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HOPF BIFURCATION AND NEW SINGULAR
ORBITS COINED IN A LORENZ-LIKE

SYSTEM∗
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Abstract We seize some new dynamics of a Lorenz-like system: ẋ = a(y−x),
ẏ = dy − xz, ż = −bz + fx2 + gxy, such as for the Hopf bifurcation,
the behavior of non-isolated equilibria, the existence of singularly degenerate
heteroclinic cycles and homoclinic and heteroclinic orbits. In particular, our
new discovery is that the system has also two heteroclinic orbits for bg =
2a(f + g) and a > d > 0 other than known bg > 2a(f + g) and a > d > 0,
whose proof is completely different from known case. All the theoretical results
obtained are also verified by numerical simulations.
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1. Introduction

In this paper, we give some new insights into the following Lorenz-like system
ẋ = a(y − x),

ẏ = dy − xz,

ż = −bz + fx2 + gxy,

(1.1)

where a > 0, f, g ≥ 0, f + g > 0 and b, d ∈ R, expand and complement the
previous results obtained in [13] by Li and Ou. They first proposed the system
and considered its local and global dynamical behaviors as more as possible. More
importantly, system (1.1) is proved to have two and only heteroclinic orbits when
bg > 2a(f + g) and a > d > 0. We here find that the statement also holds for
bg = 2a(f + g) and a > d > 0. Furthermore, the Hopf bifurcation of its equilibria

S± = (±
√

bd
f+g ,±

√
bd
f+g , d), the existence of its singularly degenerate heteroclinic

cycle and homoclinic orbit, etc. are deeply considered by combining theoretical
analysis and numerical technique. For the results of some special cases of system
(1.1), refer also to [4].
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The rest of the paper is organized as follows. In Section 2, using the formulation
in [8] to do some direct computations, the conditions of Hopf bifurcation at S±
are obtained. Section 3 formulates the dynamics of non-isolated equilibria Sz. The
proof for the existence of singularly degenerate heteroclinic cycle is given in Section
4. In Section 5, system (1.1) has been proved to have no homoclinic orbits when
bg ≥ 2a(f + g) and a > d > 0. For bg = 2a(f + g) and a > d > 0, system (1.1)
is shown to have two and only two heteroclinic orbits, that is presented in Section
6. Furthermore, some other heteroclinic orbits have been observed to exist in other
parameter region via numerical simulations. Finally, some conclusions are drawn in
Section 7.

2. Hopf bifurcation analysis for S±

At the beginning of this section, we first review the Projection Method described
in [8] for the calculation of the first Lyapunov coefficient associated to Hopf bi-
furcations, denoted by l1. This method can be extended to the calculation of the
other Lyapunov coefficients. See [8] for the calculation of the second, the third
and the fourth Lyapunov coefficients [22, 23], respectively. Then, we study the
Hopf bifurcation of system (1.1) at S± by using this method. For related to work,
see [1, 6, 7, 16,17,19,21,28,32].

2.1. Projection method for computing the first Lyapunov co-
efficient

Consider the following nonlinear system:

ẋ = Ax+ F (x, ξ), x ∈ Rn, ξ ∈ R,

where F (x, ξ) = O(‖x2‖) is a smooth function and for ξ = 0 it can be expanded as

F (x, 0) =
1

2
B(x, x) +

1

6
C(x, x, x) +O(‖x4‖,

where B(x, x) and C(x, x, x) are bilinear and trilinear functions, respectively.
Suppose that A has a simple pair of complex eigenvalues on the imaginary axis:

λ1,2 = ±ω0i, ω0 > 0 and these eigenvalues are the only eigenvalues with Re(λ) = 0.
Let q ∈ Cn be a complex eigenvector associated with λ1, i.e.,

Aq = iω0q, Aq̄ = −iω0q̄.

Also, introduce the adjoint eigenvector p ∈ Cn having the following property:

Ap = −iω0p, Ap̄ = iω0p̄,

where 〈p, q〉 = 1.
The first Lyapunov coefficient at the origin can be written as [8]

l1 =
1

2ω0
Re[〈p, C(q, q, q̄)〉+ 2〈p,B(q, A−1B(q, q̄))〉+ 〈p,B(q̄, (2iω0E −A)B(q, q))〉].

