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SOLVABILITY FOR NONLINEAR SINGULAR
FRACTIONAL DIFFERENTIAL SYSTEMS

WITH MULTI-ORDERS∗

Yige Zhao

Abstract In this paper, we consider the existence of positive solutions for
a class of nonlinear singular fractional differential systems with multi-orders.
Our analysis relies on fixed point theorems on cones. Some sufficient conditions
for the existence of at least one or two positive solutions for boundary value
problem of nonlinear singular fractional differential systems with multi-orders
are established. As an application, an example is presented to illustrate the
main results.
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1. Introduction

Fractional calculus has been of great interest recently. It is caused both by the
intensive development of the theory of fractional calculus itself and by the appli-
cations; see [11]. Recently, there have appeared a large number of papers dealing
with the existence of solutions of nonlinear fractional differential equations by the
use of techniques of nonlinear analysis; see [2, 3, 13, 15,17,18,20–22].

Yu et al. [17] examined the existence of positive solutions for the following prob-
lem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = u′(0) = 0,

where 2 < α ≤ 3 is a real number, f ∈ C([0, 1]× [0,+∞), (0,+∞)) and Dα
0+ is the

Riemann-Liouville fractional differentiation. By using the properties of the Green
function, some existence criteria for one or two positive solutions for singular and
nonsingular boundary value problems were obtained by means of the Krasnosel’skii
fixed point theorem and a mixed monotone method.

Xu et al. [15] considered the existence of positive solutions for the following
problem

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,
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u(0) = u(1) = u′(0) = u′(1) = 0,

where 3 < α ≤ 4 is a real number, f ∈ C([0, 1]× [0,+∞), (0,+∞)) and Dα
0+ is the

Riemann-Liouville fractional differentiation. By using the properties of the Green
function, some multiple positive solutions for singular and nonsingular boundary
value problems were given by means of Leray-Schauder nonlinear alternative, a
fixed point theorem on cones and a mixed monotone method.

On the other hand, the study of singular and nonsingular systems involving
fractional differential equations is also important as such systems occur in various
problems; see [1, 4, 5, 9, 10,12,14,16,19].

Bai et al. [1] considered the existence of positive solutions of singular coupled
system {

Dsu = f(t, v), 0 < t < 1,

Dpv = g(t, u), 0 < t < 1,

where 0 < s, p < 1, and f, g : [0, 1) × [0,+∞) → [0,+∞) are two given contin-
uous functions, limt→0+ f(t, ·) = +∞, limt→0+ g(t, ·) = +∞ and Ds, Dp are two
standard Riemann-Liouville fractional derivatives. The existence results of positive
solutions were established by a nonlinear alternative of Leray-Schauder type and
Krasnosel’skii fixed point theorem on a cone.

Su [12] discussed a boundary value problem for a coupled differential system of
fractional order 

Dαu(t) = f(t, v(t), Dµv(t)), 0 < t < 1,

Dβv(t) = g(t, u(t), Dνu(t)), 0 < t < 1,

u(0) = u(1) = v(0) = v(1) = 0,

where 1 < α, β ≤ 2, µ, ν > 0, α − ν ≥ 1, β − µ ≥ 1, f, g : [0, 1] × R × R → R
are given functions and D is the standard Riemann-Liouville fractional derivative.
By means of Schauder fixed point theorem, an existence result for the solution was
obtained.

Zhao et al. [19] examined the existence of positive solutions for a coupled system
of nonlinear differential equations of mixed fractional orders

−Dα
0+u(t) = f(t, v(t)), 0 < t < 1,

Dβ
0+v(t) = g(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = v(0) = v(1) = v′(0) = v′(1) = 0,

(1.1)

where 2 < α ≤ 3, 3 < β ≤ 4, Dα
0+ , D

β
0+ are the standard Riemann-Liouville

fractional derivative, and f, g : [0, 1] × [0,+∞) → [0,+∞) are given continuous
functions, f(t, 0) ≡ 0, g(t, 0) ≡ 0. Their analysis relied on fixed point theorems on
cones. Some sufficient conditions for the existence of at least one or two positive
solutions for the boundary value problem were established.

From the above works, we can see a fact, although the coupled systems of
fractional boundary value problems have been investigated by some authors, the
singular coupled systems due to multi-order fractional orders are seldom considered.
On the one hand, the orders α and β of the nonlinear singular fractional differential
systems witch are considered in the existing papers belong to the same interval
(n, n+1] (n ∈ N+). On the other hand, inRemark 3.2 ( [19]), conditions f(t, 0) ≡ 0
and g(t, 0) ≡ 0 are too strong for the boundary value problem (1.1). Therefore, we
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will give some new existence criteria for the boundary value problem (1.1) without
conditions f(t, 0) ≡ 0 and g(t, 0) ≡ 0 in this paper. Our results in this paper
improve some known results in [19].

