D̄(ρ̄2K2 −K6 −K10)zz̄

+ D̄(ρ̄2K3 −K7 −K11)z̄
2 + D̄(ρ̄2K4 −K8 −K12)z

2z̄.

Comparing the coefficients of each term with equation (4.10) yields

g20 = 2D̄(ρ̄2K1 −K5 −K9),

g11 = D̄(ρ̄2K2 −K6 −K10),

g02 = 2D̄(ρ̄2K3 −K7 −K11). (4.17)

Furthermore, coefficients g20, g11 and g02 are obtained through these equations
above. However, coefficient g21 = 2D̄(ρ̄2K4 −K8 −K12) depends on terms W11(θ)
and W20(θ). We should calculate W11(θ) and W20(θ) in equation.

4.3. Computation of coefficients g21 on center manifold Cµ=0

From equation (4.12) at θ ∈ [−τ, 0), it follows that

H(z(t), z̄(t), θ) =− 2Re
(
q̄∗

T
(0)F0q(θ)

)
=−

(
g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · ·

)
q(θ)

−
(
ḡ20

z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ ḡ21

z̄2z

2
+ · · ·

)
q̄(θ). (4.18)

Comparing the coefficients about the term z2

2 and zz̄ between equation (4.13) and
(4.18), we have

H20(θ) = −g20q(θ)− ḡ02q̄(θ),

and

H11(θ) = −g11q(θ)− ḡ11q̄(θ).
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From equation (4.15) at θ ∈ [−τ, 0), it follows that

Ẇ20(θ) = 2iω0W20(θ)−H20(θ)

= 2iω0W20(θ) + g20q(θ) + ḡ02q̄(θ)

= 2iω0W20(θ) + g20V e
iω0θ + ḡ02V

∗e−iω0θ.

We solve equation and obtain the solution

W20(θ) =
ig20
ω0

V eiω0θ +
iḡ02
3ω0

V̄ e−iω0θ +M1e
2iω0θ. (4.19)

From equation (4.16) at θ ∈ [−τ, 0), it follows that

Ẇ11(θ) = −H11(θ)

= g11q(θ) + ḡ11q̄(θ)

= g11V e
iω0θ + ḡ11V

∗e−iω0θ.

We solve equation and obtain the solution

W11(θ) = − ig11
ω0

V eiω0θ +
iḡ11
ω0

V̄ e−iω0θ +M2. (4.20)

According to equation (4.16), we obtain H(z, z̄, 0) at θ = 0 as follows

H(z, z̄, 0) =− 2Re
(
q̄∗

T
(0)F0q(θ)

)
+ F0

=−
(
g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · ·

)
q(0)

−
(
ḡ20

z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ ḡ21

z̄2z

2
+ · · ·

)
q̄(0) + F0,

=−
(
g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · ·

)
V

−
(
ḡ20

z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ ḡ21

z̄2z

2
+ · · ·

)
V̄

+ (U1, U2, U3)
T, (4.21)

where

U1 = K1z
2 +K2zz̄ +K3z̄

2 +K4z
2z̄,

U2 = K5z
2 +K6zz̄ +K7z̄

2 +K8z
2z̄,

U3 = K9z
2 +K10zz̄ +K11z̄

2 +K12z
2z̄.

Comparing the coefficients about the term z2

2 and zz̄ between equation (4.21) and
(4.13), we have

H20(0) = −g20q(0)− ḡ02q̄(0) + (K1,K5,K9)
T,

and

H11(0) = −g11q(0)− ḡ11q̄(0) + (K2,K6,K10)
T.
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From equation (4.4) and (4.15), we calculate the integrals as following at θ = 0,∫ 0

−τ

W20(θ)dη(θ) =2iω0W20(0)−H20(0)

=2iω0W20(0) + g20q(0) + ḡ02q̄(0)− (K1,K5,K9)
T

=2iω0(
ig20
ω0

V +
iḡ02
3ω0

V̄ +M1) + g20V + ḡ02V̄

− (K1,K5,K9)
T, (4.22)

and ∫ 0

−τ

W11(θ)dη(θ) = −H11(0)

= g11q(0) + ḡ11q̄(0)− (K2,K6,K10)
T

= g11V + ḡ11V̄ − (K2,K6,K10)
T. (4.23)

Because that q(θ) is characteristic vector of A(0) associated with iω0, when
θ = 0, from equation (4.3) we have

A(0)q(0) =

∫ 0

−τ

q(s)dη(s) = iω0q(0). (4.24)

From equation (4.24), it follows that(
iω0I −

∫ 0

−τ

eiω0sdη(s)
)
q(0) = 0.

