
Journal of Applied Analysis and Computation Website:http://jaac.ijournal.cn

Volume 9, Number 6, December 2019, 2070–2095 DOI:10.11948/20170189

A NEW NONLOCAL MODEL FOR THE
RESTORATION OF TEXTURED IMAGES
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Abstract In this paper, we focus on the mathematical and numerical study
of a new nonlocal reaction-diffusion system for image denoising. This model is
motivated by involving the decomposition approach of H−1 norm suggested by
Meyer [25] which is more appropriate to represent the oscillatory patterns and
small details in the textured image. Based on Schaeffer’s fixed point theorem,
we prove the existence and uniqueness of solution of the proposed model. To
illustrate the efficiency and effectiveness of our model, we test the denoising
experimental results as well we compare with some existing models in the
literature.

Keywords Image denoising, nonlocal model, schaeffer’s fixed point theorem,
textured images, nonlocal p-Laplacian.

MSC(2010) 68U10, 45G10, 47H10.

1. Introduction

In these days, image denoising has been an attractive title for researchers in image
processing and computer vision. The main goal is to seek the restored image u(i)
such that

f(i) = u(i) + ξ(i),

where f(i) is a degraded image corrupted by the noise perturbation ξ(i) at a pixel i
which is often considered to be the stationary Gaussian with zero mean and variance
σ2. The challenge is to recover an image corrupted by the noise with preserving
edges, fine details and textures. To handle this problem, many models are avail-
able such as variational models [2, 5, 21, 27–29], bilateral filtering [11] and wavelet
thresholding [9]. Recently, some kind of nonlocal methods [12–14, 17] have been
proved to be very powerful in the image denoising which are able to remove noise,
preserve edges, take care of the fine structure, details and texture. This relatively
new class of denoising methods originates from the nonlocal means, introduced by
Buades and al. [8], and based on the work of Yaroslavsky filter [31]. Besides, the
transform-based BM3D filter by Dabov and al. [10] relies both on nonlocal and lo-
cal characteristics of natural images. Other developed versions have been proposed
in [20,22–24]. Furthermore, Kindermann, Osher and Jones [19] have presented the
first variational understanding of the nonlocal p-Laplacian problems for deblurring
and denoising images. Gilboa and Osher [13, 14] later formalized a systematical
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study for nonlocal image processing by introducing nonlocal operators. General-
ly, the restored image u : Ω −→ IR is computed from the following minimization
problem:

min
u
F (u) = Jp(u) + λ||f − u||2X , (1.1)

where Ω ⊂ IRN (N equal to 2 or 3 in practical situations) is an open and bounded
domain with smooth boundary Γ, λ > 0 is a weight parameter, X is a Banach space,
||f − u||2X is the fidelity term and Jp(u) is a regularizing term to remove the noise.
In this work, we are interested in nonlinear nonlocal regularization of the form

Jp(u) =
1

2p

∫
Ω

∫
Ω

J(x, y)|u(y)− u(x)|pdydx

where J is a given function and 1 < p < ∞. The problem (1.1) with X = L2(Ω)
has been studied by many authors ( [3, 6, 7]) and it represents an efficient and
effective tool for image denoising. However, smaller details, such as texture, are
destroyed. To overcome this, Meyer [25] proposed to change the L2(Ω) norm of
(u − f) by a weaker norm more appropriate to represent textured or oscillatory
patterns. Subsequently, in ( [15,16,26] and [1]) the authors decomposed the image
into two components: the first is a smoothed original image and the second is the
texture or noise information. In other word, they used a weaker norm X = H−1

for oscillatory functions. Since this norm is defined as ||.||2H−1 =

∫
Ω

|∇∆−1(.)|2, the

minimization problem (1.1) is formally associated to the Euler-Lagrange equation,
which can be formally written as:

Lp(u)− 2λ∆−1(f − u) = 0 in Ω, (1.2)

where Lp(u) =

∫
Ω

J(x, y)|u(y)−u(x)|p−2(u(y)−u(x))dy is the nonlocal p-Laplacian

operator with homogeneous Neumann boundary conditions. Setting v = ∆−1(f −
u) and using the previous arguments in the nonlocal framework, we propose the
following nonlocal systemLp(u)− 2λv = 0 in Ω,

L2(v)− (f − u) = 0 in Ω.
(1.3)

The nonlocal evolutional reaction diffusion system associated to (1.3) can be written
as:

(P )


ut(t, x) =

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dy − 2λv(t, x) in QT ,

vt(t, x) =

∫
Ω

K(x, y)(v(t, y)− v(t, x))dy − (f(x)− u(t, x)) in QT ,

u(0, x) = u0(x) = f(x), v(0, x) = v0(x) = 0 in Ω.

Here, QT := (0, T ) × Ω, the kernel J : RN × RN → R and K : RN × RN → R are
nonnegative smooth functions with compact support contained in Ω × B(0, d) ⊂
RN × RN with

0 < sup
y∈B(0,d)

J(x, y) = R(x) ∈ L∞(Ω),
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0 < sup
y∈B(0,d)

K(x, y) = A(x) ∈ L∞(Ω). (1.4)

Furthermore, J and K are symmetric functions satisfying:∫
RN

J(x, y)dx =

∫
RN

K(x, y)dx = 1, J(x, y) = J(y, x), K(x, y) = K(y, x).

We recall the following integration by parts formula (see [3] for instance). For every
u, ξ ∈ Lp(QT ), 1 < p <∞, we have

−
∫

Ω

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dyξ(t, x)dx

=
1

2

∫
Ω

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))(ξ(t, y)− ξ(t, x))dydx.

(1.5)

The rest of this paper is structured as follows. In section 2, we prove the existence
and uniqueness of the solution to the proposed model (P ). At last, section 3 is
devoted to numerical results and comparative experiments to improve our model.