Motivated by all the works above, in this paper we investigate the existence of
positive solutions for the boundary value problem (1.1) of the nonlinear singular
fractional systems with multi-orders, where f, g : (0, 1] × [0,+∞) → [0,+∞) are
continuous, and limt→0+ f(t, ·) = +∞, limt→0+ g(t, ·) = +∞ (that is, f and g are
singular at t = 0). Our analysis relies on fixed point theorems on cones. Some
sufficient conditions for the existence of at least one or two positive solutions for
boundary value problem of the nonlinear singular fractional systems with multi-
orders are established. Finally, we present an example to demonstrate our results.

The plan of the paper is as follows. In Section 2, we shall give some definitions
and lemmas to prove our main results. In Section 3, using Leray-Schauder non-
linear alternative theorem and Guo-Krasnosel’skii fixed point theorem, we obtain
some new existence criteria for boundary value problem (1.1) of nonlinear singu-
lar fractional systems with multi-orders. Section 4 gives an illustrative example to
support our new results, which is followed by a brief conclusion in Section 5.

2. Preliminaries

For the convenience of readers, we give some background materials from fractional
calculus theory to facilitate analysis of the problem (1.1). These materials can be
found in the recent literatures; see [6–8,15,17].

Definition 2.1 ( [8]). The Riemann-Liouville fractional derivative of order α > 0
of a continuous function f : (0,+∞) → R is given by

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

f(s)

(t− s)α−n+1
ds,

where n = [α]+1, [α] denotes the integer part of number α, provided that the right
side is pointwise defined on (0,+∞).

Definition 2.2 ( [8]). The Riemann-Liouville fractional integral of order α > 0 of
a function f : (0,+∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right side is pointwise defined on (0,+∞).

From the definition of the Riemann-Liouville derivative, we can obtain the fol-
lowing statements.

Lemma 2.1 ( [8]). Let α > 0. If we assume u ∈ C(0, 1)∩L(0, 1), then the fractional
differential equation

Dα
0+u(t) = 0

has u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, ci ∈ R, i = 1, 2, · · · , n, as unique

solutions, where n is the smallest integer greater than or equals to α.
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Lemma 2.2 ( [8]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative
of order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t)+c1t

α−1+c2t
α−2+· · ·+cntα−n, for some ci ∈ R, i = 1, 2, · · · , n,

where n is the smallest integer greater than or equals to α.

In the following, we present the Green’s function for the boundary value problem
of fractional differential equations.

Lemma 2.3 ( [17]). Let h1 ∈ C[0, 1] and 2 < α ≤ 3. The unique solution of the
problem

−Dα
0+u(t) = h1(t), 0 < t < 1, (2.1)

u(0) = u(1) = u′(0) = 0, (2.2)

is

u(t) =

∫ 1

0

G1(t, s)h1(s)ds,

where

G1(t, s) =

{
tα−1(1−s)α−1−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,
tα−1(1−s)α−1

Γ(α) , 0 ≤ t ≤ s ≤ 1.
(2.3)

here G1(t, s) is called the Green’s function of the boundary value problem (2.1) and
(2.2).

Lemma 2.4 ( [17]). The function G1(t, s) defined by (2.3) satisfies the following
conditions:

(A1) G1(t, s) = G1(1− s, 1− t), for t, s ∈ (0, 1);

(A2) tα−1(1− t)s(1− s)α−1 ≤ Γ(α)G1(t, s) ≤ (α−1)s(1− s)α−1, for t, s ∈ (0, 1);

(A3) G1(t, s) > 0, for t, s ∈ (0, 1);

(A4) tα−1(1− t)s(1− s)α−1 ≤ Γ(α)G1(t, s) ≤ (α− 1)(1− t)tα−1, for t, s ∈ (0, 1).

Remark 2.1. Let q1(t) = tα−1(1− t), k1(s) = s(1− s)α−1. Then

q1(t)k1(s) ≤ Γ(α)G1(t, s) ≤ (α− 1)k1(s).

Lemma 2.5 ( [15]). Let h2 ∈ C[0, 1] and 3 < β ≤ 4. The unique solution of the
problem

Dβ
0+u(t) = h2(t), 0 < t < 1 (2.4)

u(0) = u(1) = u′(0) = u′(1) = 0, (2.5)

is

u(t) =

∫ 1

0

G2(t, s)h2(s)ds,

where

G2(t, s) =

{
(t−s)β−1+(1−s)β−2tβ−2[(s−t)+(β−2)(1−t)s]

Γ(β) , 0 ≤ s ≤ t ≤ 1,
tβ−2(1−s)β−2[(s−t)+(β−2)(1−t)s]

Γ(β) , 0 ≤ t ≤ s ≤ 1.
(2.6)

here G2(t, s) is called the Green’s function of the boundary value problem (2.4) and
(2.5).
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Lemma 2.6 ( [15]). The function G2(t, s) defined by (2.6) satisfies the following
conditions:

(B1) G2(t, s) = G2(1− s, 1− t), for t, s ∈ (0, 1);

(B2) (β−2)tβ−2(1− t)2s2(1−s)β−2 ≤ Γ(β)G2(t, s) ≤M0s
2(1−s)β−2, for t, s ∈

(0, 1);

(B3) G2(t, s) > 0, for t, s ∈ (0, 1);

(B4) (β− 2)s2(1− s)β−2tβ−2(1− t)2 ≤ Γ(β)G2(t, s) ≤M0t
β−2(1− t)2, for t, s ∈

(0, 1),

here M0 = max{β − 1, (β − 2)2}.

