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GLOBAL REGULARITY FOR 3D
GENERALIZED HALL
MAGNETO-HYDRODYNAMICS EQUATIONS

Baoquan Yuan' and Chaoying Li

Abstract For the 3D incompressible Hall magneto-hydrodynamics equations,
global regularity of the weak solutions is not established so far. The major
difficulty is that the dissipation given by the Laplacian operator is insuffi-
cient to control the nonlinearities. Wan obtained the global regularities of the
3D generalized Hall-MHD equations with critical and subcritical hyperdissipa-
tion in (Global regularity for generalized Hall-magnetohydrodynamics systems,
Electron. J. Differential Equations, 2015, 2015(179), 1-18). We improve this
slightly by making logarithmic reductions in the dissipation and still obtain
the global regularity.
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1. Introduction

This paper is concerned with the global regularity problem to the generalized in-
compressible Hall-MHD system of the form:

Ou+u-Vu+ Gu=—-Vp+b- Vb,
Ob+u-Vb+(3b=0b-Vu—V x ((V xb) xb),
V-u=V-b=0,

u(z,0) =up(x), b(x,0)=bo(x).

(1.1)

Here t > 0,z € R3, u(z,t),p(z,t),b(z,t) stand for the velocity vector, the scalar
pressure and the magnetic vector, respectively. Where the Laplacian —A in the
dissipation terms have been regliced by general multipli/e\r operators W/i\th symbols
given by m; and ms, namely (u(§) = m1(§)u(€) and (2b(§) = ma(£)b(E). When
Cu = —Au, (3b = —Ab, (1.1) becomes the standard incompressible Hall-MHD
equations.

Hall-MHD system was derived strictly from Euler-Maxwell equations or kinetic
model in [1], which played an important role in many physical problems, such as
magnetic reconnection in space plasmas [11], star formation [5] and also neutron
stars [20]. Hall-MHD system is known as the key to solving magnetic reconnection
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happening in the case of large magnetic shear. Since the topological structure
changed a lot, the affect of the Hall term due to the Ohm’s law must be taken
into account. For the physical background of the Hall-MHD, readers refer to [18§]
and references therein. Incompressible Hall-MHD equations play a dominant role
in mathematical theory as well as physical applications. As early as 1960, Lighthill
studied the Hall-MHD equations systematically in [18]. Afterwards, Acheritogaray
et al. not only deduced the Hall-MHD system from Euler-Maxwell equations or
kinetic model but also obtained the global existence of weak solutions in the periodic
domain in [1]. Later, Chae, Degond and Liu in [8] established the global existence of
weak solutions and the local well-posedness of classical solutions in the whole space
to the Hall-MHD, as well as the blow-up criterion of the classical solutions and the
global existence of the solutions for small initial data. Chae and Lee [9] improved
the relevant results in [8], and acquired Serrin type blow-up criteria and the blow-
up criterion in BMO space. Other scholars have also given a lot of regularity
criteria in Lebesgue space, BMO space or Besov space in the works [12, 13,16, 26,
30, 32] and references therein. Wang and Zuo studied the Hall-MHD system with
partial viscosity in [27], and Fei and Xiang researched the Hall-MHD equations
with horizontal dissipation in [14]. As same as the 3D Navier-Stokes equations,
the regularity and uniqueness of weak solutions for the 3D Hall-MHD equations
remain completely open. For lack of global well-posedness theory, the development
of regularity criteria is a significant topic no matter in theory or in practice.

Here we consider the generalized case with a, 8 > 1. Indeed, the investigations
of these fractional operators have a long history in fluid mechanics. As regards
related works, readers refer to [10,23,28,29,31] and references therein. To date, in
the work [23], Wan obtained the global regularity of (1.1) with o > 2,3 > g for
sufficiently smooth initial data, which was optimal by combining the scaling invari-
ance with energy estimates for generalized Navier-Stokes system (b = 0) and simple
Hall problem(u = 0). Pan and Zhu [19] obtained a new regularity criterion for the
generalized Hall-MHD system with b € (1/2,1]. Wu, Yu and Tang described the
asymptotic behavior of the generalized Hall-MHD equations in [25]. Can we make
a reduction to the optimal dissipation obtained by Wan [23] and still guarantee the
global regularity? Tao [22] examined the hyperdissipative Navier-Stokes equations
involving general Fourier multiplier operators, and he made a logarithmic reduction
in the dissipation and still obtained a unique global solution. Tao’s result was later
improved by Barbato et al. [4]. Bian and Yuan [6] reduced the logarithmical su-

percritical dissipation in [22] by %u with the condition fg ||uHQBg ds < +o0,

and still established the global regularity of a generalized Navier-Stokes equations.
Wu [24] generalized Tao’s result [22] to the GMHD equations in which the condition
8> % + % was not required and was replaced by a > % + %,[3 >0,a+p5>1+ %.