2. Existence

In this section we prove the following existence and uniqueness theorem.

Theorem 2.1. Let λ > 0, 1 < p <∞ and f ∈ L∞(Ω) be given. Then there exists

a unique couple (u, v) ∈
[
C
(

[0, T ];L1(Ω)
)
∩W 1,1

(
(0, T );L1(Ω)

)]2
solution of (P )

satisfying u(0, x) = u0(x), v(0, x) = v0(x) a.e. x ∈ Ω and

ut(t, x) =

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dy − 2λv(t, x) in QT ,

vt(t, x) =

∫
Ω

K(x, y)(v(t, y)− v(t, x))dy − (f(x)− u(t, x)) in QT .

To prove the existence result of the problem (P ), firstly we approximate the system
(P ) by a suitable problem (P ε), we prove the existence of the solution to the problem
(P ε) based on Schaeffer’s Fixed Point Theorem, then we pass to the limit which
proves that the solution of (P ε) converges to the solution of problem (P ). Finally,
we close the demonstration by proving the uniqueness of the solution.

2.1. Approximate problem

In this subsection, we present the approximate system (P ε) of the problem (P):

(P ε)



ut(t, x) =

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dy − 2λv(t, x) in QT ,

vt(t, x) = ε∆v(t, x) +

∫
Ω

K(x, y)(v(t, y)− v(t, x))dy − (f(x)− u(t, x)) in QT ,

∇v.~n = 0 on ΓT ,

u(0, x) = u0(x) = f(x), v(0, x) = v0(x) = 0 in Ω,
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where ~n is the unit outward normal, ΓT = (0, T )×Γ and ε > 0 is a fixed parameter.

To prove the existence result of the problem (P ε), we shall use Schaeffer’s Fixed
Point Theorem. In other words, we solve the decoupled problem and we seek for
the estimates that allow us to pass to the limit.

2.2. Schaeffer’s fixed–point method

We assume that u ∈ L2
(
QT
)

is fixed, and thanks to [18] for a constant function p

equals to 2, there exists a unique solution v ∈ C
(

[0, T ];L1(Ω)
)
∩L2

(
(0, T );H1(Ω)

)
of the following problem

vt(t, x) = ε∆v(t, x) +

∫
Ω

K(x, y)(v(t, y)− v(t, x))dy − (f(x)− u(t, x)) in QT ,

∇v.~n = 0 on ΓT ,

v(x, 0) = 0 in Ω,

(2.1)

in the sense that

−
〈∂ϕ
∂t
, v
〉
Qτ
−
∫ τ

0

∫
Ω

∫
Ω

K(x, y)(v(t, y)− v(t, x))dyϕdxdt

+ ε

∫ τ

0

∫
Ω

∇v(t, x)∇ϕdxdt+

∫ τ

0

∫
Ω

(f(x)− u(t, x))ϕdxdt+

∫
Ω

v(t, x)ϕdx
∣∣∣τ
0

= 0,

for every τ ∈ (0, T ] and every test-function

ϕ ∈ L2
(

(0, T );H1(Ω)
)
,
∂ϕ

∂t
∈ L2

(
(0, T ); (H1(Ω))′

)
,

where < . , . > denotes the duality bracket between L2
(

(0, T ); (H1(Ω))
)

and L2
(

(0, T ); (H1(Ω))′
)

.

Now, let v ∈ C
(

[0, T ];L1(Ω)
)
∩ L2

(
(0, T );H1(Ω)

)
be given, thanks to Remark

2.6 of [3], there exists a unique solution u ∈ C
(

[0, T ];L1(Ω)
)
∩W 1,1

(
(0, T );L1(Ω)

)
to the following problem
ut(t, x) =

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dy − 2λv(t, x) in QT ,

u(0, x) = f(x) in Ω.

(2.2)

As it is done in theorem 6.40 (page 161) of the reference [4], one can show that
u ∈ L2

(
QT
)
, since u0 ∈ L2

(
Ω
)

and v ∈ L2
(
QT
)
. For further details, we refer to [4]

and the references therein.
Now, we introduce a mapping F defined as

F : L2
(
QT
)
−→ L2

(
QT
)

u −→ F(u) = u,
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where F(u) is the solution of the problem (2.2) for a given v the solution of the
problem (2.1).

In the next, we show that F satisfies the hypotheses of Schaeffer’s fixed point
theorem which includes two steps.

First step: let us show that F is a continuous and compact mapping. Let
(un)n be a bounded sequence in L2

(
QT
)

and u ∈ L2
(
QT
)

such that

un −→ u weakly in L2
(
QT
)

as n −→∞.

Define un = F(un), i.e. un is the solution of (2.2) associated with un and vn is the
solution of (2.1). We shall prove that Γ is a continuous mapping. i.e.

F(un) −→ F(u) in L2
(
QT
)

as n −→∞.

Let (un, vn) be a solution of the following system
vnt (t, x) = ε4vn(t, x) +

∫
Ω

K(x, y)(vn(t, y)− vn(t, x))dy − (f(x)− un(t, x)), in QT ,

∇v.~n = 0 on ΓT ,

v(x, 0) = 0 in Ω,

(2.3)
unt (t, x)=

∫
Ω

J(x, y)|un(t, y)−un(t, x)|p−2(un(t, y)−un(t, x))dy−2λvn(t, x) inQT ,

u(0, x)=f(x) in Ω.

(2.4)
Now, to estimate the approximate solution, we state the following lemma.

Lemma 2.1. Let (un, vn) be the solution of (2.3)-(2.4). We have

||vn(t, x)||2
L∞
(

0,T ;L2(Ω)
) + ε

∫ τ

0

∫
Ω

|∇vn(t, x)|2dxdt

+
1

2

∫ τ

0

∫
Ω

∫
Ω

K(x, y)|vn(t, y)− vn(t, x)|2dydxdt ≤ C1,

||un(t, x)||2
L∞
(

0,T ;L2(Ω)
) +

1

2

∫ τ

0

∫
Ω

∫
Ω

J(x, y)|un(t, y)− un(t, x)|pdydxdt ≤ C2,

(2.5)

where the constants C1 and C2 are independent of n and ε.