Remark 2.2. Let q2(t) = tβ−2(1− t)2, k2(s) = s2(1− s)β−2. Then

(β − 2)q2(t)k2(s) ≤ Γ(β)G2(t, s) ≤M0k2(s).

The following two lemmas are fundamental in the proofs of our main results.

Lemma 2.7 ( [7]). Let E be a Banach space, and let P ⊂ E be a cone in E.
Assume Ω1, Ω2 are open subsets of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P
be a completely continuous operator such that, either

(D1) ∥Sw∥ ≤ ∥w∥, w ∈ P ∩ ∂Ω1, ∥Sw∥ ≥ ∥w∥, w ∈ P ∩ ∂Ω2, or

(D2) ∥Sw∥ ≥ ∥w∥, w ∈ P ∩ ∂Ω1, ∥Sw∥ ≤ ∥w∥, w ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (Ω2\Ω1).

Lemma 2.8 ( [6]). Let E be a Banach space with C ⊂ E close and convex. Assume
U is a relatively open subset of C with 0 ∈ U and A : U → C is a continuous compact
map. Then either

(E1) A has a fixed point in U ; or

(E2) there exists a u ∈ ∂U , and a λ ∈ (0, 1) with u = λAu.

3. Main Results

In this section, we establish some new existence results for the boundary value
problem (1.1) of the nonlinear singular fractional systems with multi-orders.

Consider the following coupled system of integral equations:{
u(t) =

∫ 1

0
G1(t, s)f(s, v(s))ds,

v(t) =
∫ 1

0
G2(t, s)g(s, u(s))ds.

(3.1)

Lemma 3.1. Let 0 < σ1 < 1, 2 < α ≤ 3, F1 : (0, 1] → R be continuous and
limt→0+ F1(t) = ∞. Suppose that tσ1F1(t) is continuous function on [0, 1]. Then
the function

H1(t) =

∫ 1

0

G1(t, s)F1(s)ds

is continuous on [0, 1].
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Proof. By the continuity of tσ1F1(t) and H1(t) =
∫ 1

0
G1(t, s)s

−σ1sσ1F1(s)ds. It is
easily to check that H1(0) = 0. The proof is divided into three cases:

Case 1: t0 = 0, ∀ t ∈ (0, 1].

Since tσ1F1(t) is continuous in [0, 1], there exists a constant M > 0, such that∣∣tσ1F1(t)
∣∣ ≤M , for t ∈ [0, 1]. Hence,∣∣∣H1(t)−H1(0)

∣∣∣
=

∣∣∣ ∫ 1

0

G1(t, s)F1(s)ds
∣∣∣ = ∣∣∣ ∫ 1

0

G1(t, s)s
−σ1sσ1F1(s)ds

∣∣∣
=

∣∣∣ ∫ t

0

tα−1(1− s)α−1 − (t− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

+

∫ 1

t

tα−1(1− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

∣∣∣
=

∣∣∣ ∫ 1

0

tα−1(1− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

−
∫ t

0

(t− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

∣∣∣
≤

∣∣∣ ∫ 1

0

tα−1(1− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

∣∣∣
+
∣∣∣ ∫ t

0

(t− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

∣∣∣
≤M

∫ 1

0

tα−1(1− s)α−1

Γ(α)
s−σ1ds+M

∫ t

0

(t− s)α−1

Γ(α)
s−σ1ds

=
Mtα−1

Γ(α)
B(1− σ1, α) +

Mtα−σ1

Γ(α)
B(1− σ1, α)

=
MΓ(1− σ1)

Γ(1 + α− σ1)
(tα−1 + tα−σ1) → 0 (as t→ 0).

where B(·, ·) denotes the beta function.

Case 2: t0 ∈ (0, 1), ∀ t ∈ (t0, 1].∣∣∣H1(t)−H1(t0)
∣∣∣

=
∣∣∣ ∫ 1

0

G1(t, s)F1(s)ds−
∫ 1

0

G1(t0, s)F1(s)ds
∣∣∣

=
∣∣∣ ∫ 1

0

G1(t, s)s
−σ1sσ1F1(s)ds−

∫ 1

0

G1(t0, s)s
−σ1sσ1F1(s)ds

∣∣∣
=

∣∣∣ ∫ t

0

tα−1(1− s)α−1 − (t− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

+

∫ 1

t

tα−1(1− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

−
∫ 1

t0

tα−1
0 (1− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds
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−
∫ t0