Motivated by the references mentioned above, we consider that whether the
similar result can be derived for a generalized Hall-MHD equations. The answer
is positive, and the key idea is to bring in the logarithmic factor. However, the
condition that g > % is indispensable because of the Hall term. Now we state our
result.

Theorem 1.1. Consider (1.1) with o > g, g > Z. Assume the initial data

(uo,bo) € H*(R®) with s > 5. Assume the symbols my and my satisfy

el &P
m@ 2y ol mOz o0
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and g1 > 1 and g > 1 are radially symmetric, nondecreasing and satisfy

o0 1
/1 (R T RERE e

Then the generalized Hall-MHD equations (1.1) has a unique global classical solution
(u, b).

Remark 1.1. In particular, the result applies to the logarithmical supercritical
dissipation

gl° o S
™ llog(2 + [¢2))F ™ llog(2 + [¢/2)]3

The article is organized as follows, in the second section, we give some notations
and preliminaries on functional settings and some important inequalities. In the
third section, we prove Theorem 1.1.

2. Preliminaries

First, we introduce the Littlewood- Paley decomposition and the definition of Besov
spaces. Let B = {¢ € R%,[¢] < 2} and C = {¢ € RY, 2 < [¢] < 8}, Choose
two nonnegative radial functions x, ¢ € C5°(R?) supported in B and C, let p(§) =
X(5) = x(€), x;(€) = X(277€), 9;(€) = p(277¢) for j € Z, such that

€+ w2778 =1, €£cRY,

7>0

> (278 =1,  ¢eRN\{o}.

JEZ

We denote h = F~1p and h=F1 X, where F~! stands for the inverse Fourier
transform. Write h;(x) = 27¢h(27x), hj(x) = 27¢h(27z). As a consequence, for any
f eS8, we have the Littlewood-Paley decompomtlon

fla) =hx f(x)+> hj* f(x)

7>0

(@)=Y hy*flx)

j=—o0

Where &’ denotes the class of Schwartz temperate distribution functions.
Define the Littlewood-Paley projection operators A; and S; as follows

Ajf(z) =p(277D)f =277 /Rd M2y f(x—y)dy  for je€LZ,

= Z Akf:x(2_jD)f:2jd/ h(27y) f(z — y)dy for jeZ.

k<j—1 R4
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Naturally, A; = S;—S;_1 is a frequency projection to annulus {C127 < [£] < C927},
and S; is a frequency projection to the ball {|¢| < C27}. One can easily verify that
with our choice of ¢,

N ARf=0 if [j—k|>2 and Aj(Sk_1fOArf) =0 if [j—k| >5.

With the introduction of A; and S;, we recall the definition of the homogeneous
Besov space.

Definition 2.1. Let s € R, (p,q) € [1,0]?, the homogeneous space B;}q is defined
by _
By, ={f €+ fll,, <och

where
4 1
Wl =4 (Ziea 205 015,) ", for 1<g<oc,
r supjez 201485 | e for q = oo.
Here S denotes the dual space of
So={f € S(RY): 5'af(0) =0 : Ya € NYmulti — index},

and can be identified by the quotient space of S’/P with the polynomials space
P. In other words, two distributions in &’ are identified as the same in S} if their
difference is a polynomial. For details, readers refer to [3,21].

Next, we state the definition of the inhomogeneous Besov space. Set

0, if j <=2,
Njf=LShxf if j =—1,
hj*f7 lf]:071723

We caution that A; with j < —1 associated with the homogeneous Besov space
B, , are different from those associated with the inhomogeneous Besov space B .