Proof. Let τ < T , taking vn as a test function in (2.3), multiplying (2.4) by un

and integrating over Ω×
[
0, τ
]
, we get

1

2

∫
Ω

(vn(τ, x))2dx−
∫ τ

0

∫
Ω

∫
Ω

K(x, y)(vn(t, y)− vn(t, x))dyvn(t, x)dxdt

+ ε

∫ τ

0

∫
Ω

|∇vn(t, x)|2dxdt+

∫ τ

0

∫
Ω

(f(x)− un(t, x))vn(t, x)dxdt

=
1

2

∫
Ω

(vn(0, x))2dx, (2.6)
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−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)|un(t, y)− un(t, x)|p−2(un(t, y)− un(t, x))dyun(t, x)dxdt

+
1

2

∫
Ω

(un(τ, x))2dx+ 2λ

∫ τ

0

∫
Ω

vn(t, x)un(t, x)dxdt =
1

2

∫
Ω

(un(0, x))2dx. (2.7)

Thanks to (1.5) and using the initial condition un(0, x) = f(x) and vn(0, x) = 0,
then the equations (2.6) and (2.7) become

1

2

∫
Ω

(vn(τ, x))2dx+
1

2

∫ τ

0

∫
Ω

∫
Ω

K(x, y)|vn(t, y)− vn(t, x)|2dydxdt

+ ε

∫ τ

0

∫
Ω

|∇vn(t, x)|2dxdt+

∫ τ

0

∫
Ω

(f(x)− un(x, t))vn(t, x)dxdt = 0, (2.8)

1

2

∫
Ω

(un(τ, x))2dx+
1

2

∫ τ

0

∫
Ω

∫
Ω

J(x, y)|un(t, y)− un(t, x)|pdydxdt

+ 2λ

∫ τ

0

∫
Ω

vn(t, x)un(t, x)dxdt =
1

2

∫
Ω

f(x)2dx. (2.9)

Then, we have

1

2

∫
Ω

(vn(τ, x))2dx+
1

2

∫ τ

0

∫
Ω

∫
Ω

K(x, y)|vn(t, y)− vn(t, x)|2dydxdt

+ ε

∫ τ

0

∫
Ω

|∇vn(t, x)|2dxdt ≤
∫ τ

0

∫
Ω

|(f(x)− un(x, t))vn(t, x)|dxdt, (2.10)

1

2

∫
Ω

(un(τ, x))2dx+
1

2

∫ τ

0

∫
Ω

∫
Ω

J(x, y)|un(t, y)− un(t, x)|pdydxdt

≤ 2λ

∫ τ

0

∫
Ω

|vn(t, x)un(t, x)|dxdt+
1

2

∫
Ω

f(x)2dx. (2.11)

Now, applying Young’s inequality, we obtain∫ τ

0

∫
Ω

|(f(x)− un(t, x))vn(t, x)|dxdt ≤ 1

2

∫ τ

0

∫
Ω

(f(x)− un(t, x))2dxdt

+
1

2

∫ τ

0

∫
Ω

(vn(t, x))2dxdt, (2.12)

2λ

∫ τ

0

∫
Ω

vn(t, x)un(t, x)dxdt ≤ λ2

∫ τ

0

∫
Ω

(vn(t, x))2dxdt+

∫ τ

0

∫
Ω

(un(t, x))2dxdt.

(2.13)

Thanks to
(
2.12) (respectively (2.13)

)
, the equation

(
2.10) (respectively (2.11)

)
becomes

1

2

∫
Ω

(vn(τ, x))2dx+
1

2

∫ τ

0

∫
Ω

∫
Ω

K(x, y)|vn(t, y)− vn(t, x)|2dydxdt

+ε

∫ τ

0

∫
Ω

|∇vn(t, x)|2dxdt ≤ 1

2

∫ τ

0

∫
Ω

(f(x)−un(x))2dxdt+
1

2

∫ τ

0

∫
Ω

(vn(t, x))2dxdt,

(2.14)
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1

2

∫
Ω

(un(τ, x))2dx+
1

2

∫ τ

0

∫
Ω

∫
Ω

J(x, y)|un(t, y)− un(t, x)|pdydxdt

≤ λ2

∫ τ

0

∫
Ω

(vn(t, x))2dxdt+

∫ τ

0

∫
Ω

(un(t, x))2dxdt+
1

2

∫
Ω

f(x)2dx. (2.15)

Now, setting Θn(τ) =

∫
Ω

vn(τ, x)2dx and Θ̃n(τ) =

∫
Ω

un(τ, x)2dx, we have

0 ≤ 1

2
Θn(τ) ≤ 1

2

∫ τ

0

∫
Ω

(f(x)− un(x))2dxdt+
1

2

∫ τ

0

Θn(t)dt

and

0 ≤ 1

2
Θ̃n(τ) ≤ λ2

∫ τ

0

∫
Ω

(vn(t, x))2dxdt+
1

2

∫
Ω

f(x)2dx+

∫ τ

0

Θ̃n(t)dt.

Using Gronwall’s inequality, we get

0 ≤ Θn(τ) ≤
(∫

Ω

1

2
(f(x)− un(x))2dx

)
exp(

τ

2
) and

0 ≤ Θ̃n(τ) ≤
(
λ2

∫ τ

0

∫
Ω

(vn(t, x))2dxdt+
1

2

∫
Ω

f(x)2dx
)

exp(τ), ∀τ ∈ [0, T ].