0

tα−1
0 (1− s)α−1 − (t0 − s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

∣∣∣
=

∣∣∣ ∫ 1

0

tα−1(1− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

−
∫ 1

0

tα−1
0 (1− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds+

∫ t0

0

(t0 − s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

∣∣∣
=

∣∣∣ ∫ 1

0

(tα−1 − tα−1
0 )(1− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds−

∫ t

t0

(t− s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

−
∫ t0

0

(t− s)α−1 − (t0 − s)α−1

Γ(α)
s−σ1sσ1F1(s)ds

∣∣∣
≤ M(tα−1 − tα−1

0 )

Γ(α)

∫ 1

0

(1− s)α−1s−σ1ds+
M

Γ(α)

∫ t

t0

(t− s)α−1s−σ1ds

+
M

Γ(α)

∫ t0

0

[(t− s)α−1 − (t0 − s)α−1]s−σ1ds

=
M(tα−1 − tα−1

0 )

Γ(α)
B(1− σ1, α) +

M(tα−σ1 − tα−σ1
0 )

Γ(α)
B(1− σ1, α)

=
MΓ(1− σ1)(t

α−1 − tα−1
0 )

Γ(1 + α− σ1)
+
MΓ(1− σ1)(t

α−σ1 − tα−σ1
0 )

Γ(1 + α− σ1)

=
MΓ(1− σ1)

Γ(1 + α− σ1)
(tα−1 − tα−1

0 + tα−σ1 − tα−σ1
0 ) → 0 (as t→ t0).

Case 3: t0 ∈ (0, 1], ∀ t ∈ [0, t0). The proof is similar to that of Case 2, so
we omit it.

The proof is completed.

Lemma 3.2. Let 0 < σ2 < 1, 3 < β ≤ 4, F2 : (0, 1] → R be continuous and
limt→0+ F2(t) = ∞. Suppose that tσ2F2(t) is continuous function on [0, 1]. Then
the function

H2(t) =

∫ 1

0

G2(t, s)F2(s)ds

is continuous on [0, 1].

Proof. This proof is similar to that of Lemma 3.1, so is omitted.

Lemma 3.3. Let 2 < α ≤ 3, 3 < β ≤ 4, and f, g : (0, 1] × [0,+∞) → [0,+∞) be
continuous functions satisfying limt→0+ f(t, ·) = +∞, limt→0+ g(t, ·) = +∞. As-
sume that 0 < σ1, σ2 < 1, and tσ1f(t, y) and tσ2g(t, y) are two continuous functions
on [0, 1]× [0,+∞). Then system (1.1) is equivalent to system (3.1).

Proof. This proof is similar to that of Lemma 2.2 in [1], so is omitted.
Let E = X ×X. Define the cone P ⊂ E by

P = {(u, v) ∈ E : u(t) ≥ 0, v(t) ≥ 0, t ∈ [0, 1]} .

By Lemma 3.3, let T : P → E be the operator defined as in Section 3,

T (u, v)(t) =

(∫ 1

0

G1(t, s)f(s, v(s))ds,

∫ 1

0

G2(t, s)g(s, u(s))ds

)
=: (T1v(t), T2u(t)), t ∈ I.
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Lemma 3.4. Let 2 < α ≤ 3, 3 < β ≤ 4, and f, g : (0, 1] × [0,+∞) → [0,+∞) be
continuous functions satisfying limt→0+ f(t, ·) = +∞, limt→0+ g(t, ·) = +∞. As-
sume that 0 < σ1, σ2 < 1, and tσ1f(t, y) and tσ2g(t, y) are two continuous functions
on [0, 1]× [0,+∞). Then the operator T : P → P is completely continuous.

Proof. For each (u, v) ∈ P , we have that u, v ∈ P1 = {y ∈ X : y(t) ≥ 0, t ∈
[0, 1]}. Since T1v(t) =

∫ 1

0
G1(t, s)f(s, v(s))ds. By Lemma 3.1 and the fact that

f, G1(t, s) are nonnegative, we have T1 : P1 → P1.

For any given v0 ∈ P with ∥v0∥ = C0, if v ∈ P1 and ∥v − v0∥ < 1, then
∥v∥ < 1 + C0 = C. By the continuity of tσ1f(t, v), we know that tσ1f(t, v) is
uniformly continuous on [0, 1]× [0, C].