So, for η̄ = η, we have (
− iω0I −

∫ 0

−τ

e−iω0sdη(s)
)
q(0) = 0.

Hence, from equations (4.19) and (4.22), we obtain

M1 =
(
2iω0I −

∫ 0

−τ

e2iω0sdη(s)
)−1

(K1,K5,K9)
T. (4.25)

Similarly, from equations (4.20) and (4.23), we also obtain

M2 =
(
−
∫ 0

−τ

dη(s)
)−1

(K2,K6,K10)
T. (4.26)

Moreover, M1 =
(
M

(1)
1 ,M

(2)
1 ,M

(3)
1

)T
and M2 =

(
M

(1)
2 ,M

(2)
2 ,M

(3)
2

)T
, M

(j)
i (i =

1, 2, j = 1, 2, 3) are showed in the appendix.

Because of equations (4.19) and (4.20), we calculate W
(i)
20 (θ) and W

(i)
11 (θ)(i =

1, 2, 3) and obtain the coefficient

g21 = 2D̄(ρ̄2K4 −K8 −K12), (4.27)

where W
(i)
20 (θ), W

(i)
11 (θ)(i = 1, 2, 3) are showed in the appendix.

We calculate all these coefficients and bring g20, g11, g02 and g21 into equation
(4.9). Therefore, the equation can be written as

ż(t) = iω0z + g(z, z̄)

= iω0z + g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .
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4.4. The properties of Hopf bifurcation of equation (2.1) and
corresponding algorithm

Based on the Hopf bifurcation theory of dynamical systems, equation (4.9) can be
transformed into

ẇ = iω0w + c1(0)w
2w̄ +O(|w|4), (4.28)

where c1(0) = i
2ω0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2 . We denote the first Lyapunov
coefficient of equation (4.28) as

l1(0) =
Rec1(0)

ω0
=

1

2ω2
0

Re(ig20g11 + ω0g21),

and

µ2 = − ω0l1(0)

Reλ′(0)
,

where µ2 and l1(0) determines the direction and stability of Hopf bifurcation re-
spectively, we have the following theorem.

Theorem 4.2 (The properties of the Hopf bifurcation). If µ2 > 0 (µ2 < 0), the
Hopf bifurcation of equation (2.1) is supercritical (subcritical), and there exits bi-
furcation periodic solution when τ > τ0 (τ < τ0); If l1(0) < 0 (l1(0) > 0), the
bifurcation periodic solution of equation (2.1) is stable (unstable).

Combined with analysis the properties of Hopf bifurcation periodic solution of
equation (2.1), we give the algorithm process as follows: Rewrite the equation (3.1)
in abstract form u̇ = A(0)u+R(0)u and obtain the local coordinate on the direction
of q∗(θ) and q̄∗(θ) of equation (4.4) according to the theory of spectral decomposi-
tion of equation; Obtain the equation (4.9) restricted on the center manifold Cµ=0

and calculate the coefficients; Calculate µ2 and l1(0), research the bifurcation di-
rection and stability of Hopf bifurcation periodic solution of equation (2.1). The
corresponding algorithm process is shown in Figure 1.

Figure 1. Algorithm process.

The spectral decomposition theory of equation is basic approach for studying
bifurcation problems by applying center manifold method. We give the equation
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which restricted on the flow of center manifold of equation (2.1) by using of spectral
decomposition theory and center manifold method, and obtain the algorithm shows
the properties such as stability and direction of Hopf bifurcation periodic solution
of equation (2.1).

5. Numerical simulations

In this section, we carry out the numerical simulation of the Hopf bifurcation peri-

odic solution of the equation (2.1). We obtain τ0 and
dReλ(τ)

dτ |λ=iω0,τ=τ0 according to
lemma 3.1 and theorem 3.1, and calculate µ2 and l1(0) to determines the direction
and stability of Hopf bifurcation respectively.