(2.16)

Since un is bounded in L2
(
QT
)
, we have

sup
0<τ<T

∫
Ω

vn(τ, x)2dx ≤ C1 and sup
0<τ<T

∫
Ω

un(τ, x)2dx ≤ C2, (2.17)

where the constants C1 and C2 depend only on T , λ,
∫

Ω
f(x)2dx and

∫ τ
0

∫
Ω
un(x)2dxdt.

Combining (2.14) and (2.15) with (2.17), we conclude that

ε

∫ T

0

∫
Ω

|∇vn(t, x)|2dxdt ≤ C1,

∫ T

0

∫
Ω

∫
Ω

K(x, y)|vn(y)− vn(x)|2dydxdt ≤ C1

and

∫ T

0

∫
Ω

∫
Ω

J(x, y)|un(y)− un(x)|pdydxdt ≤ C2.

Consequently, the Lemma is hold.

Passage to the limit. Taking ϕ as a test function in (2.3), multiplying (2.4) by
φ ∈ D(QT ) and integrating over Ω×

[
0, τ
]
, we have

−
∫ τ

0

∫
Ω

vn(t, x)ϕt(t, x)dxdt+

∫
Ω

vn(t, x)ϕ(t, x)dx
∣∣∣t=τ
t=0

−
∫ τ

0

∫
Ω

∫
Ω

K(x, y)(vn(t, y)− vn(t, x))dyϕ(t, x)dxdt

+ ε

∫ τ

0

∫
Ω

∇vn(t, x)∇ϕ(t, x)dxdt+

∫ τ

0

∫
Ω

(f(x)− un(t, x))ϕ(t, x)dxdt = 0,

(2.18)
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−
∫ τ

0

∫
Ω

un(t, x)φt(t, x)dxdt+2λ

∫ τ

0

∫
Ω

vn(t, x)φ(t, x)dxdt+

∫
Ω

un(t, x)φ(t, x)dx
∣∣∣t=τ
t=0

−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)|un(t, y)− un(t, x)|p−2(un(t, y)− un(t, x))dyφ(t, x)dxdt = 0.

(2.19)

Using Lemma 2.1, there exist a subsequence of (un, vn) will be denoted also by
(un, vn) and limit functions u, v such that

un −→ u weakly in L2
(
QT
)
,

vn −→ v weakly in L2
(
(0, T );H1(Ω)

)
. (2.20)

It is not difficult to see that∫
Ω

K(x, y)(vn(t, y)− vn(t, x))dy is bounded in L2(QT ).

By the equation (2.3), we have

vnt (t, x) = ε4vn(t, x) +

∫
Ω

K(x, y)(vn(t, y)− vn(t, x))dy − (f(x)− un(t, x)).

Since vn is bounded in L2(0, T ;H1(Ω)) and
∫

Ω
K(x, y)(vn(t, y)−vn(t, x))dy−(f(x)−

un(t, x)) is bounded in L2
(
QT
)
, we deduce that vnt is bounded in L2(0, T ; (H1(Ω))

′
)+

L2
(
QT
)
. Thanks to the Aubin-Lions-Simon lemma [30], we have

vn −→ v in L2
(
QT
)
. (2.21)

Now, taking φ = (un − um) as a test function in (2.19), we obtain∫ τ

0

∫
Ω

(un(t, x)− um(t, x)) (un(t, x)− um(t, x))tdxdt

+ 2λ

∫ τ

0

∫
Ω

(vn(t, x)− vm(t, x))(un(t, x)− um(t, x))dxdt

−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)|un(t, y)− un(tx)|p−2(un(t, y)− un(t, x))dy

(un(t, x)− um(t, x))dxdt+

∫ τ

0

∫
Ω

∫
Ω

J(x, y)|um(t, y)− um(t, x)|p−2

(um(t, y)− um(t, x))dy(un(t, x)− um(t, x))dxdt ≤ 0. (2.22)

Thanks to the monotonicity lemma 2.3 of [3], we get

1

2

∫
Ω

(un(t, x)−um(t, x))2dx

∣∣∣t=τ
t=0
≤2λ

∫ τ

0

∫
Ω

|(vn(t, x)−vm(t, x))(un(t, x)−um(t, x))|dxdt.

(2.23)

Using Young’s inequality, we have∫
Ω

(un(t, x)− um(t, x))2dx ≤ 2λ2

∫ τ

0

∫
Ω

(vn(t, x)− vm(t, x))2dxdt (2.24)

+ 2

∫ τ

0

∫
Ω

(un(τ, x)− um(τ, x))2dxdt.
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Applying Gronwall’s inequality, we obtain∫
Ω

(un(τ, x)− um(τ, x))2dx ≤
(

2λ2

∫ τ

0

∫
Ω

(vn(t, x)− vm(t, x))2dxdt

)
exp(2τ), ∀τ ∈ [0, T ].

(2.25)

We have proved in (2.21) that vn −→ v in L2
(
QT
)
. Consequently, from (2.25), we

have
un −→ u in L2

(
QT
)
.

Passing to the limit in (2.18)-(2.19) and using the previous convergence results, we
conclude that

−
∫ τ

0

∫
Ω

v(t, x)ϕt(t, x) +

∫
Ω

v(t, x)ϕ(t, x)dx
∣∣∣t=τ
t=0

−
∫ τ

0

∫
Ω

∫
Ω

K(x, y)(v(t, y)− v(t, x))dyϕ(t, x)dxdt

+ ε

∫ τ

0

∫
Ω

∇v(t, x)∇ϕ(t, x)dxdt+

∫ τ

0

∫
Ω

(f(x)− u(t, x))ϕ(t, x)dxdt = 0, (2.26)

−
∫ τ

0

∫
Ω

u(t, x)φt(t, x)dxdt+2λ

∫ τ

0

∫
Ω

v(t, x)φ(t, x)dxdt+

∫
Ω

u(t, x)φ(t, x)dx
∣∣∣t=τ
t=0

−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dyφ(t, x)dxdt = 0. (2.27)

We have ∫ T

0

∫
Ω

∫
Ω

J(x, y)|un(y)− un(x)|pdydxdt ≤ C2.

