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Abstract In this paper, we prove necessary conditions for existence and
uniqueness of solution (EUS) as well Hyers-Ulam stability for a class of hybrid
fractional differential equations (HFDEs) with p-Laplacian operator. For these
aims, we take help from topological degree theory and Leray Schauder-type
fixed point theorem. An example is provided to illustrate the results.
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1. Introduction

Mathematical models by FDEs have attracted the attention of scientists due to
useful and realistic in memory problems as compared to the models of integer order
differential equations. In last two decades, scientists have shown a great contribution
by applying FDEs to day life problems in various scientific fields like; viscoelastic
theory, image processing, biology, hydrodynamics, signals, fluid dynamics, control
theory, computer networking and many others [1, 13, 23,25,32].

The exploration of different aspects of FDEs is very popular among the scien-
tists. We highlight some recent and important contributions of scientists for the
investigation of EUS of FDEs of different classes of FDEs. For example, Khan et
al. [24] considered the existence of solution and error estimation for a coupled sys-
tem of differential-integral equations via uper and lower solution method. Baleanu
et al. [6] proved existence of solution for a nonlinear FDE on partially ordered Ba-
nach spaces and provided applications. Mahmudov and Unul [29] studied a FDE
of order ϵ ∈ (2, 3] with integral conditions, an impulsive FDE [31] and FDE with
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p-Laplacian operator [30], for the existence of solutions. Hu et al. [19] studied a cou-
pled system of fractional differential equations with nonlinear p-Laplacian operator
at resonance. One can study global existence of FDE [9], EUS for the superlinear
FDE in [10] and eventually large and small solutions of FDEs in [11] and FDEs
with nonlocal boundary conditions [37].

The applications of hybrid fractional differential equations (HFDEs) in different
scientific fields like; fractals theory, plasma physics, economics, metallurgy, elec-
tromagnetic theory, signal and image processing, biology, control theory ecology
and many more, have greatly attracted the attention of researchers. Recently, some
authors have investigated different aspects of FDEs including; existence and unique-
ness of solutions (EUS) and Hyers-Ulam stability for FDEs by different mathemat-
ical techniques. The Hyers-Ulam stability we mean that a FDE has a very close
exact solution to the approximate solution of the differential equation and the error
is very small which can be estimated. Dhage and Lakshmikantham [15] investigated
the EUS to the ordinary hybrid differential equation of first order with perturbation
of first type

d

dt

( u(t)

f(t, u(t))

)
= h(t, u(t)), u(t0) = u0 ∈ R, (1.1)

where f ∈ C([t0, t0 + a] × R,R − 0), a ∈ R+, [t0, t0 + a] is a bounded interval,
f(t, u(t)) is continuous and h(t, u(t)) is Caratheodory class of functions. Dhage and
Jadhav [14] studied the EUS of the ordinary hybrid differential equation of first
order with perturbation of second type

d

dt

(
u(t)− f(t, u(t))

)
= h(t, u(t)), u(t0) = u0 ∈ R. (1.2)

Herzallah and Baleanu [18] considered the EUS for the following first type and
second type hybrid FDEs

Dϵ
( u(t)

f(t, u(t))

)
= h(t, u(t)), u(t0) = u0 ∈ R,

Dϵ
(
u(t)− f(t, u(t))

)
= h(t, u(t)), u(t0) = u0 ∈ R,

(1.3)

for t ∈ [0, T ], Dϵ is Caputo fractional derivative of order 0 < ϵ < 1. In literature
one can see the contributions of scientists by considering more general problems of
HFDEs than (1.1)-(1.3) for the EUS, we refer the readers to [8, 12,18,35].

Recently, FDEs with p-Laplacian operator have been considered by a large num-
ber of scientists. For example, Li [28] considered existence of positive solutions for
the following FDE

Dβ(ϕp(
cDu(t))) = −f(t, u(t)),

ϕp(
cDu(0)) = (ϕp(Du(0)))′ = ϕp(

cDu(1)),

u′′(0) = u′(1) = 0, au(0) + bu′(0) =

∫ 1

0

g(t)u(t)dt,

where ϵ, β ∈ (2, 3], ϵ + β ∈ (5, 6]. cD is Caputo fractional derivative while D is
Riemann-Liouville fractional derivative.