Thus, ∀ ϵ > 0, there exists δ > 0 (δ < 1), such that |tσ1f(t, v2)− tσ1f(t, v1)| < ϵ,
for all t ∈ [0, 1], and v1, v2 ∈ [0, C] with ∥v2 − v1∥ < δ. Obviously, if ∥v − v0∥ < δ,
then v(t), v0(t) ∈ [0, C] and |v(t) − v0(t)| < δ, for all t ∈ [0, 1]. Hence, for all
t ∈ [0, 1], v ∈ P1, with ∥v − v0∥ < δ.

|tσ1f(t, v(t))− tσ1f(t, v0(t))| < ϵ. (3.2)

It follows from (3.2) that

∥T1v − T1v0∥ = max
0≤t≤1

∣∣T1v(t)− T1v0(t)
∣∣

≤ max
0≤t≤1

∫ 1

0

G1(t, s)s
−σ1

∣∣sσ1f(s, v(s))− sσ1f(s, v0(s))
∣∣ds

< ϵ

∫ 1

0

G1(t, s)s
−σ1ds

≤ ϵ

∫ 1

0

(α− 1)k1(s)

Γ(α)
s−σ1ds

≤ ϵ(α− 1)

Γ(α)

∫ 1

0

(1− s)α−1s1−σ1ds

=
ϵ(α− 1)

Γ(α)
B(2− σ1, α) =

ϵ(α− 1)Γ(2− σ)

Γ(2 + α− σ1)
.

By the arbitrariness of v0, T1 : P1 → P1 is continuous. Similarly, by Lemma 3.2,
we have

∥T2u− T2u0∥ ≤ max
0≤t≤1

∫ 1

0

G2(t, s)s
−σ2

∣∣sσ2g(s, u(s))− sσ2g(s, u0(s))
∣∣ds

=
ϵM0

Γ(β)
B(3− σ2, β − 1).

Then, T2 : P2 → P2 is continuous. That is, we get the the operator T : P → P is
continuous.

Let M ⊂ P be bounded, i.e., there exists a positive constant b such that
∥(u, v)∥ ≤ b, ∀ (u, v) ∈ M . Since tσ1f(t, y) and tσ2g(t, y) are continuous in
[0, 1]× [0,+∞), let

L = max
0≤t≤1,(u,v)∈M

{tσ1f(t, v(t)), tσ2g(t, u(t))}+ 1.
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For each (u, v) ∈M , then we have

∣∣T1v(t)∣∣ ≤ ∫ 1

0

G1(t, s)s
−σ1

∣∣sσ1f(s, v(s))
∣∣ds

≤ L

∫ 1

0

(α− 1)k1(s)

Γ(α)
s−σ1ds =

L(α− 1)Γ(2− σ1)

Γ(2 + α− σ1)
.

Thus,

∥T1v∥ = max
0≤t≤1

∣∣T1v(t)∣∣ ≤ L(α− 1)Γ(2− σ1)

Γ(2 + α− σ1)
.

Similarly, we have

∥T2u∥ = max
0≤t≤1

∣∣T2u(t)∣∣ ≤ LM0

Γ(β)
B(3− σ2, β − 1).

So,

∥T (u, v)∥ = max{∥T1v∥, ∥T2u∥}

≤ max

{
(α− 1)Γ(2− σ1)

Γ(2 + α− σ1)
,
M0

Γ(β)
B(3− σ2, β − 1)

}
L.

Hence, T (M) is bounded.
In the following, we proof that T is equicontinuous. In fact, ∀ ϵ > 0, let

δ < min

{
1

2
,
ϵΓ(1 + α− σ1)

16LΓ(1− σ1)
, δ1

}
,

where

δ1 < min
{ ϵΓ(β − 1)

12LB(2− σ2, β − 1)
,

ϵΓ(β)

48LB(1− σ2, β)
,

ϵΓ(β)

24L[B(1− σ2, β − 1) + (β − 2)B(2− σ2, β − 1)]

}
.

Then, for ∀ (u, v) ∈M , t1, t2 ∈ [0, 1], with t1 < t2, for 0 < t2 − t1 < δ, we have∣∣T1v(t2)− T1v(t1)
∣∣

=
∣∣∣ ∫ 1

0

G1(t2, s)f(s, v(s))ds−
∫ 1

0

G1(t1, s)f(s, v(s))ds
∣∣∣

=
∣∣∣ ∫ 1

0

[G1(t2, s)−G1(t1, s)]s
−σ1sσ1f(s, v(s))ds

∣∣∣
=

∣∣∣ ∫ t2

0

tα−1
2 (1− s)α−1 − (t2 − s)α−1

Γ(α)
s−σ1sσ1f(s, v(s))ds

+

∫ 1

t2

tα−1
2 (1− s)α−1

Γ(α)
s−σ1sσ1f(s, v(s))ds

−
∫ 1

t1

tα−1
1 (1− s)α−1

Γ(α)
s−σ1sσ1f(s, v(s))ds

−
∫ t1

0

tα−1
1 (1− s)α−1 − (t1 − s)α−1

Γ(α)
s−σ1sσ1f(s, v(s))ds

∣∣∣
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=
∣∣∣ ∫ 1

0

(tα−1
2 − tα−1

1 )(1− s)α−1

Γ(α)
s−σ1sσ1f(s, v(s))ds

−
∫ t2

t1

(t2 − s)α−1

Γ(α)
s−σ1sσ1f(s, v(s))ds

−
∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
s−σ1sσ1f(s, v(s))ds

∣∣∣
≤ L(tα−1

2 − tα−1
1 )