Definition 2.2. For s > 0, and (p,q) € [1,0]?, the inhomogeneous Besov space
B, , is defined as follows

By, ={f € S'RY): | fll5;, < oo},

where

/1

, 1
(Z;ii1 2599\ A f119,) 7, for 1< g < oo,
Bs, = :
P SUD_<jcoo 2% |18 flle, for g =oo0.

If s >0, then By = LP[) B§7q, whose norm is equivalent to

1y, ~ 1w + £l 5.

Additionally, when p = ¢ = 2, the Besov space and Sobolev space are equivalent.
That is _ _

H*~ B3, H°~B,,.

Bernstein’s inequalities are useful tools in dealing with Fourier localized func-

tions and these inequalities trade integrability for derivatives. The following propo-

sition provides Bernstein type inequalities for fractional derivatives. The proof is

an immediate consequence of Young’s inequality (see [7] for details).
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Proposition 2.1. Leta >0, 1 <p<q < oo.

(i) If | satisfies
suppf C {€ e RY: [¢| < K27}
for some integer j and a constant K > 0, then
|(=2) oy < CL2® 9D ] o gay;
(i) If | satisfies
suppf C {€ € R?: K120 < |¢] < K27}
for some integer j and constants 0 < Ky < Ks, then
C12%| fllzaay < (=) fllparay < 0222aj+jd(%7%)Hf”LT’(Rd)v
where Cy and Cy are constants depending on o, p and q only.

For more details about Besov space such as some useful embedding relations,
readers refer to [2,15]. Thanks to the Proposition 2.1, we can see that for any s > 0

ez = [ fllze + O 221 A, £1132)%, (2.1)

7>0

which will be used in our proof.
To prove our theorem, we need a bound for a special type of commutators.

Lemma 2.1. For any j > —1, p € [1,00],
1125, £ - Vgllee < COTHIO=D |G £|| o ||Vl o [|2h] o
where [Aj, f - V]g denotes N;(f -Vg) — f-VAjg, and ¢, and o satisfy

1 1.1 1 1 1 1
gro€llyoo), 1T+-=-4=-4+— —+—-+->L
p q r o r o d

In particular,
(i) for any p € [1,00],
I[A;, f - Vgllee < C277||V fllo<Vgllze|lzhll 11 (2.2)

(ii) for anyp € [1,00], ¥’ <p and 1 + L =1,

1A, f - Vgl < C2EHD)

IV e VgllLrllzhl e

Remark 2.1. The proof of Lemma 2.1 can be found in Wu [24] and Hmidi et
al. [17].

For convenience we recall the definition of Bony’s para-product formula which
gives the decomposition of the product f - ¢ of two functions f(z) and g(z).
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Definition 2.3. The para-product of f by ¢ is defined by
Tgf:Z Z Aigﬁjfzzsjﬂgﬂjf
JELi<j—2 JEL
The remainder of f and g is defined by
D=2 D Dighf
JEZ Ji—j|<1

Then Bony’s para-product formula is

fr9=Tyf +Trg+ R(f,9)-

Throughout the paper, C' stands for a real positive constant which may be
different in each occurrence.

3. Proof of Theorem 1.1

Proof. First, we give the L? estimate. Taking the inner product of system (1.1)
with u and b respectively in L?(R3), integrating and adding the resulting equations
together, we get the following energy inequality

t t
I Cult). b)) 122 + 2 / Gl 2adr +2 / [Gabl22dr < luolZ + bol2:  (3.1)

for almost every ¢ > 0. Here we have used the cancelation property ((V x b) x b) .
(Vxb)=0

Next we establish the energy estimate in H°. Applying the operator A; to (1.1),
one can write

8tAju + CIZA]U = — AJ(Vp) — AJ(’U, - VU) + Aj(b . Vb),
Db+ GO =—Dj(u-Vb)+ Aj(b-Vu) — 2;(V x ((Vxb)xb)). (3.2)

Taking the inner product of (3.2) with Aju and A ;b respectively in L?(R3), by the
divergence free condition and integrating by parts formula, we derive that

1d,

2dt

/ AYR7R Vu~Ajudx+/ [Aj7b~V]b~Ajudac—/ [Aj,u-V]b- Ajb dx
R3 R3

(1AzullZe + 12,bl172) + G A ullie + 16226l

+/ [2,b-Vu- Ajb dx—i—/ [2,bx](V x b) - A;(V x b) da
R3 R3

<A, w- Vw2 (|A5ullz + [1[A5, 6 VBl L2 | Ajull 2 + [, w - VBl L2 (| A50]] L2
+1185,0- Viul[L2185b] 2 + (1A, bx)(V x b)[[ 2| 25 (V X b)|[ 2