This formula is very convenient for analyzing a Hopf bifurcation in an n-dimensional
system with n > 2 [8]. Therefore, it is convenient to realize the computations of
the first Lyapunov coefficient by using computer algebraic system like in Matlab,
Mathematica, or Maple, etc.
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2.2. Hopf bifurcation for S±

Referring to [13], the equilibria S0 = (0, 0, 0) and Sz = (0, 0, z) for any z ∈ R are not
Hopf point of system (1.1). Therefore, one only considers S±. Due to the symmetry
of the system, it suffices to consider S+. The characteristic equation of Jaccobian
matrix of system (1.1) at S+ is given by

λ3 + (a+ b− d)λ2 + (ab− bdf

f + g
)λ+ 2abd = 0 (2.1)

and all of its corresponding principal minors are as follows [13, p. 262]:

∆1 = a+ b− d, ∆2 = (a+ b− d)(ab− bdf

f + g
)− 2abd, ∆3 = 2abd∆2.

Notice that the parameters a, b, d, f and g belong to the set

W = {(a, b, d, f, g) ∈ R5|a > 0, bd > 0, f ≥ 0, g ≥ 0, f + g > 0}.

For convenience of discussion in the sequel, define the sets W1 and W2 as follows:

W1 = {(a, b, d, f, g) ∈W : b < 0, d < 0}, W2 = {(a, b, d, f, g) ∈W : b > 0, d > 0}.

Then W = W1∪W2. The set W2 can be further rewritten as W2 = W21∪W22∪W23,
where

W21 = {(a, b, d, f, g) ∈W2 : b ≤ d− a},

W22 = {(a, b, d, f, g) ∈W2 : b > d− a, a > df
f+g},

W23 = {(a, b, d, f, g) ∈W2 : b > d− a, a ≤ df
f+g}.

Furthermore, divide the set W22 into the following subsets:

W 1
22 = {(a, b, d, f, g) ∈W22 : b < b0},

W 2
22 = {(a, b, d, f, g) ∈W22 : b = b0},

W 3
22 = {(a, b, d, f, g) ∈W22 : b > b0},

where b0 = d− a+ 2ad(f+g)
a(f+g)−df . By the Routh-Hurwitz criterion, it is easy to get the

following results.

Theorem 2.1. S+ is unstable when (a, b, d, f, g) ∈ W1 ∪W21 ∪W23 ∪W 1
22 and is

asymptotically stable when (a, b, d, f, g) ∈W 3
22.

One notices that there exists a bifurcation occurrence in system (1.1) when
(a, b, d, f, g) ∈W 2

22. Therefore, the kind of bifurcation and its stability are discussed
in the rest of the section. First of all, the following lemma holds.

Lemma 2.1. Consider b as a bifurcation parameter. Then, for (a, b, d, g, f) ∈W 2
22,

system (1.1) undergoes a Pioncaré–Andronov–Hopf bifurcation (or simply a Hopf
bifurcation) at S+.
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Proof. For (a, b, d, g, f) ∈W 2
22, it follows that Eq. (2.1) has one negative real root

λ1 = − 2ad(f+g)
a(f+g)−df and a pair of conjugate purely imaginary roots λ2,3 = ±ω0i with

ω0 =
√

a(3d−a)(f+g)+df(a−d)
f+g . Taking into account that Re(λ2,3) = 0 at b = b0, one

obtains

dRe(λ2,3)

db

∣∣∣∣
b=b0

= − ω2
0

2[ω2
0 + ( 2ad(f+g)

a(f+g)−df )2]
< 0.

The above inequality reads that, for (a, b, d, g, f) ∈ W 2
22, the transversal condition

always holds. Also, Re(λ1) = λ1 < 0. Therefore, all conditions for Hopf bifurcation
[8] to occur are met. Consequently, the Hopf bifurcation happens at S+.

The proof for this lemma is over.

Next, one studies the stability of the periodic orbit bifurcated from S+ for the
parameters (a, b, d, g, f) ∈ W 2

22, by using Projection Method. The following result
is true.

Lemma 2.2. Consider the parameters (a, b, d, g, f) ∈W 2
22. Then the first Lyapunov

coefficient of system (1.1) at S+ is given by

l1(a, d, f, g) = −N
D

(2.2)

where

N = a2(a− d)(f + g)(a2f + a2g + d2f − 4adf − 3adg)(af + ag − df)

(6a4f4 + 24a4f3g + 36a4f2g2 + 24a4fg3 + 6a4g4 − 34a3df4

−117a3df3g − 147a3df2g2 − 79a3dfg3 − 15a3dg4 + 54a2d2f4

+141a2d2f3g + 120a2d2f2g2 + 33a2d2fg3 − 34ad3f4 − 61ad3f3g

−29ad3f2g2 − 2ad3fg3 + 6d4f4 + 5d4f3g)

and

D = 2d(a4f3 + 3a4f2g + 3a4fg2 + a4g3 − 6a3df3 − 15a3df2g − 12a3dfg2

−3a3dg3 + 6a2d2f3 + 5a2d2f2g − 5a2d2fg2 − 4a2d2g3 − 6ad3f3

−5ad3f2g + d4f3)(a4f3 + 3a4f2g + 3a4fg2 + a4g3 − 6a3df3

−15a3df2g − 12a3dfg2 − 3a3dg3 + 9a2d2f3 + 14a2d2f2g + 4a2d2fg2

−a2d2g3 − 6ad3f3 − 5ad3f2g + d4f3).