Inspired from the above contribution of the scientists and the work in the refer-
ences, we use topological degree method to study EUS and Hyers-Ulam stability of
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a class of nonlinear HFDE with p-Laplacian operator of the type

Dβ
[
ϕp[Dϵ(u(t)− ψ2(t, u(t)))]

]
+ ψ1(t, u(t)) = 0,(

ϕp[Dϵ(u(t)− ψ2(t, u(t))]
)(i)|t=0 = 0, for i = 0, 2, 3, . . . , n− 1,(

ϕp[Dϵ(u(t)− ψ2(t, u(t))]
)′|t=η = 0, u(j)(0) = 0, for j = 2, 3, . . . , n− 1,

u(0) =
1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(u(s))ds, u′(η) = ψ′
2(u(η)),

(1.4)

where ψ1, ψ2, are continuous functions, ψ
(k)
2 (t, u(t))|t=0 = 0, for k = 0, 1, 2, . . . , n−1.

n − 1 < ϵ, β ≤ n, n is a positive integer greater than or equal to 3, 0 < a, b <
1, ψ1, ψ2 ∈ L[0, 1] and Dϵ,Dβ stand for Caputo fractional derivative, ϕp(r) =
|r|p−2r is p-Laplacian operator where 1/p + 1/q = 1, ϕq denotes inverse of p-
Laplacian operator. Our suggested problem is more general and complicated than
the problems considered earlier and mentioned above. To the best of our knowl-
edge, the topological degree theory has not been widely used for the study of EUS
for HFDEs with IBCs having orders in (n− 1, n] for n ≥ 3 involving the nonlinear
p-Laplacian operator. In most of the previously studied cases the authors would
need to the assumption of compactness of the operators which would restrict the
impact of the problem and mathematical method at large. In this paper, following
the recent contributions of Khan et al. [26], we investigate three important aspects
of the HFDE with nonlinear p-Laplacian operator (1.4) including existence of solu-
tion, uniqueness of solution and Hyers-Ulam stability of the suggested problem. For
these objectives, we are going to convert the problem (1.4) to an integral equation
by the help of Green functions. After this, we will prove results for existence and
uniqueness by topological degree method. By the use of this technique, we do not
need to the assumption of the compactness of the operator. Then after, Hyers-
Ulam stability will be investigated. In literature, we could not find any published
work on the Hyers-Ulam stability of HFDEs with nonlinear p-Laplacian operator
and integral boundary condition. Therefore, this work may get the attention of re-
searchers to the study of Hyers-Ulam stability as well many other types of stability
for more complex problems. We also suggest the readers that the problem (1.4) has
potentials to be studied for further aims including multiplicity results.

2. Axillary results

Definition 2.1. The fractional integral of order ϵ > 0 of a function f : (0,+∞) → R
is given by

Iϵψ(t) = 1

Γ(ϵ)

∫ t

0

(t− s)ϵ−1ψ(s) ds,

provided that the integral on right side is point wise defined on the interval (0,+∞),
where

Γ(ϵ) =

∫ +∞

0

e−ssϵ−1ds.

Definition 2.2. The Caputo fractional derivative of order ϵ > 0, for a continuous
function ψ(t) : (0,+∞) → R is defined by

Dϵψ(t) =
1

Γ(k − ϵ)

∫ t

0

(t− s)k−ϵ−1ψ(k)(s)ds,
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for k = [ϵ] + 1, where [ϵ] is used for the integer part of ϵ, provided that the integral
on right side is point wise defined on (0,+∞).

For the proof of the following lemma we refer the readers to [13,27,32]

Lemma 2.1 ( [27]). Let R(ϵ) > 0 and n ∈ N , if ψ(t) ∈ ACn[a, b] or ψ(t) ∈ Cn[a, b],
then

Iϵa+D
ϵ
a+ψ(t) = ψ(t) +

n−1∑
k=0

ψ(k)(a)

k!
(t− a)k. (2.1)

Proof. Let ϵ /∈ N . If ψ(t) ∈ ACn[a, b](ψ(t) ∈ Cn[a, b]), then

Dϵ
a+ψ(t) =

1

Γ(n− ϵ)

∫ t

0

y(n)(s)ds

(t− s)ϵ−n+1
= In−ϵa+ Dnψ(t). (2.2)

We further have

Iϵa+D
ϵ
a+ψ(t) = Iϵa+I

n−ϵ
a+ Dnψ(t) = Ina+D

n
a+ψ(t). (2.3)

This leads to the proof of (2.1).
In our case without loss of generality, we consider a = 0.
Consider the space of real and continuous functions V = C([0, 1],R) with topo-

logical norm ∥υ∥ = sup{|υ(t)| : 0 ≤ t ≤ 1} for υ ∈ V. S represents the class of all
bounded mappings in V.

Definition 2.3. The mapping ξ : S → (0,∞) for Kuratowski measure of non-
compactness is defined as:

ξ(℘) = inf{d > 0 : ℘ the finite cover for sets of diameter ≤ d},

where ℘ ∈ S.