5
Z Li(t). (3.3)

(1>
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By the Bony’s para-product decomposition, Holder and Bernstein’s inequalities and
the commutator estimate (2.2) in Lemma 2.1, we deduce that

L) < D 18;(Sk—1u- VAw) = Sp_qu- VA;Agul| 2| Ajul 12

[k—j|<4

+ > A Agu - VSioqu) — Agu - VA Sk—qul g2 | Ajul e
[k—j|<4

+ 3 18(V - (Bku® Agw)) = V- (8 8u @ D) 12| A0l 2
k>j-3

<O277||V S yull = VA ull g2 [k o | Ajul| 2
+C02 Y 27| VAl | Agull 2 |2 o | Al 2
k>j—3

<C|VSj_rullpel|Ajulliz + C > VA Lo | Apul| 2]l Ajull 2, (3.4)
k>;5—3

where A 2 Ap_1 + Ap + Apyr. Arguing similarly to the above inequality (3.4),
we obtain

| La(8)] <CIVSj-1bllpoe [ A0]| L2 [ A jull 22
+C Y VARl | Axb] 2l Al 2, (3-5)

k>j—3

|Ls ()] <CIIVSj—rullp | 2501172 + [VSj—1bll oo | Ajull 2] 4] 2

+C Y IVARD e | Akul 2| ] 2, (3.6)
k>j—3

|La()] <C|VS;j—1bllpe | Ajull 2| A5b] L2 + ClIVS; -yl poe | 501172

+C D IVARull L | Akbl| 2|20 2, (3.7)
k>j5—3

|Ls5 ()] <C27||VS;_1b| Lo || 2;b]17 2

+02 S VAo Abll | Agbl e (3.8)
k>j—3

Multiply both sides of the equation in (3.3) by 227 and take the summation over
j > 0 to obtain that

1d sJ sj sJ
5@ o 2 (1Al + 1Ab1%:) + D22 G Al + 30 2 A bl
Jj=0 720 Jj=0

5

<223 Lit). (3.9)

>0 i=1
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Since the estimates of these five terms are similar, we only provide the details
of the third and the fifth terms. We now evaluate the third term, by (3.6), we get

> 29| Ls(D)ISCY_2°7(|VSj_yull ool A0 Zo) 22|V S - abll ol A gl 22l A0 e

720 J20 7>0
+OY 22| 85blle Y VAR e | Al 2
Jj=0 k>j—3
S L3y + Lz + Las. (3.10)

For Ls;(t) employing Bernstein, Holder and Young’s inequalities, we obtain

L3 = Z 227 |V Sjyul| oo | 2;bl172

j=0
<CY 29|03 DT 28| Aulle
Jj=0 m<j—2
) 2837 .
30292(23“)2”W||A bl| 22| 2l 227 3 23| A e
j=0 m<j—2
_242 253 23+1 18;0]72
3>0
+CZ93(2”1)2233'HAij%zTW( 372 Al g2)?
7>0 m<j—2
<o 222SJ||¢2A bl|22 + C(Lay + Lapa), (3.11)
7>0

where

) si _93i S5m 2
Lo = Y g3@H229) 05022725 ( 3 28| Aull2)?,

0<j<N m<j—2

. . _ . 5 2

Lyin =y g3(277)2% [ A5]17:27279 (1 D" 237 A 12)
i>N m<j—2

for a natural number N large enough to be determined later.