We choose the parameters in equation (1.3) as P = (r1, α, β, d, s, E), where
r1 = 80, α = 0.3, β = 1.2, d = (d1, d2, d3) = (1.5, 1, 0.6), s = (s1, s2, s3) =
(1.2, 0.3, 0.8), E = (E1, E2, E3) = (1.5, 1.8, 2). Under this parameter condition,
equation (2.1) has a unique positive equilibrium point P+ = (2.167, 0.227, 2.057).
For the ecological (biological) equation, the positive equilibrium point means that
all the speices in the equation are exist. We also get that ω0 = 0.361, τ0 = 7.650,

p3 = −2.96× 104 < 0, G = 568.4 > 0, dReλ(τ)
dτ |λ=iω0,τ=τ0 > 0. All the characteristic

roots of the characteristic equation (3.3) have strictly negative real part with τ ∈
[0, τ0). Hence, the positive equilibrium point P+ of equation (2.1) is asymptotically
stable as showed in Figure 2.

Figure 2 shows that the juvenile prey, adult prey and predator can reach a stable
state after a period of time in the harvest condition. The characteristic equation
(3.3) has, at least, one characteristic root with strictly positive real part at τ > τ0.
Hence, the positive equilibrium point P+ of equation (2.1) is unstable.

The coefficients of the center manifold Cµ=0 are obtained as follows

g20 = −0.0705 + 0.0217i,

g11 = −0.0707 + 0.0283i,

g02 = −0.0658 + 0.0327i,

g21 = 12.5734− 4.5615i.

From equation (4.28), we obtained c1(0) = 6.2920− 2.2932i, µ2 < 0 and l1(0) > 0.
According to theorem 4.2, we know that this Hopf bifurcation is subcritical and
there exists the bifurcation periodic solution at τ < τ0 in equation (2.1) as showed
in Figure 3.

Based on the algorithm in section 4, we obtain that these coefficients of equation
which restricted on the flow of center manifold Cµ=0, and give µ2 and l1(0) to
determines the direction and stability of Hopf bifurcation respectively in this section.
Numerical simulation shows that there exists subcritical Hopf bifurcation near P+ in
equation (2.1). Hopf bifurcation periodic solution exists when τ < τ0 and disappears
when τ ≥ τ0.

6. Conclusion

The response of a biological and financial equations to a particular input is often
not immediate but is delayed. Even though a small time delay may leads to complex
dynamic behavior.



Stability and Hopf bifurcation of . . . 591

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.30

initial value = 2.00

initial value = 2.10

initial value = 2.20

Y
J

t

86420 10 12

(1)

t

10 12

Y
A

0.195

0.200

0.205

0.210

0.215

0.220

0.225

0.230

0.235

0.240

initial value = 0.200

initial value = 0.220

initial value = 0.210

86420

(2)

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

t

Y
P

10 1286420

initial value = 2.00

initial value = 2.10

initial value = 1.90

(3)

Figure 2. The positive equilibrium point P+ of the equation (2.1) is asymptotically stable. (1),(2),(3)
shows the population of juvenile prey, adult prey and predator variety process about time t respectively.

In this paper, we have detected the harvest term about juvenile prey, adult prey
and predator as well as the internal competition, based on the result obtained in
papers [1, 22]. We analyze the stability of the positive equilibrium point of equa-
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(1) (2)

Figure 3. Subcritical Hopf bifurcation of equation (2.1) near P+. (1) τ < τ0. (2) τ ≥ τ0.

tion (2.1), and obtain the existence condition of Hopf bifurcation. When τ passes
through the critical value τ0, the equation loses its stability and generates Hopf

bifurcation. We calculate the bifurcation value τ0 and dReλ(τ)
dτ |λ=iω0,τ=τ0 across

τ = τ0. Based on differential equation qualitative theory, we present the suffi-
cient condition of the existence of Hopf bifurcation near P+. By using of spectral
decomposition theory and center manifold method, we obtain the equation which
restricted on the flow of center manifold of equation (2.1), and also present the
algorithm which shows the properties such as stability and direction of Hopf bi-
furcation periodic solution of equation (2.1). Numerical simulation indicates that
equation (2.1) exists subcritical Hopf bifurcation near P+ under certain parameter
conditions. Hopf bifurcation periodic solution exists when τ < τ0 and disappears
when τ ≥ τ0.