Definition 2.4. Let F : ϑ → V be a bounded and continuous mapping ϑ ⊂ V.
Then F is a ξ-Lipschitz, where ζ ≥ 0 such that

ξ(F(℘)) ≤ ζξ(℘) ∀ bounded ℘ ⊂ ϑ.

Then F is called strict ξ-contraction if ζ < 1.

Definition 2.5 ( [4, 26]). The function F is ξ-condensing if

ξ(F(℘)) < ξ(℘) ∀ bounded ℘ ⊂ ϑ such that ξ(℘) > 0.

Therefore ξ(F(℘)) ≥ ξ(℘) yields that ξ(℘) = 0.

Further, we have F : ϑ→ V is Lipschitz for ζ > 0 such that

∥F(υ)−F(ῡ)∥ ≤ ζ∥υ − ῡ∥ for all υ, ῡ ∈ ϑ.

If ζ < 1, then F is called strict contraction.

Proposition 2.1 ( [4, 26]). The mapping F is ξ-Lipschitz with constant ζ = 0 if
and only if F : ϑ→ V is compact.

Proposition 2.2 ( [4, 26]). The F operator is ξ-Lipschitz with constant ζ if and
only if F : ϑ→ V is Lipschitz with constant ζ.
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Theorem 2.1 ( [21]). Let F : V → V be an ξ-condensing and

H = {z ∈ V : there exist 0 ≤ λ ≤ 1 such that z = λT z}.

If H is a bounded set in V, i.e., there exists a > 0 such that H ⊂ ℘a(0), then

deg(I − λG, ℘r(0), 0) = 1 for all λ ∈ [0, 1].

Consequently, F has at least one fixed point and the set of fixed points of F lies in
℘a(0).

The next lemma has an important role in this paper.

Lemma 2.2 ( [26,34]). Let ϕp be a p-Laplacian operator.
(1) If 1 < p ≤ 2, ℓ1ℓ2 > 0 and |ℓ1|, |ℓ2| ≥ ρ > 0, then

|ϕp(ℓ1)− ϕp(ℓ2)| ≤ (p− 1)ρp−2|ℓ1 − ℓ2|.

(2) If p > 2, and |ℓ1|, |ℓ2| ≤ ρ∗, then

|ϕp(ℓ1)− ϕp(ℓ2)| ≤ (p− 1)ρ∗p−2|ℓ1 − ℓ2|.

Recently, different sorts of stabilities for differential equations have been consid-
ered by many scientists. For example, Urs [36] considered Hyers-Ulam stability for
the following coupled system

u′′(t)− ϑ1(t, υ(t)) = ϑ2(t, z(t)), v′′(t)− ϑ1(t, z(t)) = ϑ2(t, υ(t)),

υ(t)|t=0 = υ(t)t=T , z(t)|t=0 = z(t)t=T .

Gâvrutǎ et al. [16] proved Hyers-Ulam stability for the following differential equation
of second order

u′′ + β(x)u = 0, (2.4)

with conditions
u(a) = u(b) = 0, (2.5)

where u ∈ C2[a, b], β(x) ∈ C[a, b], −∞ < a < b < +∞. They gave the following
definition for the Hyers-Ulam stability of (2.4).

Definition 2.6 ( [16]). The equation (2.4) has Hyers-Ulam stability with boundary
conditions (2.5), if there exists a positive constant D satisfying:
For every ϵ > 0, y ∈ C2[a, b], if

|u′′ + β(t)u| ≤ ϵ,

and u(a) = 0 = u(b), then there exists some u∗ ∈ C2[a, b] satisfying

u∗′′ + β(t)u∗ = 0,

and u∗(a) = 0 = u∗(b), such that |u(t)− u∗(t)| < Dϵ.

Zada et al. [38] recently studied Hyers-Ulam stability and Hyers-Ulam-Rassias
stability for the following differential equation{

u(n)(t) = h(t, {u(i)(t)}n−1
i=0 , {u

(i)(t− µ)}n−1
i=0 ), t ∈ [t0, T ],

u(i) = g(i), i = 0, 1, . . . , n− 1, t ∈ [t0 − µ, t0],
(2.6)

where µ > 0, t0 < T and function g : [t0 − µ, t0] → R is n − 1 times continuously
differentiable. They introduced the following definition for the Hyers-Ulam stability.
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Definition 2.7 ( [38]). The problem (2.6) is said to be Hyers-Ulam stable on
[t0 − µ, T ] if and only if for every function u ∈ Dn[t0 − µ, T ] and δ ≥ 0 such that{∣∣u(n)(t)− h(t, {u(i)(t)}n−1

i=0 , {u
(i)(t− µ)}n−1

i=0 )
∣∣ ≤ δ, t ∈ [t0, T ],∣∣u(i) − g(i)

∣∣ ≤ δ, i = 0, 1, . . . , n− 1, t ∈ [t0 − µ, t0],

there is a function u0 ∈ Dn[t0 − µ, T ] with{
u
(n)
0 (t) = h(t, {u(i)0 (t)}n−1

i=0 , {u
(i)
0 (t− µ)}n−1

i=0 ), t ∈ [t0, T ],

u
(i)
0 = g(i), i = 0, 1, . . . , n− 1, t ∈ [t0 − µ, t0],

and
|u(t)− u0(t)| < C(δ),

where C(δ) → 0 as δ → 0.