L <C ¥ @2 (X 28l

0<j<N m<—1

2
+ 0y 25<m—j>2am||Amu||Lz>

0<m<j—2
<Cg3 (2N )bl lull 72

2
+Cg%(QNJrl) Z 225J||Ajb||%2<081_1p Z QB(mJ)QamHAmUHLz) '

0<j<N SISN o<m<j—2
Using Young’s inequality of series convolution, we have

Lain <Cg3 2V [l 7 [[ull
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. ) 92aj
OB bl S e 3 A Al
jez 0<j<N 91

ullZs + Cgi (M) g3 (2N Ibl1Z | CrullZs-

<Cgz (2" N)[bl%

To estimate L3, choose a positive real number ¢; such that 0 < §; + % < f3, then
B8 — 6 > %, we have

2
Lmzzg%@f“)z2<“1”22Sj||Ajb||i2< > 2<m”‘*2<351>m|mmu||m)
J>N m<j—2

2
<Cgz (2N H1)272N I8N "9 A b 7 qup > 2""”‘512(351)7"||AmUIIL2)
>N
<Cgz (2N )27 2NE= p[ 3. S " 27| Al |72
meZ

<Cg3 (2N 1272V = b 3y ) Fy.

m<j—2

Inserting the estimates of L3;; and L3 into (3.11), we have

1
Lyy <57 l1Gbllir + Co3 M Dbl ullZ + Cot 2V gz V)bl [ aulze

+Cg3 (2N 272N Bl ul |

We shall use an argument similar to that used in deriving the estimate of L3y
to obtain the bound of Lgs. The only difference is that the term ||V.S;_qu||ze in
L, is replaced by [|[V.S;_1b||p. Thus, for the lower frequency part, we enlarge %
to 23; For the higher frequency part, it is handled similarly to the estimate of L3qs.
Then we see that

1
Lgs <o [GobllF + Coz M DIbITe ullf + Co2 (2™ D) lullZ-[1Gb]72
+Cga (2N 272N w3 b 7.
For L33(t), it can be shown that

Lz <C > 2% Ajbllge Y 23K Apbl| 2| Apul| 2

720 k>j-3
<C> 2K Apbllra | Arulls > 22| A0 1
k>0 0<j<k+3
=C) 29| AbllcellBjullz Y 2%F Ak
320 0<k<j+3
£Lsg1 + Lasa, (3.12)

where
Lggi = Y 29|00l 2l Bjulls Y 22F A L2,
0<j<N 0<k<j+3

Laga = % 23802 | Dgullee D 22 (A48 2.

J>N 0<k<j+3
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Lgs1 < ) 2SJ 2]-0—1 12801222272 | Ajull s Y 2% A 2
0<j<N 0<k<j+3

3
( Z 92sj 2]+1)HA bHL?)

0<j<N

[N

( S @ Al (Y 225“J'||Akb|m)2)

0<j<N 0<k<j+3

By virtue of Holder and Young’s inequalities, one has

Nl=

, 22
Lan <Clbl a3 At Al )

0<j<N

sup Z QS(k_j)+Sk||AkaL2
0=I=N o<k<j+a

<C|\Czb||Hsgz(2N“)g1(2N“)||C1UI|L2 1611 e
_48||C2b||Hs +Cg3 (2 g @V CuullZ: 1611

Lon < 2 oy W 1850292227 P Ajull e Y- 22| A e
>N 0<k<j+3

(Z 92sj_ = 2J+1 1A b”L"’)

j>N

Nl

. _ . S, ~ 5754 2
x(Zgé’(zﬂ“ﬂ 2253 | Agull2, (S 2P J||Akb||m))

j>N OSk<J’+3

<||<2b|Hsgz<2N+1>2-ﬂN(Z22”‘||Aju||i2) sup 3 2 IR A e

J>N I>Ny<l<j+3
<||€2b|\H g2(2N 27N || s

bl

748H<2b||H +Cg3 (V272N ul e 10 7

Inserting the estimates of L33; and Lsgo into (3.12), then Lss is estimated by
Lss <5, ||Czb||Hs +Cg5 (2N g2 2NN [[Guul| 72 1017
+ Cgs (2N 272N || 3 || b e -

It is found that ., 2%%[L3(t)| is estimated by

sj 1
> J\Ls(t)lSgIICzbllff#Cg%(?N“)Hbllfm ul[7+Cgt (2 g3 2V [ Gul 72 (101

Jj=20

+Cga (2272 NI bl + Cg3 (V) fulF- 110 22

+ Cg (2 ) ullFr [1G2blIE2 + Cof (@Y g3 V)Gl 210l 7o
+Cg3 (2N 272 N ul 3o 10 7 (3.13)
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We now estimate ), 2%7|L5(t)|. By (3.8), we have