Consequently J(x, y)|un(t, y)−un(t, x)|p−2(un(t, y)−un(t, x)) is bounded in Lq
(
Ω×

QT
)

(1/p+ 1/q = 1) which implies for a subsequence that

J(x, y)|un(t, y)− un(t, x)|p−2(un(t, y)− un(t, x))

converges weakly to some function M . Since un converges almost everywhere to
u, we deduce that M(x, y, t) = J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)). Which
shows that∫ τ

0

∫
Ω

∫
Ω

J(x, y)|un(t, y)− un(t, x)|p−2(un(t, y)− un(t, x))dyφ(t, x)dxdt

converges to∫ τ

0

∫
Ω

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dyφ(t, x)dxdt.

Therefore, we have shown F(un) −→ F(u) in L2
(
QT
)

as n → ∞. Consequently,
F is a compact application.

Next, we will prove the second hypotheses of Scaeffer’s fixed point theorem.

Second step: let us prove that the set

M =
{
u ∈ L2(QT ) : u = αF(u) for some α ∈ [0, 1]

}
is bounded in L2(QT ).
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Assume that u ∈ L2(QT ) and u = αF(u) for some α ∈ [0, 1], then u/α = F(u) and

vt(t, x) = ε4v(t, x) +

∫
Ω

K(x, y)(v(t, y)− v(t, x))dy − (f(x)− u(t, x)), (2.28)

ut(t, x)

α
=

1

αp−1

∫
Ω

J(x, y)|u(t, y)−u(t, x)|p−2(u(t, y)−u(t, x))dy−2λv(t, x). (2.29)

Taking v as a test function in (2.28), multiplying (2.29) by u and integrating over
Ω×

[
0, τ
]
, we obtain

1

2

∫
Ω

v(τ, x)2dx+ ε

∫ τ

0

∫
Ω

∇v(t, x)∇v(t, x)dxdt+

∫ τ

0

∫
Ω

(f(x)− u(t, x))v(t, x)dxdt

−
∫ τ

0

∫
Ω

∫
Ω

K(x, y)(v(t, y)− v(t, x))dyv(t, x)dxdt =
1

2

∫
Ω

v(0, x)2dx, (2.30)

1

2α

∫
Ω

u(τ, x)2dx+ 2λ

∫ τ

0

∫
Ω

v(x, t)u(t, x)dxdt− 1

2α

∫
Ω

u(0, x)2dx

− 1

αp−1

∫ τ

0

∫
Ω

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dyu(t, x)dxdt = 0.

(2.31)

Multiplying (2.30) by 2λ and adding the previous equality, we have

1

2α

∫
Ω

u(τ, x)2dx+λ

∫
Ω

v(τ, x)2dx+
1

αp−1

∫ τ

0

∫
Ω

∫
Ω

J(x, y)|u(t, y)−u(t, x)|pdydxdt

+ 2λ

∫ τ

0

∫
Ω

∫
Ω

K(x, y)(v(t, y)− v(t, x))2dydxdt+ 2λ

∫ τ

0

∫
Ω

f(x)v(t, x)dxdt

+ 2λε

∫ τ

0

∫
Ω

|∇v(t, x)|2dxdt =
1

2α

∫
Ω

f(x)2dx.

Using Young’s inequality, it follows that∫ τ

0

∫
Ω

f(x)v(t, x)dxdt ≤ 1

2

∫ τ

0

∫
Ω

f(x)2dx+
1

2

∫ τ

0

∫
Ω

(v(t, x))2dxdt

≤ T

2

∫
Ω

f(x)2dx+
1

2

∫ τ

0

∫
Ω

(v(t, x))2dxdt. (2.32)

Consequently,

1

2α

∫
Ω

u(τ, x)2dx+ λ

∫
Ω

v(τ, x)2dx ≤λT
∫

Ω

f(x)2dx+ λ

∫ τ

0

∫
Ω

(v(t, x))2dxdt

+
1

2α

∫
Ω

f(x)2dx. (2.33)

Then, we have

1

2α

∫
Ω

u(τ, x)2dx+λ

∫
Ω

v(τ, x)2dx ≤ λ
∫ τ

0

∫
Ω

(v(t, x))2dxdt+
(

(
1

2
+λT )

∫
Ω

f(x)2dx
)
.

(2.34)



2080 F. Karami, D. Meskine & K. Sadik

Using Gronwall’s inequality, we obtain∫
Ω

v(τ, x)2dx ≤
[(1

2
+ λT

)∫
Ω

f(x)2dx
]

exp(λτ), ∀τ ∈ [0, T ],

and ∫
Ω

v(τ, x)2dx ≤ C̃1, (2.35)

where the constant C̃1 depends only on T , λ and
∫

Ω
f(x)2dx.

On the other hand, from (2.34) and (2.35), we have∫
Ω

u(τ, x)2dx ≤ λC̃1 +
(

(
1

2
+ λT )

∫
Ω

f(x)2dx
)
,

Therefore, ∫
Ω

u(τ, x)2dx ≤ C̃2, (2.36)

where the constant C̃2 depends only on T , λ and
∫

Ω
f(x)2dx.

Consequently, M is bounded in L2(QT ) where the constant C̃1 and C̃1 are in-
dependent of α. Thanks to Schaeffer’s fixed point theorem, the existence of solution
of (P ε) has been proved.