Proof. When b = b0, one has S+ = (
√

b0d
f+g ,

√
b0d
f+g , d). Take the change of the

variables x1 = x−
√

b0d
f+g , x2 = y −

√
b0d
f+g and x3 = z − d, which transforms S+
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to S0 and system (1.1) into
ẋ1 = a(x2 − x1),

ẋ2 = −dx1 + dx2 −
√

b0d
f+gx3 − x1x3,

ẋ3 = (2f + g)
√

b0d
f+gx1 + g

√
b0d
f+gx2 − b0x3 + fx2

1 + gx1x2.

Denoting u =
√

b0d
f+g and noticing ω0 =

√
a(3d−a)(f+g)+df(a−d)

f+g , one has

A =


−a a 0

−d d u

(2f + g)u gu −b0

 .

It is easy to derive that A has a real eigenvalue λ1 = − 2ad(f+g)
a(f+g)−df and a pair of

purely imaginary eigenvalues λ2,3 = ±ω0i.
It follows from some tedious calculations that

p =
1

L


b0d+ω2

0+ω0(b0−d)i
a − b0dg

a(f+g)

−b0 + ω0i

u

 and q =


a

a+ ω0i

ω2
0+ω0(a−d)i

u


satisfy Aq = iω0q, AT p = −iω0p, 〈p, q〉 =

∑3
i=1 p̄iqi = 1, where

L = b0(d− a) + 3ω3
0 −

b0dg

f + g
+ 2ω0(a− b0 − d)ω0i.

By some further computations we have

h11 =


−a

2

u −
ab0ω

2
0

u3(f+g)

−a
2

u −
ab0ω

2
0

u3(f+g)

− 2aω2
0

u2


and

h20 =
1

M


−auK1 − a(b0 + 2ω0i)K2

−(a+ 2ω0i)(b+ 2ω0i)K2 − u(a+ 2ω0i)K1

−2u(af + ag + gω0i)K2 − 2ω0[(d− a)i+ 2ω0]K1

 ,

where

M = 4(d− b0 − a)ω2
0 + 2au2(f + g) + 2(gu2 − b0d+ ab0 − 4ω2

0)ω0i,
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K1 = 2a(af + ag + gω0i), K2 =
2aω0(ω0 − ai+ di)

u
.

Carrying out some calculations as in [8], one gets the first Lyapunov coefficient
which is just given by (2.2).

It remains only to verify the transversal condition of the Hopf bifurcation, which
holds in view of Lemma 2.1.

Now denote

(W 2
22)+ = {(a, d, f, g) ∈W 2

22|l1(a, d, f, g) > 0},

(W 2
22)0 = {(a, d, f, g) ∈W 2

22|l1(a, d, f, g) = 0},

(W 2
22)− = {(a, d, f, g) ∈W 2

22|l1(a, d, f, g) < 0}.

Noticing that l1(1, 2, 1, 12) = 1.7033 > 0, l1(1, 1, 1, 1) = 0, l1(3, 2, 1, 12) = −9.9606 <
0 and the continuation of l1(a, d, f, g) inW 2

22, it is easy to obtain that (W 2
22)+, (W 2

22)0

and (W 2
22)− are all nonempty, see Figs. 1–3.
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Figure 1. Phase portrait of system (1.1) when
(a, b, d, f, g) = (1, 2, 6, 2, 18) and (x0, y0, z0) =
(−2.0618,−4.7017, 25.6000). This figure illus-
trates that system (1.1) has a unstable limit cy-
cle bifurcating from S± when (a, d, f, g) ∈ W 2

22
and l1 > 0.
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Figure 2. Phase portrait of system (1.1) when
(a, b, d, f, g) = (1, 1, 4, 1, 1) and (x0, y0, z0) =
(±3.14× 1e− 4,±1.618× 1e− 4,±2.718× 1e−
4). This figure shows that system (1.1) has
a degenerate limit cycle bifurcating from S±
when (a, d, f, g) ∈ W 2

22 and l1 = 0.

Summarizing the above discussions one obtains the main result of this section
as follows.