Γ(α)

∫ 1

0

(1− s)α−1s−σ1ds+
L

Γ(α)

∫ t2

t1

(t2 − s)α−1s−σ1ds

+
L

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]s−σ1ds

=
L(tα−1

2 − tα−1
1 )

Γ(α)
B(1− σ1, α) +

L(tα−σ1
2 − tα−σ1

1 )

Γ(α)
B(1− σ1, α)

=
LΓ(1− σ1)(t

α−1
2 − tα−1

1 )

Γ(1 + α− σ1)
+
LΓ(1− σ1)(t

α−σ1
2 − tα−σ1

1 )

Γ(1 + α− σ1)

=
LΓ(1− σ1)

Γ(1 + α− σ1)
(tα−1

2 − tα−1
1 + tα−σ1

2 − tα−σ1
1 ).

In order to estimate tα−σ1
2 − tα−σ1

1 , and tα−1
2 − tα−1

1 , we can apply a method
used in [2]. In the following, we divide the proof into three cases.

Case 1: 0 ≤ t1 < δ, t2 < 2δ.

tα−σ1
2 − tα−σ1

1 ≤ tα−σ1
2 < (2δ)α−σ1 ≤ 2α−σ1δ < 8δ,

tα−1
2 − tα−1

1 ≤ tα−1
2 < (2δ)α−1 ≤ 2α−1δ < 4δ.

Case 2: 0 < t1 < t2 ≤ δ.

tα−σ1
2 − tα−σ1

1 ≤ tα−σ1
2 < δα−σ1 ≤ (α− σ1)δ < 8δ,

tα−1
2 − tα−1

1 ≤ tα−1
2 < δα−1 ≤ (α− 1)δ < 4δ.

Case 3: δ ≤ t1 < t2 ≤ 1.

tα−σ1
2 − tα−σ1

1 ≤ (α− σ1)δ < 8δ,

tα−1
2 − tα−1

1 ≤ (α− 1)δ < 4δ.

Thus, we obtain ∣∣T1v(t2)− T1v(t1)
∣∣ < ϵ

2
+
ϵ

4
=

3ϵ

4
< ϵ.

Similarly, we get∣∣T2u(t2)− T2u(t1)
∣∣

=
L(tβ−2

2 − tβ−2
1 )

Γ(β − 1)
B(2− σ2, β − 1)

+
L(tβ−1

2 − tβ−1
1 )

Γ(β)
[B(1− σ2, β − 1) + (β − 2)B(2− σ2, β − 1)]

+
Ltβ−σ2

2

Γ(β)
B(1− σ2, β)−

Ltβ−σ2

1

Γ(β)
B(1− σ2, β).
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We can prove that if t1, t2 ∈ [0, 1] are such that 0 < t2 − t1 < δ, then we have

∣∣T2u(t2)− T2u(t1)
∣∣ < ϵ.

Hence, for the Euclidean distance d on R2, we have that if t1, t2 ∈ [0, 1] are such
that 0 < t2 − t1 < δ, then

d(T (u, v)(t2), T (u, v)(t1)) =
√

(T1v(t2)− T1v(t1))2 + (T2u(t2)− T2u(t1))2 <
√
2ϵ.

Therefore, T (M) is equicontinuous. By means of the Arzela–Ascoli theorem, T (M)
is compact. Thus, the operator T : P → P is completely continuous. This completes
the proof.

Theorem 3.1. Let 2 < α ≤ 3, 3 < β ≤ 4, and f, g : (0, 1] × [0,+∞) → [0,+∞)
be continuous functions satisfying limt→0+ f(t, ·) = +∞, limt→0+ g(t, ·) = +∞.
Let 0 < σ1, σ2 < 1, and tσ1f(t, y) and tσ2g(t, y) are two continuous functions on
[0, 1]× [0,+∞). Assume that there exist two positive constants ρ, µ with

ρ > max

{
α− 1

n1l1
,
M0B(3− σ2, β − 1)

(β − 2)n2l2

}
µ,

where

n1 =

∫ 3
4

1
4

(1− s)α−1s1−σ1ds, l1 = min
t∈[ 14 ,

3
4 ]
q1(t),

n2 =

∫ 3
4

1
4

(1− s)β−2s2−σ2ds, l2 = min
t∈[ 14 ,

3
4 ]
q2(t),

such that

(H7) t
σ1f(t, ω) ≤ ρ Γ(2+α−σ1)

(α−1)Γ(2−σ1)
and tσ2g(t, ω) ≤ ρ Γ(β)

M0B(3−σ2,β−1) , for (t, ω) ∈
[0, 1]× [0, ρ];

(H8) t
σ1f(t, ω) ≥ µΓ(α)

n1l1
and tσ2g(t, ω) ≥ µ Γ(β)

(β−2)n2l2
, for (t, ω) ∈ [0, 1]× [0, µ].

Then the boundary value problem (1.1) has at least one positive solution.