2.3. Passage to the limit

Now, we will prove that the solution of the problem (P ε) converges to the solution
of the problem (P ). For that, let (uε, vε) be a solution of the problem (P ε) in the
following sense

−
〈∂ϕ
∂t
, vε

〉
Qτ
−
∫ τ

0

∫
Ω

∫
Ω

K(x, y)(vε(t, y)− vε(t, x))dyϕdxdt

+ ε

∫ τ

0

∫
Ω

∇vε(t, x)∇ϕdxdt+
∫ τ

0

∫
Ω

(f(x)− uε(t, x))ϕdxdt+

∫
Ω

vε(t, x)ϕdx
∣∣∣τ
0

= 0,

(2.37)

and

−
∫ τ

0

∫
Ω

uε(t, x)φt(t, x)dxdt+2λ

∫ τ

0

∫
Ω

vε(t, x)φ(t, x)dxdt+

∫
Ω

uε(t, x)φ(t, x)dx
∣∣∣τ
0

−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)|uε(y, t)− uε(t, x)|p−2(uε(t, y)− uε(t, x))dyφ(t, x)dxdt = 0,

(2.38)

for every τ ∈ (0, T ] and every test-functions

ϕ ∈ L2
(

(0, T );H1(Ω)
)
,
∂ϕ

∂t
∈ L2

(
(0, T ); (H1(Ω))′

)
, φ ∈ D(QT ) and φt ∈ D(QT ).

Thanks to the Lemma 2.1, we have that uε, vε and
√
ε∇vε are bounded in L2

(
QT
)
.

Then,

uε −→ u weakly in L2
(
QT
)
,
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vε −→ v weakly in L2
(
QT
)
,

ε∇uε −→ 0 weakly in L2
(
QT
)
. (2.39)

Moreover, using Holder inequality, we have

1

2

∫ T

0

∫
Ω

∫
Ω

J(x, y)|uε(y)− uε(x)|pdydxdt ≤ C2. (2.40)

Hence, for any measurable subset E ⊂ Ω× Ω, we see that

L =
∣∣∣ ∫ ∫

E

J(x, y)|uε(y)− uε(x)|p−2(uε(y)− uε(x))dydx
∣∣∣

≤
∫ ∫

E

J(x, y)|uε(y)− uε(x)|p−1dydx ≤ C ′2|E|
1
p .

Applying Dunfort-Pettis Theorem, there exists ϑ(x, y) ∈ L1(QT×QT ) with ϑ(x, y) =
−ϑ(y, x) such that

J(x, y)|uε(y)− uε(x)|p−2(uε(y)− uε(x)) ⇀ J(x, y)ϑ(x, y) weakly in L1(QT ×QT ).
(2.41)

Letting ε→ 0 in (2.37–2.38) and using the previous convergence (2.39) and (2.41),
we obtain

−
∫ τ

0

∫
Ω

v(t, x)ϕt(t, x)dxdt+

∫ τ

0

∫
Ω

(f(x)− u(t, x))ϕ(t, x)dxdt

−
∫ τ

0

∫
Ω

∫
Ω

K(x, y)(v(t, y)− v(t, x))dyϕ(t, x)dxdt+

∫
Ω

v(t, x)ϕ(t, x)dx
∣∣∣τ
0

= 0,

(2.42)

and

−
∫ τ

0

∫
Ω

u(t, x)φt(t, x)dxdt+ 2λ

∫ τ

0

∫
Ω

v(t, x)φ(t, x)dxdt+

∫
Ω

u(t, x)φ(t, x)dx
∣∣∣τ
0

−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)ϑ(x, y)dyφ(t, x)dxdt = 0. (2.43)

Now, let us prove that∫ τ

0

∫
Ω

∫
Ω

J(x, y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t))dyu(x, t)dxdt

=

∫ τ

0

∫
Ω

∫
Ω

J(x, y)ϑ(x, y)dyu(x, t)dxdt. (2.44)

Taking ϕ = vε in (2.37) (respectively φ = uε in (2.38)
)
, multiplying (2.37) by 2λ,

and adding the two equations, we get

1

2

∫
Ω

(uε(τ, x))2dx+ λ

∫
Ω

(vε(τ, x))2dxdt+ 2λε

∫ τ

0

∫
Ω

|∇vε(t, x)|2dxdt

−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)|uε(t, y)− uε(t, x)|p−2(uε(t, y)− uε(t, x))dyuε(t, x)dxdt

− 2λ

∫ τ

0

∫
Ω

∫
Ω

K(x, y)(vε(t, y)−vε(t, x))dyvε(t, x)dxdt+2λ

∫ τ

0

∫
Ω

vε(t, x)f(x)dxdt
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=
1

2

∫
Ω

(uε(0, x))2dx+ λ

∫
Ω

(vε(0, x))2dx. (2.45)

We consider a sequence of mollifiers (ρk)k satisfying
∫
RN ρ(x)dx = 1 and ρk(x) =

kNρ(kx) . Let vk = ρk ∗ (ρk ∗v) and uk = ρk ∗ (ρk ∗u) be a regularization sequences
of v and u, respectively, such that

vk −→ v strongly in L2(QT ) and uk −→ u strongly in L2(QT ). (2.46)

By choosing ϕ = vk in (2.42) (respectively φ = uk for (2.43)
)
, we obtain

1

2

∫
Ω

(ρk ∗ v(τ, x))2dx−
∫ τ

0

∫
Ω

∫
Ω

K(x, y)(v(t, y)− v(t, x))dyvk(t, x)dxdt

+

∫ τ

0

∫
Ω

(f(x)− u(t, x))vk(t, x)dxdt =
1

2

∫
Ω

(ρk ∗ v(0, x))2dx, (2.47)

1

2

∫
Ω

(ρk ∗ u(τ, x))2dx+ 2λ

∫ τ

0

∫
Ω

v(t, x)uk(t, x)dxdt

−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)ϑ(x, y)dyuk(t, x)dxdt =
1

2

∫
Ω

(ρk ∗ u(0, x))2dx. (2.48)