3. Main results

Theorem 3.1. Let ψ1 ∈ C[0, 1] be an integrable function satisfying (1.4). Then
the solution of

Dβ
[
ϕp[Dϵ(u(t)− ψ2(t, u(t)))]

]
+ ψ1(t, u(t)) = 0,(

ϕp[Dϵ(u(t)− ψ2(t, u(t))]
)(i)|t=0 = 0, for i = 0, 2, 3, . . . , n− 1,(

ϕp[Dϵ(u(t)− ψ2(t, u(t))]
)′|t=η = 0, u(j)(0) = 0, for j = 2, 3, . . . , n− 1,

u(0) =
1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(u(s))ds, u′(η) = ψ′
2(u(η)),

(3.1)

is

u(x) =

∫ 1

0

Hϵ(t, s)ϕq

(∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)
ds

+
1

Γ(ϵ− 1)

∫ a

0

(a− s)ϵ−1ψ2(u(s))ds+ ψ2(t, u(t)),

where Hϵ(t, s), Hβ(t, s) are Green functions defined by

Hϵ(t, s) =


(t−s)ϵ−1

Γ(ϵ) − t(δ−s)ϵ−2

Γ(ϵ−1) , s ≤ t ≤ δ,
−t(δ−s)ϵ−1

Γ(ϵ−1) , t ≤ s ≤ δ,
−(t−s)ϵ−1

Γ(ϵ) , δ ≤ s ≤ t,

(3.2)

Hβ(t, s) =


−(t−s)β−1

Γ(β) + t(η−s)β−2

Γ(β−1) , s ≤ t ≤ η,
t(η−s)β−2

Γ(β−1) , t ≤ s ≤ η,
−(t−s)β−1

Γ(β) η ≤ s ≤ t.

(3.3)

Proof. Applying operator Iβ on (3.1) and using Lemma 2.1, we get the following
equivalent integral form

ϕp[Dϵ(u(t)− ψ2(t, u(t)))] = −Iβψ1(t, u(t)) + c1 + c2t+ c3t
2 + . . .+ cnt

n−1.(3.4)
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By
(
ϕp(Dϵ(u(t)− ψ2(t, u(t))

)(i)

|t=0 = 0, for i = 0, 2, 3, . . . , n− 1, we get c1 = c3 =

c4 = . . . = cn = 0. And
(
ϕp(Dϵ(u(t)− ψ2(t, u(t)))

)′
|t=η = 0, implies

c2 = Iβ−1
η ψ1(t, u(t)) =

1

Γ(β − 1)

∫ η

0

(η − s)β−2ψ1(s, u(s))ds.

From the values of ci for i = 1, 2, 3, . . . , n, and (3.4), we have

ϕp

(
Dϵ(u(t) − ψ2(t, u(t))

)
= −Iβψ1(t, u(t)) + tIβ−1ψ1(t, u(t))|t=η (3.5)

= −
∫ t

0

(t− s)β−1

Γ(β)
ψ1(s, u(s))ds+ t

∫ η

0

(η − s)β−2

Γ(β − 1)
ψ1(s, u(s))ds

=

∫ 1

0

Gβ(t, s)ψ1(s, u(s))ds,

where Hβ(t, s) is a Green’s function given in (3.3). From (3.5), we further have

Dϵ(u(t)− ψ2(t, u(t))) = ϕq

(∫ 1

0

Hβ(t, s)ψ1(s, u(s))ds
)
. (3.6)

Applying fractional integral operator Iϵ on (3.6) and using Lemma 2.2 again, we
have

u(t) = ψ2(t, u(t)) + Iϵ
(
ϕq(

∫ 1

0

Hβ(t, s)ψ1(s, u(s))ds)
)
+ k1 + k2t

+ k3t
2 + . . .+ knt

n−1. (3.7)

Using conditions u(j)(0) = 0 for j = 2, 3, . . . , n − 1 in (3.7), we obtain k3 =

k4 = . . . = kn = 0. From condition u′(δ) =
(
ψ2(t, u(t))

)′|t=δ, we have k2 =

−Iϵ−1
(
ϕq(

∫ 1

0
Hβ(t, s)ψ1(s, u(s))ds)

)
|t=δ.