Theorem 2.2. System (1.1) undergoes a Pioncaré–Andronov–Hopf bifurcation at
S+ for (a, d, f, g) ∈ W 2

22. More precisely, for (a, d, f, g) ∈ (W 2
22)−, the Hopf bifur-

cation is stable; for (a, d, f, g) ∈ (W 2
22)+, the Hopf bifurcation is unstable. Namely,

for each b > b0, but close to b0, there exists an unstable closed orbit near the asymp-
totically stable equilibrium point S+; for (a, d, f, g) ∈ (W 2

22)0, the Hopf bifurcation
is degenerate, and the second or the third or even more higher order Lyapunov co-
efficients needs computing to determine the stability of the bifurcated periodic orbit.
Symmetrically, there are the same results at S− for (a, d, f, g) ∈W 2

22.
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Figure 3. Phase portrait of system (1.1) when (a, b, d, f, g) = (2.4, 2, 5.6, 2, 3) and (x0, y0, z0) =
(±3.14 × 1e − 4,±1.618 × 1e − 4,±2.718 × 1e − 4). This figure implies that system (1.1) has a stable
limit cycle bifurcating from S± when (a, d, f, g) ∈ W 2

22 and l1 < 0.

3. Behavior of Sz

In this section, one studies the dynamics of non-isolated equilibria Sz = (0, 0, z) for
any z ∈ R. First of all, the characteristic polynomial of system (1.1) at any one Sz
is

p(λ) = λ(λ2 + (a− d)λ− a(d− z)).

Therefore the eigenvalues are given by

λ1 = 0, λ2,3 =
d− a±

√
(a− d)2 + 4a(d− z)

2

with the corresponding eigenvectors

v1 = (0, 0, 1), v2,3 = (a,
a+ d±

√
(a− d)2 + 4a(d− z)

2
, 0).

Hereout, the following statement holds.

Theorem 3.1. When b = 0, system (1.1) has non-isolated equilibria Sz for any
z ∈ R. Moreover, the local dynamical behaviors of any one are given in the following
Table 1.

4. Singularly degenerate heteroclinic cycle

Recall that a singularly degenerate heteroclinic cycle consists of an invariant set
formed by a line of equilibria together with a heteroclinic orbit connecting two
of the equilibria. Kokubu and Roussarie [9] first studied this kind of cycle when
considering the classic Lorenz system. In that known literature, they gave the
following result.
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Table 1. The dynamical behaviors of non-isolated equilibria Ez of system (1.1).

a− d z Property of Ez

(−∞, d) a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

< 0 d a 2D W c
loc and a 1D Wu

loc

(d,+∞) a 1D W c
loc and a 2D Wu

loc

(−∞, d) a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

= 0 d a 3D W c
loc

(d,+∞) fold-Hopf bifurcation may occur

(−∞, d) a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

> 0 d a 1D W s
loc and a 2D W c

loc

(d,+∞) a 2D W s
loc and a 1D W c

loc

Lemma 4.1. Consider the system

ẋ = y, ẏ = Ax−By − xz − x3, ż = x2 − βz with β = 0. (4.1)

Then, for any B∗ > 0 which is smaller than some B0 ∈ (5/4, 2) and for sufficiently
large A∗ > 0, there exists G∗ = O(A∗, B∗) with G∗ = O(A∗) uniformly in B∗
as A∗ → ∞, such that the system (4.1) with these parameter values possesses a
singularly degenerate heteroclinic circle connecting (0, 0, 0) and (0, 0, G∗).

Later in 2009, Messias [20] further proved that the Lorenz system has a set
of infinitely many singularly degenerate heteroclinic cycles combining analytical
and numerical techniques. Employing these methods, many other chaotic systems
[3,10,12,15,33,34] have been discovered to have such kind of property. Furthermore,
numerical simulation illustrates that many chaotic attractors can be found near the
singularly degenerate heteroclinic cycles, which maybe be another new route to
chaos. Considering both the form and the existence of line equilibria Sz of system
(1.1), one can not help asking the question “Does this kind of cycle exist in system
(1.1)? ” In this section, the positive answer will be given.

Firstly, numerical simulation shows that singularly degenerate heteroclinic cycle
exits in system (1.1) with some appropriate choice of the parameters and initial
values, see Fig. 4.

Secondly, using Lemma 4.1, the conclusion for system (1.1) is formulated on the
existence of singularly degenerate heteroclinic cycle as follows.

Theorem 4.1. Assume that a > d, b = 0 and g > 0. Then, for any B∗ = g(a−d)
2a(f+g)

smaller than some B0 ∈ (5/4, 2) and A∗ = dg2

4a(f+g)2 sufficiently large, there exists

G∗ = O(A∗, B∗) with G∗ = O(A∗) uniformly in B∗ as A∗ → ∞, such that system
(1.1) with these parameter values possesses a singularly degenerate heteroclinic circle
connecting (0, 0, 0) and (0, 0, G∗).