Proof. From Lemma 3.4, we have T : P → P is completely continuous. By
assumptions of the theorem, we have

ρ > max

{
α− 1

n1l1
,
M0B(3− σ2, β − 1)

(β − 2)n2l2

}
µ > µ.

We divide the proof into the following two steps.

Step1: Let Ω1 = {(u, v) ∈ P : ∥(u, v)∥ < µ}. For (u, v) ∈ P ∩ ∂Ω1, we have
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0 ≤ u(t) ≤ µ, 0 ≤ v(t) ≤ µ, ∀t ∈ [0, 1]. It follows from (H8) that

T1v(t) =

∫ 1

0

G1(t, s)f(s, v(s))ds

=

∫ 1

0

G1(t, s)s
−σ1sσ1f(s, v(s))ds

≥
∫ 3

4

1
4

G1(t, s)s
−σ1sσ1f(s, v(s))ds

≥ µ
Γ(α)

n1l1

∫ 3
4

1
4

q1(t)k1(s)

Γ(α)
s−σ1ds

≥ µ
Γ(α)

n1l1

1

Γ(α)
min

t∈[ 14 ,
3
4 ]
q1(t)

∫ 3
4

1
4

(1− s)α−1s1−σ1ds

= µ,

and

T2u(t) =

∫ 1

0

G2(t, s)g(s, u(s))ds

=

∫ 1

0

G2(t, s)s
−σ2sσ2g(s, u(s))ds

≥
∫ 3

4

1
4

G2(t, s)s
−σ2sσ2g(s, u(s))ds

≥ µ
Γ(β)

(β − 2)n2l2

∫ 3
4

1
4

(β − 2)q2(t)k2(s)

Γ(β)
s−σ2ds

≥ µ
Γ(β)

(β − 2)n2l2

β − 2

Γ(β)
min

t∈[ 14 ,
3
4 ]
q2(t)

∫ 3
4

1
4

(1− s)β−2s2−σ2ds

= µ.

Hence,

∥T (u, v)∥ ≥ µ = ∥(u, v)∥, for (u, v) ∈ P ∩ ∂Ω1.

Step 2: Let Ω2 = {(u, v) ∈ P : ∥(u, v)∥ < ρ}. For (u, v) ∈ P ∩ ∂Ω2, we have
0 ≤ u(t) ≤ ρ, 0 ≤ v(t) ≤ ρ, ∀ t ∈ [0, 1]. By assumption (H7),

T1v(t) =

∫ 1

0

G1(t, s)f(s, v(s))ds

=

∫ 1

0

G1(t, s)s
−σ1sσ1f(s, v(s))ds

≤ ρ
Γ(2 + α− σ1)

(α− 1)Γ(2− σ1)

∫ 1

0

(α− 1)k1(s)

Γ(α)
s−σ1ds

= ρ
Γ(2 + α− σ1)

(α− 1)Γ(2− σ1)

(α− 1)

Γ(α)

∫ 1

0

(1− s)α−1s1−σ1ds

= ρ,
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and

T2u(t) =

∫ 1

0

G2(t, s)g(s, u(s))ds

=

∫ 1

0

G2(t, s)s
−σ2sσ2g(s, u(s))ds

≤ ρ
Γ(β)

M0B(3− σ2, β − 1)

∫ 1

0

M0

Γ(β)
k2(s)s

−σ2ds

= ρ
Γ(β)

M0B(3− σ2, β − 1)

M0

Γ(β)

∫ 1

0

(1− s)β−2s2−σ2ds

= ρ.

Thus,
∥T (u, v)∥ ≤ ρ = ∥(u, v)∥, for (u, v) ∈ P ∩ ∂Ω2.

Therefore, by Lemma 2.7 and 3.3, we complete the proof.

Theorem 3.2. Let 2 < α ≤ 3, 3 < β ≤ 4, and f, g : (0, 1] × [0,+∞) → [0,+∞)
be continuous functions satisfying limt→0+ f(t, ·) = +∞, limt→0+ g(t, ·) = +∞.
Let 0 < σ1, σ2 < 1, and tσ1f(t, y) and tσ2g(t, y) are two continuous functions on
[0, 1]× [0,+∞). Assume that the following conditions are satisfied:

(H9) there exist two continuous, nondecreasing function φ, ψ : [0,+∞) → (0,∞)
with tσ1f(t, ω) ≤ φ(ω) and tσ2g(t, ω) ≤ ψ(ω), for (t, ω) ∈ [0, 1]× [0,+∞);

(H10) there exists r > 0, with

r

max{φ(r), ψ(r)}
> max

{
(α− 1)Γ(2− σ1)

Γ(2 + α− σ1)
,
M0B(3− σ2, β − 1)

Γ(β)

}
.

Then the boundary value problem (1.1) has one positive solution.