Y 2|Ls(8)] <C Y2V Ab]T. Y IIVAWD| =

j=0 j>0 m<j—2
+ O3 2@ VI A b2 S [V ARD| L | kbl
3=>0 k>j—3
£Ls1(t) + Lsa(t). (3.14)

Similarly to the estimate of >, 227| L3(t)|, we obtain

|L51|§022<28+1>J‘|\Ajb|\i2 ST 28| AL L

7>0 m<j—2

<CY 2V 2]+1 12358l 2 g2 (21242 A bl ST 28 A b1

7>0 m<j—2
1 928j
<= 20 || A;b]| 72
= +1 L
16 < g2(20+1)
+C g2 || Ab)13,2207D3 (37 28| Ab| e )
§>0 m<j—2
—T6||<2b|‘H> + C(Ls11(t) + Ls12(t)), (3.15)
where
L5 = Z F(27T1)2%%9 || A\ b)|3 220 7R Z 25| Ay b||L2) ,
0<j<N m<j—2
Lz = Y g3(271)2%59 || 20]|2.220 7P (37 28™||Ab)12)
j>N m<j—2
) 2
Lin< Y @g@29)a, b||L2(||b||L2+ T W*““ummbnm)
0<j<N m<j—2
<Cg3 (2T |1b]|7:11617.»
2
+ Cg3 (2N Z 22SJ'IIAJ‘bH%( sup Z 2(B_1)(m_j)2ﬁm||ﬁmb||m)
0<j<N 0SISN <2

<Cg3 2V )bl Z 161172 + Caz (V) [BlIF- G207

To estimate Lsi2, let 6o be a positive number such that 0 < d; + % < B, then
B — 6y > %, one has

2
Lsig = Z g§(2j+1)2_2j(6_52_1)225j|A]-b%2( Z 2(m—j)622(3—62)mAmbL2>

J>N m<j—2
2
<CREN NS b sup 3o g, b)
J>N 7> m<] 2

<Cgs (2N )2 2N Oy ..
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Plugging the estimates of L5117 and Ls1o into (3.15), we have the following estimate

Lsi <= IIGablie + Cg 2N bl 617> + Cga (¥ H)Ibl1Z- 120172

—16
+Cga (2N )2 2N o .
Evaluating Lso(t) similarly to the estimate of Lss(t), we get

Lsy <C Y 2@ 03| Ab]| 2 > 288 Agbl| 2| A 2

j=0 k>j—3
=C Y 28| Abllea | Anbllre Yo 2R A2
Jj=0 0<k<j+3
£ Lso1 + Lsaa, (3.16)
where
Looi = % 287 80]ealAbllre Y- 2O ARR e,
0<j<N 0<k<j+3
Lozs =3 287 Agbllpa | Ablle > 23508 Apb| o
j>N 0<k<j+3
Lsoy <C > 200709 Ab|| o | Arbll 2 > 25K A2
0<j<N 0<k<j+3
<CZ2SJ |A 0]l 2g2(27F) 27 CFVIRBT | A b 2 > 2GR A LD 2.
0<j<N 0<k<j+3
By Holder and Young’s inequalities, it follows that
Lm0 3 2 QJH)HA )
0<j<N
1
j i A s —j)+s 2\
(X BOIRNAMG( T A A
0<j<N 0<k<j+3
2/9N+1 22B 2
<C|[¢2bllH=95(277") Z WHA ibll7
0<j<N
X sup 2(8+1)(k*] +SkHAkb”L2
0SISN g<k<jt3
<0||C2b||H 952NN [1Cbl| L2 (1] 12
—32||42bHH“ + Cga (2 [1C2blI 72 16 -
L522§22sj||Ajb||§2 ST 2R A L
>N 0<k<j+3
<Z2” QJH 126l 12 g2(27F1)27F7206F 0| A s 12y 2B DR= (AT Ay b
0<k<j+3

j>N
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(Z g2sj_ 27 23+1 1A, b||L2>

>N
1
j - —1)j92s7 s —J)+s 2 °
x (Zgazﬂ“)z 26-Dig2i | A B2, 3 2l J>+k||Akb||L2))
>N 0<k<j+3