From condition u(0) = 1
Γ(ϵ)

∫ a
0
(a− s)ϵ−1ψ2(u(s))ds we get

k1 =
1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(u(s))ds.

Now putting the values of ki for i = 1, 2, 3 in (3.7), we have

u(t) = ψ2(t, u(t)) + Iϵ
(
ϕq(

∫ 1

0

Hβ(t, s)ψ1(s, u(s))ds)
)

−tIϵ
(
ϕq(

∫ 1

0

Hβ(t, s)ψ1(s, u(s))ds)
)
|t=δ + Iϵaψ2(u(t))

=
(∫ t

0

(t− s)ϵ−1

Γ(ϵ)
− t

∫ δ

0

(δ − s)ϵ−2

Γ(ϵ− 1)

)
ϕq

( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑds
)

+
1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(u(s))ds+ ψ2(t, u(t))

=

∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)
ds+

∫ a

0

(a− s)ϵ−1

Γ(ϵ)
ψ2(u(s))ds

+ψ2(t, u(t)),
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where Hϵ(t, s), Hβ(t, s) are Green functions defined by (3.2), (3.3), respectively.

By Theorem 3.1, our problem (1.4) is equivalent to the following integral equa-
tion

u(t) =

∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)
ds+

∫ a

0

(a− s)ϵ−1

Γ(ϵ)
ψ2(u(s))ds

+ψ2(t, u(t)).

Define F∗
i : V → V for (i = 1, 2) by

F∗
1u(t) =

∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)
ds, (3.8)

F∗
2u(t) = ψ2(t, u(t)) +

1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(s, u(s))ds. (3.9)

By Theorem 3.1, solution of our problem (1.4) is a fixed point u(t) of the operator
F defined by

F(u) = F∗
1 (u) + F∗

2 (u) = u.

To proceed further, we introduce the following assumptions:

(Q1) With a1,M∗
ψ1
> 0, k1 ∈ [0, 1], function ψ1 satisfies

|ψ1(t, u(t))| ≤ ϕp
(
a1|u(t)|k1 +M∗

ψ1

)
.

(Q2) There exists a real valued constant λψ1 such that for all u, v ∈ V,

|ψ1(t, u)− ψ1(t, v)| ≤ λψ1 |u(t)− v(t)|.

(Q3) With a2,M∗
ψ2
> 0, k1 ∈ [0, 1], function ψ2 satisfies

|ψ2(t, u)| ≤ a2|u|k1 +M∗
ψ2
.

(Q4) There exists a real valued constant λψ2 such that ∀ u, v ∈ V,

|ψ2(t, u)− ψ2(t, v)| ≤ λψ2 |u(t)− v(t)|.

For simplicity in calculations, we define the following terms:

∆1 =
(

1
Γ(ϵ+1)+

δϵ−1

Γ(ϵ)

)(
1

Γ(β+1)+
ηβ−1

Γ(β)

)q−1
, ∆ψ1 = (p−1)ρp−2

1 λψ1

(
1

Γ(ϵ+1)+
δϵ−1

Γ(ϵ)

)(
1

Γ(β+1)+

ηϵ−1

Γ(β)

)
, M∗ = ∆(Mψ1 +Mψ2)Ω, Ω = (a1 + a2)(∆1 + 1 + aϵ

Γ(ϵ+1) ).

Theorem 3.2. With assumptions (Q1), (Q3), the operator F : V∗ → V is contin-
uous and satisfies

F(u(t)) ≤ Ω∥u∥k +M∗,

for each u ∈ ℘r ⊂ V.

Proof. Let us consider a bounded set ℘r = {u ∈ V : ∥u∥ ≤ r} with sequence
{un} converging to u in ℘r. To show that ∥F∗(un)−F∗(u)∥ → 0 as n→ ∞, let us



Existence theorems and Hyers-Ulam stability for a class of· · · 1219

consider

|F∗
1un(t)−F∗

1u(t)| =
∣∣ ∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, un(ϑ))dϑ
)
ds

−
∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ)ds
)∣∣ (3.10)

≤
∫ 1

0

∣∣Hϵ(t, s)
∣∣∣∣∣ϕq( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, un(ϑ))dϑ
)
ds

−ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)∣∣∣ds.