Proof. For system (1.1) with these parameter values make the following change

of variables X=∓ g
2a(f+g)

√
g
2x, Y =± g2

4a(f+g)2

√
g
2 (x−y), Z= g2

4a(f+g)2 z−
g3

8a2(f+g)2x
2
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Figure 4. Phase portraits of system (1.1) when (a) (a, d, b, f, g) = (9, 6, 0, 1, 0), (b) (a, d, b, f, g) =
(9, 8, 0, 1, 1), and initial values (x0, y0, z0) = (±1.618× 1e− 3,±1.618× 1e− 3,−1).

and τ = 2a(f+g)
g t. Then it becomes

Ẋ = dX
dτ = Y,

Ẏ = dY
dτ = dg2

4a(f+g)2X −
g(a−d)
2a(f+g)Y −XZ −X

3,

Ż = dZ
dτ = X2.

(4.2)

It follows from Lemma 4.1 that system (4.2) with these parameter values, which is
topologically equivalent to system (1.1), possesses a singularly degenerate hetero-
clinic circle connecting (0, 0, 0) and (0, 0, G∗). So, the proof is over.
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Figure 5. Phase portraits of system (1.1) when (a, d, f, g) = (9, 8,−2, 4), (a) b = 0, (b) b = 0.1, and
the initial values (x0, y0, z0) = (±1.618× 1e− 3,±1.618× 1e− 3, z), (A) z = 5, (B) z = 0, (C) z = −5.
These figures illustrate that system (1.1) has infinite many singularly degenerate heteroclinic cycles and
corresponding chaotic attractors.
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Thirdly, combining Theorem 4.1 and the dynamics of Sz, one has the numerical
result as follows.

Numerical Result 4.1. For a > d, b = 0 and g > 0, the 1D unstable manifold
Wu(E1) of each normally hyperbolic saddle-like E1 = (0, 0, z1) (z1 ∈ (−∞, d)) tends
to one of the normal hyperbolic stable focus-like E2 = (0, 0, z2) (z2 ∈ (d,+∞)) given
in Theorem 3.1, forming singularly degenerate heteroclinic cycles (see Fig. 5 (a)).

Thereout, one has the following statement.

Theorem 4.2. Assume that a > d, b = 0 and g > 0. Then system (1.1) has
infinitely many singularly degenerate heteroclinic cycles.

Finally, numerical simulation illustrates that chaotic attractors can bifurcate
from the singularly degenerate heteroclinic cycles under a small perturbation of
parameter b, see Fig. 5 (b).

5. Nonexistence of homoclinic orbit

In this section, we consider the nonexistence of homoclinic orbit of system (1.1).
For a given solution (x, y, z) of system (1.1), set Q = z − g

2ax
2. Then Q̇ = −bQ −

bg−2a(f+g)
2a x2.

Theorem 5.1. Assume that bg > 2a(f + g) and a > d > 0. Then any one solution
of system (1.1) is globally asymptotically stable. And hence there are no homoclinic
orbits in system (1.1).

Proof. bg > 2a(f + g) implies b > 0 and g > 0. Let (x, y, z) be any one solution
of system (1.1). Put

V = ẋ2 +
a2

b[bg − 2a(f + g)]
Q̇2 +

a(f + g)

2b
(x2 − bd

(f + g)
)2.

Then, noticing that ẍ = −(a−d)ẋ+ax(d−z), calculating the derivative of V w.r.t.
time t along the solution of system (1.1) leads to

dV

dt
= −2(a− d)ẋ2 − 2a2

bg − 2a(f + g)
Q̇2 ≤ 0.

Furthermore,

V̇ = 0⇔ ẋ = Q̇ = 0⇔ ẋ = ẏ = ż = 0⇔ (x, y, z)

is an equilibrium solution. So, according to the LaSalle theorem [5], the solution
is globally asymptotically stable. So, the homoclinic orbit does not exist in system
(1.1).

Theorem 5.2. Assume that bg = 2a(f + g) and a > d > 0. Then system (1.1) has
no homoclinic orbits.

Proof. Note Q̇ = − 2a(f+g)
g Q for bg = 2a(f + g). Thus, Q(t) = Q(0)e−

2a(f+g)
g t. In

particular, on γ+ (which is defined in the sequel), Q(t) ≡ 0, so that

ẍ+ (a− d)ẋ = ax(d− g

2a
x2).
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Set

V = ẋ2 +
a(f + g)

2b
(x2 − 2ad

g
)2.

Then V̇ = −2(a − d)ẋ2 ≤ 0 and, therefore, γ+ → S+ as t → +∞. (note that the
set {(x, y, z)|V = 0} consists of two disjoint domains with S+ and S− in each of
them). For any other trajectories, Q(t) → 0 (t → +∞). One can show that every
trajectory has to tend to one of its stationary points and the details are omitted.