1
_ 3
scnczbnmgQ(QN“)z””N( > 22*||Ajb||i2)
j>N
xosup Y 2FDETD A p|
I>N g<k<j+3
<C||€2b||H'92(2N+1)27(671)N|\b||%s
_32||Czb||H< +Cga (2N 272UV g ..
Putting the estimates of Lso; and Lsas into (3.16) to yield that

1 CoN(B—
Lsp <1 l1GablFre + Caz @) bl 1Gbl 72 + C272V DG (2N by

Thus by (3.14) it follows that

b2 + Cgs (V)1 Cabll 2 1Bl 7o

. 1
>~ 229 |Ls(8)] <5 l1Gabl%e + Cg3(@ ) bl
3>0

+ Cg3 (2N T)272NE=0 = p) 14,
+ Cg2(2N+1)272N 6D 1p)14,.. (3.17)

Using an argument similar to that used in evaluating >, 227| L3(t)| and
>502%%7|Ls(t)|, we have

> 22| Ly(t)] <*||C1U|\Hs +Cgi 2V ) ullpe lullZ> + Cof @Y lullZre I GrullZ:

7>0

+ Cgi (2N T2 2N [y . 4+ Cgf (28272 N w3y, (3.18)
where d3 is a small positive number such that 0 < d3 + % < «, then a — §3 > %
sj 1
> 2% |La(t)] Sgll(szI?{s +Cga (2N ull B 1]172 + Caz (2N ) Jul e[| G20l 72
Jj=0
+ Cgz (2N 272N =00 | . 10 3«
+ Caa (2N 272Nl . |Jul - (3.19)

b1z

g 1 1
0229 La(t)] <5 bl + Gl + Cg3EY )l
Jj=0

+Cga (2N )|l Fr- (12l 72 + Cga (2N )27 2N O w3, |[b| 7.
+Cg3 Yol 7 llullZ> + Cof 2V )gd 2N blFe IC1ull?
+Cgi (2 g3 2V bl 1620l 72

+ g7 (27272 ]| 3. (3.20)
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Plugging the estimates (3.13) and (3.17)-(3.20) into (3.9), by (3.1) and (2.1) we
have

1d
2
<Cgi (2" H)|ullf

1 1
el + 1013 + 5 Gueli: + Scabll.

ullZz + Cgi 2N ) [[ulle | Grull

+Ogi (2N T2 NSy 4 Cof (V272N |u e,

+Cg 2V ullFa[Ibl1F2 + Cgz (2N ) ull - 1G] 22

+Cgy (N2 NI w3 b e + Co3 (V27N b 3yl Fe

+Cga 2V bl lull7 + Co ¥ )g3 M) ICrul| 22 10]1 7

+Cgi (2N g3 (2N 0113 160172 + g7 (2N 272N oI .

+Cga 2V [bl1 - 1bl172 + Cgz (2V )| GblI T2 [1B]1 7

+Cgy (2N T2 2N |3+ Cg3 (V272N O )| 3. (3.21)
Write E,(t) = ||ullF. + b3, A1(t) = [Cull72, A2(t) = [|G2b]|7.. In view of the

facts that

2720&]\7 < 272N(0¢7§3)’ 2725]\7 < 272]\7(,3751)7 272([371)1\/ < 272N(ﬁ7§271)7

one can choose an integer NV such that
9 2N(a=ds)pp g 9 2NB-0p g 2 2NB--Dp g

Thus we set
log, Fq —3} [log2 E —3} { log, Es — 3 ] }
N = [log, Fs]—2 > max +1, +1, | ————=|+1 ¢,
toga B {{ 2(or = d3) 2(8—01) 2(8—02-1)
then 2V+1 < E.. By the definitions of E,(t), A1 (t), A2(t) and the choice of N, (3.21)
can be written as
d 2
B+ [CrullFre +11G2blI e < C (g7 (Bs) + g5 (Bs)) " Bs (Av(#) + A2(t) +1).

Integrating on [0, 7] for any T > 0, it leads to the following estimate,
Bs(T) dFE(t T
/ ®) > g/ C(AL(t) + Az(t) + 1) dt.
0

.0 By(t)(97(Es) + g3 (Es))
By the condition of [ mds = +o00 and the boundedness of fOT C(AL(t)+

A (t)) dt we can obtain that

lw(t)||3 + [|b(t)]|%. < oo for any 0 < t < T,

and we thus complete the proof of Theorem 1.1. O
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