By the estimate (3.10) and continuity of the function ψ1, we have |F∗
1un(t) −

F∗
1u(t)| → 0 as n → +∞. This proves that F∗

1 is continuous. Now, for the
continuity of F∗

2 , let us consider∣∣F∗
2un(t)−F∗

2u(t)
∣∣ = ∣∣ψ2(t, un(t)) +

∫ a

0

(a− s)ϵ−1

Γ(ϵ)
ψ2(s, un(s))ds

−
(
ψ2(t, u(t)) +

∫ a

0

(a− s)ϵ−1

Γ(ϵ)
ψ2(s, u(s))ds

)∣∣ (3.11)

≤
∫ a

0

(a− s)ϵ−1

Γ(ϵ)

∣∣ψ2(s, un(s))ds− ψ2(s, u(s))
∣∣ds

+
∣∣ψ(t, un(t))− ψ2(t, u(t))

∣∣.
With the help of (3.11) and continuity of the function ψ2(t, u(t)) : ([0, 1]×R) → R,
we have

∣∣F∗
2un(t) − F∗

2u(t)
∣∣ → 0, as n → +∞. This implies F∗

2 is continuous.
Consequently, from (3.10), (3.11) we have F = F∗

1 (u(t)) + F∗
2 (u(t)) is continuous.

Now, for the inequality (3.10), by (3.8) and assumption (Q1), we have

|F∗
1u(t)| =

∣∣ ∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)
ds
∣∣

=

∫ 1

0

|Hϵ(t, s)|ϕq
( ∫ 1

0

|Hβ(s, ϑ)||ψ1(ϑ, u(ϑ))|dϑ
)
ds (3.12)

≤
∫ 1

0

|Hϵ(t, s)|ϕq
( ∫ 1

0

|Hβ(s, ϑ)|ϕp
(
a1∥u∥k1 +M∗

ψ1

)
dϑ

)
ds

≤
( 1

Γ(ϵ+ 1)
+
δϵ−1

Γ(ϵ)

)( 1

Γ(β + 1)
+
ηβ−1

Γ(β)

)q−1
(
a1∥u∥k1 +M∗

ψ1

)
= ∆1

(
a1∥u∥+M∗

ψ1

)
.

From (3.9) and assumption Q3, we get

∣∣F∗
2u(t)

∣∣ = ∣∣ψ2(t, u(t)) +
1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(s, u(s))ds
∣∣

≤ |ψ2(s, u(s))
∣∣+ 1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1
∣∣ψ2(s, u(s))

∣∣ds (3.13)

=
(
1 +

aϵ

Γ(ϵ+ 1)
)
(
a2∥u∥+M∗

ψ2

)
.
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In view of the estimates (3.12) and (3.13), we can obtain∣∣F(u(t))
∣∣ ≤ ∆1

(
a1∥u∥k1 +M∗

ψ1

)
+
(
1 +

aϵ

Γ(ϵ+ 1)
)
(
a2∥u∥k1 +M∗

ψ2

)
≤ Ω∥u∥k +M∗

2.

This completes the proof.

Theorem 3.3. With assumption (Q1), the operator F∗
1 : V∗ → V∗ is compact and

ξ-Lipschitz with constant zero.

Proof. Theorem 3.2 implies that the operator F∗
1 : V → ω is bounded. Next,

let Y ⊂ ℘r ⊂ ω∗. Then, by assumption (Q1), Lemma 3.1, equation (3.8), for any
t1, t2 ∈ [0, 1], we have

|F∗
1u(t1)−F∗

1u(t2)|

=
∣∣∣ ∫ 1

0

Hϵ(t1, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ)ds
)

−
∫ 1

0

Hϵ(t2, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)
ds
∣∣∣ (3.14)

≤
∫ 1

0

∣∣Hϵ(t1, s)−Hϵ(t2, s)
∣∣ϕq( ∫ 1

0

∣∣Hβ(s, ϑ)
∣∣ϕp(a1∥u∥k1 +M∗

ψ1

)
dϑ

)
ds

≤
( |tϵ1 − tϵ2|
Γ(ϵ+ 1)

+
|t1 − t2|δϵ−1

Γ(ϵ)

)(ηβ−1

Γ(β)
+

1

Γ(β + 1)

)q−1

(a1∥u∥k1 +M∗
ψ1
).

As t1 → t2 the right hand side of (3.14) approaches to zero. Thus F∗
1 is an equicon-

tinuous operator on Y. By Arzela-Ascoli theorem, F∗
1 (H) is compact. Hence H is

ξ-Lipschitz with constant zero.

Theorem 3.4. With assumptions Q1-Q4 and Ω < 1, the FDE with p-Laplacian
operator (1.4) has a solution and the set containing solutions of the problem (1.4)
is bounded in V∗.