Accordingly, combining with the results in [13], one can derive the main conse-
quence in this section as follows.

Theorem 5.3. Assume that bg ≥ 2a(f + g) and a > d > 0. Then system (1.1) has
no homoclinic orbits associated with any stationary points. In addition, as t→ +∞,
every trajectory has a limit being one of the stationary points of system (1.1).

6. Existence of herteroclinic orbit

In this section one employs the method in [2,11,13,14,16–18,24–27,29–31] to prove
that system (1.1) has only two herteroclinic orbits when bg = 2a(f + g) and a >
d > 0.

6.1. Existence of herteroclinic orbit for the case bg = 2a(f + g)
and a > d > 0

For the convenience of statement, we introduce some more notations. Denote by
p(t; q0) = (x(t; q0), y(t; q0), z(t; q0)) the solution of system (1.1) with the initial point
q0 ∈ R3. Let p+(t) = (x+(t), y+(t), z+(t)) be a solution of system (1.1) on Wu such
that x+ is positive for large negative t. Let p− be the reflection of p+ w.r.t. the
z-axis, i.e., p−(t) = (−x+(t),−y+(t), z+(t)). Let γ+ = {p+(t)|t ∈ R} be the positive
unstable manifold of system (1.1) at the origin and let γ− = {p−(t)|t ∈ R}.

We now study the case where the parameters a, b, d, f, g satisfy the conditions
that bg = 2a(f + g) and a > d > 0. We first have the following result.

Lemma 6.1. Consider system (1.1). Assume that bg = 2a(f + g) and a > d > 0.
Set

V (x, y, z) =
2a(f + g)

g
(y − x)2 +

1

2a(f + g)
((f + g)x2 − bd)2.

Then:

(i) If p(t; q0) is bounded as t→ −∞, then x2(t; q0) ≡ 2a
g z(t; q0).

(ii) If x2(t; q0) ≡ 2a
g z(t; q0), then the derivative of V along the solution p(t; q0)

is
d

dt
V (p(t; q0)) = −4a(f + g)(a− d)

g
[y(t; q0)− x(t; q0)]2 ≤ 0.

(iii) If x2(t; q0) ≡ 2a
g z(t; q0) and if there exist t1 and t2 with t1 < t2 such that

V (p(t1; q0)) = V (p(t2; q0)), then q0 is one of the equilibria of system (1.1).

(iv) If limt→−∞ p(t; q0) = S0 and x(t3; q0) > 0 for some t3, then V (S0) >
V (p(t; q0)) and x(t; q0) > 0 for all t ∈ R. Consequently, q0 ∈ γ+.
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Proof. (i) Set Q(x, y, z) = x2− 2a
g z. Then, from Eq. (1.1), one has the derivative

of Q along the solution p(t; q0) as follows: d
dtQ(p(t; q0)) = − 2a(f+g)

g Q(p(t; q0)).
Consequently, one obtains

Q(p(t; q0)) = Q(p(τ ; q0))e−
2a(f+g)

g (t−τ) for all τ, t ∈ R. (6.1)

Since p(τ ; q0) is bounded as τ → −∞, Eq. (6.1) yields to

Q(p(t; q0)) ≡ 0, i.e., x2(t; q0) ≡ 2a

g
z(t; q0).

(ii) The assertion follows from the equality x2(t; q0) ≡ 2a
g z(t; q0) and Eq. (1.1).

(iii) Assertion (ii) implies that, for all t ∈ (t1, t2), d
dtV (p(t, q0)) = 0, i.e.

y(t; q0)− x(t; q0) = 0. (6.2)

It follows from the first equation of (1.1), Eq. (6.2) and the equality x2(t; q0) ≡
2a
g z(t; q0) that

x′(t; q0) ≡ y′(t; q0) ≡ z′(t; q0) ≡ 0

for all t ∈ (t1, t2). Hence, q0 is just one of the equilibria of the system.
(iv) We first prove V (S0) > V (p(t; q0)) for all t ∈ R. Suppose that V (S0) ≤

V (p(t0; q0)) for some t0 ∈ R. Then the last three results imply that q0 is one of the
equilibria of this system. This contradicts the facts that limt→−∞ p(t; q0) = 0 and
x(t3; q0) > 0. Hence, it follows that V (S0) > V (p(t; q0)) for all t ∈ R. Now, we prove
x(t; q0) > 0 for all t. Suppose x(t4; q0) ≤ 0 for some t4 ∈ R. Since x(t3; q0) > 0, one
has x(t5; q0) = 0 for some t5. Using V (S0) > V (p(t; q0)) for all t ∈ R, one gets

p(t5; q0) ∈ {(x, y, z)|V (x, y, z) < V (S0)} ∩ {(x, y, z)|x = 0}.