Letting k → ∞, multiplying (2.47) by 2λ and adding the previous equalities, we
have

1

2

∫
Ω

(u(τ, x))2dx+ λ

∫
Ω

(v(τ, x))2dx−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)ϑ(x, y)dyu(t, x)dxdt

+ 2λ

∫ τ

0

∫
Ω

v(t, x)f(x)dxdt− 2λ

∫ τ

0

∫
Ω

∫
Ω

K(x, y)(v(t, y)− v(t, x))dyv(t, x)dxdt

=
1

2

∫
Ω

(u(0, x))2dx+ λ

∫
Ω

(v(0, x))2dx. (2.49)

Combining (2.45) and (2.49), we deduce that

lim
ε→0

[ ∫ τ

0

∫
Ω

∫
Ω

J(x, y)|uε(y, t)− uε(x, t)|p−2(uε(y, t)− uε(x, t))dyuε(x, t)dxdt

−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)ϑ(x, y)dyu(x, t)dx
]

= lim
ε→0

[1

2

∫
Ω

(uε(τ, x))2dx− 1

2

∫
Ω

(u(τ, x))2dx

+λ

∫
Ω

(vε(τ, x))2dx−2λε

∫ τ

0

∫
Ω

|∇vε(t, x)|2dxdt− λ
∫

Ω

(v(τ, x))2dx

−2λ

∫ τ

0

∫
Ω

∫
Ω

K(x, y)(vε(t, y)−vε(t, x))dyvε(t, x)dxdt+2λ

∫ τ

0

∫
Ω

vε(t, x)f(x)dxdt

−2λ

∫ τ

0

∫
Ω

v(t, x)f(x)dxdt+2λ

∫ τ

0

∫
Ω

∫
Ω

K(x, y)(v(t, y)−v(t, x))dyv(t, x)dxdt
]
≥ 0.

(2.50)

By (1.5), we remark that

− 2

∫ τ

0

∫
Ω

∫
Ω

K(x, y)(vε(t, y)− vε(t, x))dyvε(t, x)dxdt
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=

∫ τ

0

∫
Ω

∫
Ω

K(x, y)(vε(t, y)− vε(t, x))2dydxdt.

By passing to the limit

lim sup
ε→0

−2

∫ τ

0

∫
Ω

∫
Ω

K(x, y)(vε(t, y)− vε(t, x))dyvε(t, x)dxdt

≥
∫ τ

0

∫
Ω

∫
Ω

K(x, y)(v(t, y)− v(t, x))2dydxdt,

we deduce that

lim
ε→0

[ ∫ τ

0

∫
Ω

∫
Ω

J(x, y)|uε(y, t)− uε(x, t)|p−2(uε(y, t)uε(x, t))dyuε(x, t)dxdt

−
∫ τ

0

∫
Ω

∫
Ω

J(x, y)ϑ(x, y)dyu(x, t)dx
]
≥ 0.

By monotonicity and by putting, we have Uε(t, y, x) = uε(t, y) − uε(t, x) and
U(t, y, x) = u(t, y)− u(t, x),∫ τ

0

∫
Ω

∫
Ω

J(x, y)(|Uε(t, y, x)|p−2(Uε(t, y, x)− |U(t, y, x))|p−2U(t, y, x))

(Uε(t, y, x)− U(t, y, x))dydxdt ≥ 0.

Thanks to (2.50) and the fact that∫ τ

0

∫
Ω

∫
Ω

J(x, y)ϑ(x, y)dyu(x, t)dxdt = −
∫ τ

0

∫
Ω

∫
Ω

J(x, y)dxu(y, t)dxdt,

we deduce that∫ τ

0

∫
Ω

∫
Ω

J(x, y)(|Uε(t, y, x)|p−2(Uε(t, y, x)− |U(t, y, x))|p−2U(t, y, x))

(Uε(t, y, x)− U(t, y, x))dydxdt

converges to 0. Consequently, up to a subsequence, we have

J(x, y)1/pUε(t, y, x)→ J(x, y)1/pU(t, y, x) a.e. (t, y, x) ∈ (0;T )× Ω× Ω

which shows that J(x, y)ϑ(x, y) = J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))
a.e. (t, y, x) ∈ (0;T ).

Finally, by letting ε to 0 in (Pε), we have proven that for ε→ 0 the solution of
the system (P ε) converges to the solution of (P ) and the existence of the solution
of the problem (P ) have been proven.

2.4. Uniqueness

In this subsection, we prove the uniqueness of the solution of the problem (P ). For
that, let us assume that the problem (P) admits two solutions (u1, v1) and (u2, v2)
and taking (u1 − u2, v1 − v2) as a test function in the definition of solutions. Then,
we have∫ τ

0

∫
Ω

(u1 − u2)τ (u1 − u2)dxdt+ 2λ

∫ τ

0

∫
Ω

(v1 − v2)(u1 − u2)dxdt
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+

∫ τ

0

∫
Ω

∫
Ω

J(x, y)
[
|u1(y)− u1(x)|p−2(u1(y)− u1(x))

− |u2(y)− u2(x)|p−2(u2(y)− u2(x))
]
dy(u1(x)− u2(x))dxdt = 0, (2.51)

∫ τ

0

∫
Ω

(v1 − v2)τ (v1 − v2)dxdt+

∫ τ

0

∫
Ω

(u2 − u1)(v1 − v2)dxdt

+

∫ τ

0

∫
Ω

∫
Ω

K(x, y)
[
(v1(y)− v1(x))− (v2(y)− v2(x))

]
dy(v1(x)− v2(x))dxdt = 0.