Proof. For existence of solution of the FDE with nonlinear p-Laplacian operator
(1.4), we take help from Theorem 2.1. Let us consider the set

S = {u ∈ V∗ : there exist λ ∈ [0, 1], such that u = λF(u)},

to show that S is bounded. For this we assume a contrary path. Assume that
u ∈ S, such that ∥u∥ = K → ∞. But from Theorem 3.2, we obtain

∥u∥ = ∥λF(u)∥ ≤ ∥F(u)∥ ≤ ∥F∗
1 (u)∥+ ∥F∗

2 (u)∥ (3.15)

≤ M∗
2 +Ω∥u∥k.

Since K = ∥u∥, (3.15) implies that

∥u∥ ≤ M∗
2 +Ω∥u∥k,

1 ≤ Ω
∥u∥k

∥u∥
+

M∗
2

∥u∥
,

1 ≤ Ω
1

K1−k +
M∗

2

K
→ 0, as K → ∞.
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This is a contradiction. Ultimately, ∥u∥ <∞ which implies the set S is bounded and
by Theorem 2.1, the operator F has a fixed point which is a solution of our problem
(1.4). Consequently, S which is containing the solutions of (1.4) is a bounded subset
of V∗.

Theorem 3.5. Let assumptions (Q1), (Q4) hold. Then the FDE with nonlinear
p-Laplacian (1.4) has a unique solution provided that ∆ψ1 + λψ2

(
1 + aϵ

Γ(ϵ+1)

)
< 1.

Proof. From (3.8), assumptions (Q1) and Lemma 2.2, for any t1, t2 ∈ [0, 1], we
have

|F∗
1u(t)−F∗

1 ū(t)| =
∣∣∣ ∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)

−
∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, ū(ϑ))dϑ
)∣∣∣ds

=

∫ 1

0

∣∣∣Hϵ(t, s)
∣∣∣∣∣∣ϕq( ∫ 1

0

Gβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑds

−ϕq
( ∫ 1

0

Gβ(s, ϑ)ψ1(ϑ, ū(ϑ))dϑ
)
ds
∣∣∣ (3.16)

= (q − 1)ρq−2

∫ 1

0

∣∣Hϵ(t, s)
∣∣ ∫ 1

0

∣∣Hβ(s, ϑ)
∣∣∣∣ψ1(ϑ, u(ϑ))

−ψ1(ϑ, ū(ϑ))
∣∣dϑds

≤ (q − 1)ρq−2λψ1

( 1

Γ(ϵ+ 1)
+
δϵ−1

Γ(ϵ)

)( 1

Γ(β + 1)
+
ηϵ−1

Γ(β)

)
(∣∣u(t)− ū(t)

∣∣)
= ∆ψ1

(∥∥u− ū
∥∥).

From (3.9), assumptions (Q4) and Lemma 2.2, for any t1, t2 ∈ [0, 1], we get∣∣F∗
2u(t)−F∗

2 ū(t)
∣∣ = ∣∣ψ2(t, u(t))

1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(s, u(s))ds

−
(
ψ2(t, ū(t)) +

1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(s, ū(s))ds
)∣∣ (3.17)

≤ 1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1
∣∣ψ2(s, u(s))− ψ2(s, ū(s))

∣∣ds
+
∣∣ψ2(t, u(t))− ψ2(t, ū(t))

∣∣
≤ λψ2

(
1 +

aϵ

Γ(ϵ+ 1)

)∥∥u(t)− ū(t)
∥∥.

From (3.16) and (3.17), we can obtain∣∣F(u(t))−F(ū(t))
∣∣ ≤ ∆ψ1

(∣∣u(t)− ū(t)
∣∣)+ λψ2

(
1 +

aϵ

Γ(ϵ+ 1)

)∥∥u− ū(t)
∥∥

≤
(
∆ψ1 + λψ2

(
1 +

aϵ

Γ(ϵ+ 1)

))∥∥u(t)− ū(t)
∥∥,

with ∆ψ1 +λψ2

(
1+ aϵ

Γ(ϵ+1)

)
< 1. The Banach’s contraction principle implies that F
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has a unique fixed point. Thus, the FDE with nonlinear p-Laplacian operator (1.4)
has a unique solution.

4. Hyers-Ulam stability

Here we present Hyers-Ulam stability for the FDE with nonlinear p-Laplacian op-
erator (1.4). In view of Definition 2.7 and the work given in [4, 22, 38] we give the
following definition.

Definition 4.1. The integral equation (3.8) is Hyers-Ulam stable if there exists
positive constant D∗ satisfying:
For every λ > 0, if

∣∣u(t) − ∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)
ds

− 1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(s, u(s))ds− ψ2(t, u(t))
∣∣ ≤ λ,

then there exists a u∗(t) satisfying

u∗(t) =

∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u
∗(ϑ))dϑ

)
ds (4.1)

+
1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1ψ2(s, u
∗(s))ds+ ψ2(t, u

∗(t)),

such that

|u(t)− u∗(t)| ≤ D∗λ.