On the other hand,

{(x, y, z)|V (x, y, z) < V (S0)} ∩ {(x, y, z)|x = 0}

= {(0, y, z)| 2a(f+g)
g y2 + b2d2

2a(f+g) <
b2d2

2a(f+g)}

= ∅,

which is a contradiction. Hence, x(t; q0) > 0 for all t ∈ R.

Theorem 6.1. Assume that bg = 2a(f + g) and a > d > 0. If the negative orbit
from a point q0 is bounded, then the solution p(t, q0) approaches, as t → −∞, one
of the equilibria of system (1.1). Consequently, system (1.1) has no closed orbits.

Proof. Assertions (i) and (ii) of Lemma 6.1 imply that the limit of V (p(t; q0)) as
t → −∞, denoted by Ψ(q0), exists. Let q ∈ α(q0), the α-limit set of the system
from q0, i.e. there exists a sequence {tn} such that

lim
n→+∞

tn = −∞ and lim
n→+∞

p(tn; q0) = q.

Then, for all t ∈ R, the relation

p(t; q) = lim
n→+∞

p(t; p(tn; q0)) = lim
n→+∞

p(t+ tn; q0)
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leads to p(t; q) is bounded on R,

V (p(t; q)) = limn→+∞ V (p(t+ tn; q0)) = Ψ(q0).
(6.3)

It follows from Lemma 6.1 that q ∈ {S−, S0, S+}. Hence,

α(q0) ⊆ {S−, S0, S+}.

Due to α(q0) being connected, one has α(q0) = {S−}, or α(q0) = {S0}, or α(q0) =
{S+}, which means that p(t; q0) approaches one of the equilibria of the system as
t→ −∞.

Theorem 6.2. Consider system (1.1). Assume that bg = 2a(f +g) and a > d > 0.
Then:

(i) The system has no homoclinic orbits.
(ii) The system has only two heteroclinic orbits: γ+ joining S0 and S+ and γ−

joining S0 and S−.

Proof. (i) We prove that system (1.1) has neither homoclinic orbits nor het-
eroclinic orbits joining S− and S+. Assume that p(t) = (x(t), y(t), z(t)) is a
homoclinic orbit of the system or a heteroclinic orbits joining S− and S+, i.e.
p(t) = (x(t), y(t), z(t)) is a solution of the system such that

lim
t→−∞

p(t) = s− and lim
t→+∞

p(t) = s+,

where s− and s+ satisfy either

s− = s+ ∈ {S−, S0, S+}

or
{s−, s+} = {S−, S+}.

According to Lemma 6.1 and the relation V (s−) = V (s+), p(t) is just one of the
equilibria of the system.

Therefore, the system has neither homoclinic orbits nor heteroclinic orbits join-
ing S− and S+.

(ii) We first prove that if system (1.1) has a heteroclinic orbit joining S0 and
S+, then this orbit is just γ+.

Let p1(t) = (x1(t), y1(t), z1(t)) be a solution of system (1.1) such that

lim
t→−∞

p1(t) = s−1 and lim
t→+∞

p1(t) = s+
1 ,

where s−1 and s+
1 satisfy {s−1 , s

+
1 } = {S0, S+}. Then, for all t ∈ R, the assertions

(i) and (ii) of Lemma 6.1 imply

V (s−1 ) ≥ V (p1(t)) ≥ V (s+
1 ).

Notice that V (S0) > V (S+). Then one gets s−1 = S0 and s+
1 = S+, i.e.

lim
t→−∞

p1(t) = S0 and lim
t→+∞

p1(t) = S+, (6.4)

which implies that p1(t) ∈ γ+ from the assertion (iv) of Lemma 6.1.
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Finally, it remains to prove that γ+ is a heteroclinic orbit joining S0 and S+,
i.e. limt→+∞ p1(t) = S+. Using Lemma 6.1, one can get

x2
+(t) = 2a

g z+(t),

d
dtV (p+(t)) = − 4a(f+g)(a−d)

g [y+(t)− x+(t)]2,

V (p+(t)) < V (S0) for all t ∈ R,

x+(t) > 0 for all t ∈ R.