Proof. Let U = {(u, v) ∈ P : ∥(u, v)∥ < r}, we have U ⊂ P . From Lemma 3.4,
we know A : U → P is completely continuous. If there exists (u, v) ∈ ∂U , λ ∈ (0, 1)
such that

(u, v) = λT (u, v). (3.3)

By (H9) and (3.3), for t ∈ [0, 1], then we have

u(t) = λT1v(t) = λ

∫ 1

0

G1(t, s)f(s, v(s))ds

≤
∫ 1

0

G1(t, s)s
−σ1sσ1f(s, v(s))ds

≤
∫ 1

0

G1(t, s)s
−σ1φ(v(s))ds

≤ φ(∥v∥)
∫ 1

0

G1(t, s)s
−σ1ds

≤ φ(∥v∥)
∫ 1

0

(α− 1)k1(s)

Γ(α)
s−σ1ds

= φ(∥v∥)α− 1

Γ(α)

∫ 1

0

(1− s)α−1s1−σ1ds
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= φ(∥v∥)α− 1

Γ(α)
B(2− σ1, α)

= φ(∥v∥) (α− 1)Γ(2− σ1)

Γ(2 + α− σ1)

≤ φ(∥(u, v)∥) (α− 1)Γ(2− σ1)

Γ(2 + α− σ1)
.

Consequently,

∥u∥ ≤ φ(∥(u, v)∥) (α− 1)Γ(2− σ1)

Γ(2 + α− σ1)
. (3.4)

Similarly, we have

v(t) = λT2u(t) = λ

∫ 1

0

G2(t, s)g(s, u(s))ds

≤
∫ 1

0

G2(t, s)s
−σ2sσ2g(s, u(s))ds ≤

∫ 1

0

G2(t, s)s
−σ2ψ(u(s))ds

≤ ψ(∥u∥)
∫ 1

0

G2(t, s)s
−σ2ds ≤ ψ(∥u∥)

∫ 1

0

M0

Γ(β)
k(s)s−σ2ds

= ψ(∥u∥) M0

Γ(β)

∫ 1

0

(1− s)β−2s2−σ2ds = ψ(∥u∥) M0

Γ(β)
B(3− σ2, β − 1)

≤ ψ(∥(u, v)∥) M0

Γ(β)
B(3− σ2, β − 1).

Hence,

∥v∥ ≤ ψ(∥(u, v)∥)M0B(3− σ2, β − 1)

Γ(β)
. (3.5)

Combine (3.4) and (3.5), we obtain

∥(u, v)∥
max{φ(∥(u, v)∥), ψ(∥(u, v)∥)}

≤ max

{
(α− 1)Γ(2− σ1)

Γ(2 + α− σ1)
,
M0B(3− σ2, β − 1)

Γ(β)

}
.

(3.6)
Combining (H10) and (3.6), then we have ∥(u, v)∥ ̸= r, which is a contradiction with
(u, v) ∈ ∂U . According to Lemma 2.8, T has a fixed point (u, v) ∈ U . Therefore,
the boundary value problem (1.1) has a positive solution.

4. Example

In this section, as an application, an example is given to illustrate the main results.

Example 4.1. Consider the following singular nonlinear fractional differential equa-
tions boundary value problem

−D
5
2

0+u(t) =
(t− 1

2 )
2 ln(2+v(t))√

t
, 0 < t < 1,

D
7
2

0+v(t) =
(t− 1

2 )
2 ln(2+u(t))√

t
, 0 < t < 1,

u(0) = u(1) = u′(0) = v(0) = v(1) = v′(0) = v′(1) = 0.

(4.1)
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In this case, f(t, v) = ((t − 1
2 )

2 ln(2 + v(t)))/
√
t, g(t, u) = ((t − 1

2 )
2 ln(2 +

u(t)))/
√
t,for (t, v), (t, u) ∈ (0, 1]× [0,+∞). Note that f, g is continuous in (0, 1]×

[0,+∞) and limt→0+ f(t, ·) = +∞, limt→0+ g(t, ·) = +∞. Choosing σ1 = σ2 = 1/2
and φ(ω) = ψ(ω) = ln(2 + ω), then we have

√
t
(t− 1

2 )
2 ln(2 + ω)
√
t

= (t− 1

2
)2 ln(2 + ω) ≤ ln(2 + ω), for (t, ω) ∈ [0, 1]× [0,+∞).

Also φ, ψ : [0,+∞) → (0,∞) are two continuous, nondecreasing functions, so the
condition (H9) in Theorem 3.2 holds. Next, set r = 1, then the condition (H10) in
Theorem 3.3 holds. Therefore, the boundary value problem (4.1) has one positive
solution.

5. Conclusion

In this paper, we have considered existence of positive solutions for a class of the
boundary value problem of the nonlinear singular fractional differential systems with
multi-orders. Some sufficient conditions for the existence of positive solutions for the
boundary value problem of the nonlinear singular differential systems with multi-
orders have been established by Leray-Schauder nonlinear alternative theorem and
Guo-Krasnosel’skii fixed point theorem. The main results have been well illustrated
with the help of examples.
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