Theorem 4.1. With the assumptions (Q1) and (Q2), the FDE with nonlinear p-
Laplacian operator (1.4) is Hyers-Ulam stable.

Proof. In view of Theorem 3.5 and Definition 4.1, let u(t) be the real solution of
(3.8) and u∗(t) be an approximation satisfying (4.1). Then, we get∣∣u(t)− u∗(t)

∣∣
=

∣∣∣ ∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u(ϑ))dϑ
)
ds

+

∫ a

0

(a− s)ϵ−1ψ2(s, v(s))ds

Γ(ϵ)
+ ψ2(t, u(t))

−
∫ 1

0

Hϵ(t, s)ϕq
( ∫ 1

0

Hβ(s, ϑ)ψ1(ϑ, u
∗(ϑ))dϑds

)
−
∫ a

0

(a− s)ϵ−1ψ2(s, u
∗(s))ds

Γ(ϵ)
− ψ2(t, u

∗(t))
∣∣∣

≤ (q − 1)ρq−2
(∫ 1

0

|Hϵ(t, s)|
∫ 1

0

|Hβ(s, ϑ)||ψ1(ϑ, u(ϑ))− ψ1(ϑ, u
∗(ϑ))|dϑds

)
+

1

Γ(ϵ)

∫ a

0

(a− s)ϵ−1|ψ2(s, u(s))− ψ2(s, u
∗(s))|ds+ |ψ2(s, u(s))− ψ2(s, u

∗(s))|
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≤ (q − 1)ρq−2λψ1

( 1

Γ(ϵ+ 1)
+
δϵ−1

Γ(ϵ)

)( 1

Γ(β + 1)
+
ηβ−1

Γ(β)

)∥∥u− u∗
∥∥

+
λψ2a

ϵ

Γ(ϵ+ 1)

∥∥u− u∗
∥∥+ λψ2

∥∥u− u∗
∥∥

= (∆ψ1 + λψ2 +
λψ2a

ϵ

Γ(ϵ+ 1)
)
∥∥u− u∗

∥∥, (4.2)

where D∗ = ∆ψ1 + λψ2 +
λψ2

aϵ

Γ(ϵ+1) . Hence, in view of the estimate (4.2), we can

conclude that the integral equation (3.8) is Hyers-Ulam stable. Consequently, the
FDE with nonlinear p-Laplacian operator (1.4) is Hyers-Ulam stable.

5. Illustrative example

Here, we present an application of our theorems which were proved in Section 2 and
Section 3.

Example 5.1. Consider the following HFDE with p-Laplacian operator for n = 3

D 8
3

(
ϕ5(D

7
3 (u(t)− ψ2(t, u(t)))

)
+ ψ1(t, v(t)) = 0,(

ϕ5(D
7
3 (u(t)− ψ2(t, u(t)))

)
|(i)0 = 0, for i = 0, 2, (5.1)(

ϕ5(D
7
3 (u(t)− ψ2(t, u(t)))

)′|0.5 = 0,

u(0) =
1

Γ(73 )

∫ a

0

(a− s)
7
3−1ψ2(s, u(s))ds,

u′′(0) = 0, u′(0.5) = ψ′
2(u(0.5)),

where t ∈ [0, 1], η = δ = a = b = 0.5, p = 5, ϵ = 7/3, β = 8/3. ψ1(t, u(t)) =
−24t
17 + 1

15 sin(u(t)), ψ2(t, u(t)) = t3( 3018 + 1
15 cos(u)), λψ1 = λψ2 = 1

15 . By simple

calculations, we have max{∆ψ1 +λψ2

(
1+ aϵ

Γ(ϵ+1)

)
,Ω} < 1. By Theorem 3.5, we can

conclude that (5.1) has a unique solution. With similar fashion, the satisfaction of
the conditions of Theorem 4.1 can be checked easily, and consequently the problem
(5.1) is Hyers-Ulam stable.

6. Conclusion

In this paper, three important aspects of the FDE with nonlinear p-Laplacian op-
erator (1.4) have been considered. They are existence of solution, uniqueness of
solution and Hyers-Ulam stability. For these aims, we converted the problem (1.4)
to an integral equation by the help of Green function. After this, we have proved re-
sults for existence and uniqueness by topological degree method. Then, Hyers-Ulam
stability was investigated. The problem (1.4) has the potentials to be studied for
further aims. For future, we also have a plan to investigate its multiplicity results.
The references of the paper are helpful for the readers to related concepts.
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