(6.5)

The second equation of (6.5) implies that the limit of V (p+(t)) exists as t→ +∞.
Denote this limit by v. The third relation in (6.5) implies that x+(t), y+(t) and z+(t)
are all bounded on [0,+∞); therefore, the set {p+(t)|t ≥ 0} is bounded. Denote
by Ω the ω-limit set of solution p+(t). Let q ∈ Ω, i.e. there exists a sequence {tn}
such that limn→+∞ tn = +∞ and limn→+∞ p+(tn) = q. Then, for all t ∈ R, the
relations

p(t; q) = lim
n→+∞

p(t; p+(tn)) = lim
n→+∞

p+(t+ tn)

and p(t; q) is bounded on R,

V (p(t; q)) = limn→+∞ V (p+(t+ tn)) = v,
(6.6)

together with the assertions (i) and (iii) of Lemma 6.1 lead to the conclusion that
q ∈ {S−, S0, S+}. Hence, Ω ⊆ {S−, S0, S+}. Due to Ω being connected, one has
Ω = S−, or Ω = S0, or Ω = S+. It follows that Ω 6= S0 from the assertion (ii)
of Lemma 6.1, and Ω 6= S− from the fourth relation of system (6.5). Therefore,
Ω = S+, i.e. limn→+∞ p+(t) = S+.

The numerical simulation also verifies that Theorem 6.2 holds, see Fig. 6.
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Fig. 6. Phase portrait of system (1.1) when (a, b, d, f, g) = (3, 12, 2, 1, 1) and (x0, y0, z0) = (±3.14 ×
1e− 4,±1.618× 1e− 4,±2.718× 1e− 4). This figure illustrates that system (1.1) has two heteroclinic
orbits for bg = 2a(f + g) and a > d > 0.

6.2. Numerical simulations for other heteroclinic orbits

In this subsection, we study the existence of heteroclinic orbits in other param-
eter domain than the one bg ≥ 2a(f + g) and a > d > 0. First of all, it fol-
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lows from Theorem 2.1 that S± are asymptotically stable equilibrium points when
(a, b, d, f, g) ∈W 3

22. Therefore, we consider the following four subcases.

1. a > d, bd > 0, 2a(f+g)
g > b > 2ad(f+g)

(a−d)f+ag + d− a > 0,

2. a = d, g > 0, b > 2a(f+g)
g ,

3. a < d, (a− d)f + ag > 0, b > 0 and b > 2ad(f+g)
(a−d)f+ag + d− a > 0,

4. (a− d)f + ag > 0, 2ad(f+g)
(a−d)f+ag + d− a ≤ 0.

The corresponding numerical simulations are shown in Figs. 7–10, implying that
system (1.1) has two heteroclinic orbits to S± and S0.
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(b) b = 11.9

Figure 7. Phase portraits of system (1.1) when (a, d, f, g) = (3, 2, 1, 1) and b varies in (5, 12) with the
initial conditions (x0, y0, z0) = (±3.14× 1e− 4,±1.618× 1e− 4,±2.718× 1e− 4).
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Figure 8. Phase portraits of system (1.1) when (a, d, f, g) = (3, 3, 1, 1) and b varies in (12,∞) and
(x0, y0, z0) = (±3.14× 1e− 4,±1.618× 1e− 4,±2.718× 1e− 4).
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(a) b = 47.73
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Figure 9. Phase portraits of system (1.1) when (a, d, f, g) = (2, 3, 1, 1) and b ∈ (47.73,∞) and
(x0, y0, z0) = (±3.14× 1e− 4,±1.618× 1e− 4,±2.718× 1e− 4).
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Figure 10. Phase portrait of system (1.1) with (a, d, b, f, g) = (7, 1, 0.1, 1, 1) and (x0, y0, z0) = (±3.14×
1e− 4,±1.618× 1e− 4,±2.718× 1e− 4).

6.3. Nonexistence of herteroclinic orbit

The above Theorem 6.2 answers the existence of herteroclinic orbit of system (1.1),
then, a question naturally rises: When does system (1.1) has no herteroclinic orbits?
One has the following result.

Theorem 6.3. Assume that bd(f + g) < 0, then there are no heteroclinic orbits in
system (1.1).

Proof. When bd(f + g) < 0, system (1.1) has a single equilibrium point S0.
Therefore, there do not exist heteroclinic orbits of system (1.1).

7. Conclusion

In this paper, a known Lorenz-like system is revisited and some of new and inter-
esting dynamics are revealed. By using Project Method, the Hopf bifurcation at S±
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are deeper studied. The existence of infinitely many singularly heteroclinic cycles
is rigorously proved combining theoretical analysis and numerical technique. For
bg ≥ 2a(f + g) and a > d > 0, the system has been proved to have no homoclinic
orbits. In particular, this system also has two and only two heteroclinic orbits in
the case bg = 2a(f+g) and a > d > 0, which complements the known result in [13].
What’s more interesting, by numerical simulations, other heteroclinic orbits of this
system are illustrated to exist in other parameter region than bg ≥ 2a(f + g) and
a > d > 0. Hence, system (1.1) deserves further theoretical considering.

We hope, the present work will shed light on revealing of the true geometrical
structure of the amazing original Lorenz attractor even on the forming mechanism
of chaos.
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