We have obtained the critical value of time delay which could affect the stable
coexistence of both prey and predator species at the equilibrium point. However,
the conditions to preserve stability or generate Hopf bifurcation are dependent upon
the system parameters (e.g. harvest efforts, internal competition). It would be
more interesting to give a thorough discussion about these parameters and their
implications on the global behavior of the solutions. Furthermore, it is necessary
to impose some control to prevent the possible abnormal oscillation in population
density which can be carried out in a separate paper.
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Appendix

Section 3.2

(1) Relationships between parameter condition Pn(n1, n2, n3, n4, n5, n6) and coeffi-
cients in equation (2.1) are shown as follows.

n1 = −(d1 + α+ E1) + 2a1y
∗
J + a2y

∗
P ,

n2 = a2y
∗
J ,

n3 = −(d2 + E2)− 2s2y
∗
A,

n4 = c1y
∗
P ,

n5 = c1y
∗
J ,

n6 = −(d3 + E3).

(2) Relationships between parameter condition Pq(q1, q2, q3, q4, q5) and coeffi-
cients in equation (2.1) are shown as follows.

q1 = n1 + n3 + n6,

q2 = αr1 − n1n3 − n1n6 − n3n6,

q3 = αn6r1 − n1n3n6,

q4 = n1n5 + n3n5 − n2n4,

q5 = n1n3n5 − n2n3n4 − n5αr1.

(3) Relationships between parameter condition Pγ(γ1, γ2, γ3) and coefficients in
equation (2.1) are shown as follows.

γ1 = Q3 +
1

3
q1,

γ2 = −1

2
Q3 +

1

3
q1,

γ3 =
1

2

√
3
(
Q5 +

6Q6

Q5

)
,

where

Q3 =
1

6
Q5 −

6Q6

Q5
,

Q4 = −12q31q3 − 3q211
2
2 − 54q1q2q3 − 12q32 + 81q23 ≥ 0,

Q5 =
3

√
36q1q2 − 108q3 + 8q31 + 12

√
Q4,

Q6 = −1

3
q2 −

1

9
q21 ,

with

n5
(
Q3 +

1

3
q1
)2 − q4

(
Q3 +

1

3
q1
)
+ q5 = 0,

n5

((
− 1

2
Q3 +

1

3
q1
)2 − (

3
(
Q5 +

6Q5

Q4

))2)− q4
(
− 1

2
Q3 +

1

3
q1
)
+ q5 = 0,

2n5
(
− 1

2
Q3 +

1

3
q1
)(

− 1

2

√
3
(
Q5 +

6Q6

Q5

))
− q4

(1
2

√
3
(
Q5 +

6Q6

Q5

))
= 0.
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Section 3.3

Relationships between parameter condition Pp(p1, p2, p3) and coefficients in equa-
tion (2.1) are shown as follows.

p1 = n25 − 2q2 − q21 ,

p2 = q24 − 2n5q5 − q22 − 2q1q3,

p3 = q25 − q23 .

Section 3.4

Relationships between parameter condition Pf1−8(f1, f2, f3, f4, f5, f6, f7, f8) and co-
efficients in equation (2.1) are shown as follows.

f1 =n25(q
2
2 + 2q1q3) + n5(2q5q

2
1 + 4q5q2)− q21q

2
4 − 3q25 − 2q24q2,

f2 =2n25q
2
3 − 4q25q2 − 2q21q

2
5 ,

f3 =− 2n5q5q
2
3 − 2q1q3q

2
5 + q23q

2
4 − q25q

2
2 ,

f4 =q24ω
2
0 + n25ω

4
0 − 2n5ω

2
0q5 + q25 ,

f5 =− q4ω
2
0 cos(ω0τ0) + (n5ω

3
0 − q5ω0) sin(ω0τ0),

f6 =(n5ω
3
0 − q5ω0) cos(ω0τ0) + q4ω

2
0 sin(ω0τ0),

f7 =− 3ω2
0 − q2 + (−τ0n5ω2

0 + τ0q5) cos(ω0τ0)− ω0(2n5 + τ0q4) sin(ω0τ0),

f8 =− 2q1ω0 −−ω0(2n5 + τ0q4) cos(ω0τ0)− (−τ0n5ω2
0 + τ0q5) sin(ω0τ0).

Section 4.2

φJ(0) = −z − z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ · · · ,

φP (0) = −zρ1 − z̄ρ̄1 +W
(3)
20 (0)

z2

2
+W

(3)
11 (0)zz̄ +W

(3)
02 (0)

z̄2

2
+ · · · ,

φA(0) = −z − z̄ +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ · · · ,

φJ(−τ) = −ze−iω0τ − z̄eiω0τ +W
(1)
20 (−τ)z

2

2
+W

(1)
11 (−τ)zz̄ +W

(1)
02 (−τ) z̄

2

2
+ · · · ,

φP (−τ) = −zρ1e−iω0τ − z̄ρ̄1e
iω0τ +W

(3)
20 (−τ)z

2

2
+W

(3)
11 (−τ)zz̄ +W

(3)
02 (−τ) z̄

2

2
+ · · · ,

φA(−τ) = −ze−iω0τ − z̄eiω0τ +W
(2)
20 (−τ)z

2

2
+W

(2)
11 (−τ)zz̄ +W

(2)
02 (−τ) z̄

2

2
+ · · · ,

and

K1 =− s1 − βρ1,

K2 =− 2s1 − β(ρ1 + ¯rho1),

K3 =− s1 − βρ̄1,

K4 =− s1
(
−W

(1)
20 (0)−W

(1)
11 (0)

)
− β

(
−W

(3)
11 (0)− W

(3)
20 (0)

2
− ρ1W

(1)
11 (0)− ρ̄1

W
(1)
20 (0)

2

)
,
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K5 =− s2,

K6 =− 2s2,

K7 =− s2,

K8 =− s2
(
W

(2)
20 (0)−W

(2)
11 (0)

)
,

K9 =βρ1e
−2iω0τ ,

K10 =β(ρ1 + ρ̄1),

K11 =βρ̄1e
2iω0τ ,

K12 =β
((

−W
(3)
11 (−τ)−W

(1)
11 (−τ)ρ1

)
e−iω0τ

+
(
− W

(3)
20 (−τ)
2

− W
(1)
20 (−τ)
2

ρ̄1

)
eiω0τ

)
.

Section 4.3

M
(1)
1 =

K1m4m5 − r1K5m5 + n2K9m4

m3m4m5 + r1αm5 − n2n4m4e−2iω0τ
,

M
(2)
1 = −K5 + αM

(1)
1

m4
,M

(3)
1 =

n4e
−2iω0τM

(1)
1 +K9

m5
,

and

M
(1)
2 =

K2n3(n2 − n6)−K6r1(n2 − n6) +K10n2n3
αr1(n2 − n6)− n2n3n4 − n2n3(n2 − n6)

,

M
(2)
2 = −K6 + αM

(1)
2

n3
,M

(3)
2 =

n4M
(1)
2 +K10

(n2 − n6)
,

where m3 = 2iω0−n1, m4 = 2iω0−n3, m5 = 2iω0−n6+n2e−2iω0τ . From equation

(4.21), we obtain W
(i)
20 (θ) and W

(i)
11 (θ)(i = 1, 2, 3),

W
(1)
20 (θ) = − ig20

ω0
eiω0θ − iḡ02

3ω0
e−iω0θ +M

(1)
1 e2iω0θ,

W
(2)
20 (θ) = − ig20

ω0
eiω0θ − iḡ02

3ω0
e−iω0θ +M

(2)
1 e2iω0θ,

W
(3)
20 (θ) = − ig20

ω0
eiω0θ − iḡ02

3ω0
e−iω0θ +M

(3)
1 e2iω0θ.

From equation(4.22), we have

W
(1)
11 (θ) =

ig11
ω0

eiω0θ − iḡ11
ω0

e−iω0θ +M
(1)
2 ,

W
(2)
11 (θ) =

ig11
ω0

eiω0θ − iḡ11
ω0

e−iω0θ +M
(2)
2 ,

W
(3)
11 (θ) =

ig11
ω0

eiω0θ − iḡ11
ω0

e−iω0θ +M
(3)
2 .
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