(2.52)

Using the monotonicity and adding 2λ×(2.52) to (2.51), we have∫ τ

0

∫
Ω

(u1 − u2)τ (u1 − u2)dxdt+ 2λ

∫ τ

0

∫
Ω

(v1 − v2)τ (v1 − v2)dxdt ≤ 0, (2.53)

then we get
1

2

∫
Ω

(u1 − u2)2dx+ λ

∫
Ω

(v1 − v2)2dx ≤ 0. (2.54)

Consequently, we obtain u1(t, x) = u2(t, x) and v1(t, x) = v2(t, x) a.e. in QT . This
completes the proof of the Theorem.

3. Numerical aspects and results

In this section, we present the numerical results and comparative experiments ob-
tained by implementing our proposed model. To compute numerically the problem

(P ), we choose the weight function of the form exp
(
− d(x, y)

σ2

)
where d(x, y) is the

distance between patches located at x and y, σ is a positive constant which acts
as a scale parameter. Let ui be the value of a pixel i in the image, Ji,j and Ki,j

are respectively the sparsely discrete version of the weight functions J(x, y) and
K(x, y). Now, using the explicit Euler method with Neumann boundary condition,
the discrete iterative schemes of the problem (P) can be written as:

vk+1
i − vki

τ
=
∑
j∈Ni

Kij(v
k
j − vki )− (f − uki ),

uk+1
i − uki

τ
=
∑
j∈Ni

Jij |ukj − uki |p−2(ukj − uki )− 2λvk+1
i ,

u0
i = fi, v0

i = 0,

(3.1)

where Ni is the neighbors set, τ is the time step size and k is the iteration number.

For the numerical experiments, we set λ = 0.001, p = 1.0001 and the time step

size τ = 0.1. For computing the weight function, we take d(x, y) =

∫
Ω

Ga(z)|f(x+

z) − f(y + z)|2dz where Ga is a Gaussian function with standard deviation a and
we choose a patches size of 11 × 11 (i.e. P = 5), a search window of 23 × 23 (i.e.
Nw = 11) and a = 2.
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We start by the denoising tests (cf. Figs. 1-2). Secondly, we prove the ability of
our algorithm to denoise images based on different noise (cf. Figs. 3-4). Then a
comparison test will be done to show the advantages of using nonlocal instead of
the local (cf. Figs. 5-6–7). At last another comparison test is conducted to justify
that the proposed method performs better than other existing nonlocal methods
in regarding both quality (cf. Figs. 8-9-10) and computation time (cf. Figs. 11).
We applied statistical measure in order to evaluate the quality of the restoration
results which are the peak signal to noise ratio (PSNR) and the signal–to–noise
ratio (SNR) that can expressed by:

PSNR = 10 log10

[ 2552MN

||u0 − u||22

]
dB,

where u0, u and M ×N are the original image, the restored image and the size of
the image, respectively, and

SNR = log10

[σu
σn

]
dB,

where σu and σn are the signal and noise standard deviations, respectively.

Figure 1. Images corrupted by Gaussian noise with zero mean and variance σ2 = 0.025

We notice that our proposed model can clearly denoise the images corrupted
by the additive noise (cf. Figs. 1-2). To show the effectiveness of our proposed
model, we will present in Figure 3 and Figure 4 the results of denoising Lena and
House images by applying additive gaussian noise with different noise levels σ2 ∈{

0.016; 0.025; 0.030; 0.035
}

.
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Figure 2. Restored images with the proposed model.

(a) σ2=0.016 (b) σ2=0.025 (c) σ2=0.030 (d) σ2=0.035

Figure 3. First row : Noisy Lena images with noise at zero mean and different variances. Second row
: Restored images using the proposed algorithm.

In the second experiment, we give a comparison between the proposed method
and the local methods which is the local system (TVH) proposed in [16] where the
authors have used total variation minimization and the H−1 norm (TVH). The Fig
5 indicate that our method could raises the PSNR data remarkably compared with
the local methods.



A new nonlocal model for the restoration of textured images 2087

Table 1. Noise performance parameters PSNR and SNR for Lena image with noise at zero mean and
different variances.

SNR PSNR
Lena image Noisy Image Restored Image Noisy Image Restored Image
σ2 = 0.016 9.5232 17.7676 24.0557 32.3000
σ2 = 0.025 5.6507 15.7410 20.1832 30.2734
σ2 = 0.030 4.0241 14.8730 18.5566 29.4057
σ2 = 0.035 2.7176 13.7395 17.2501 28.2714

Table 2. Noise performance parameters PSNR and SNR for House image with noise at zero mean and
different variances.

SNR PSNR
House image Noisy Image Restored Image Noisy Image Restored Image
σ2 = 0.016 9.1522 17.9931 24.0237 32.8635
σ2 = 0.025 5.3194 16.3607 20.1909 31.2313
σ2 = 0.030 3.7248 15.6402 18.5964 30.5113
σ2 = 0.035 2.4069 14.9337 17.2748 29.8019

(a) σ2=0.016 (b) σ2=0.025 (c) σ2=0.030 (d) σ2=0.035

Figure 4. First row : Noisy House images with noise at zero mean and different variances. Second
row : Restored images using the proposed algorithm.

Figure 5. Left : Noisy Barbara image with PSNR = 26.5544, middle : Restored image by TVH with
PSNR = 29.0488 and Right : Restored image by our model (NLH) with PSNR = 32.5609.
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Furthermore, the texture is most favorable case of using the nonlocal concept. It
is well known that the textured images have a large redundancy where the nonlocal
method identifies automatically pixels with the same reflectance in the image. To
demonstrate the benefits of using our new nonlocal model, we use the Barbara
pictures which contain smooth and textured regions. In Fig. 6, we see an example
in the zoomed region 1 (Barbara’s tablecloth), region 2 (Barbara’s pant) and region
3 (Barbara’s scarf) where the ability of our model to preserve the main features
even in the case of high frequencies compared with the local models. In Figure 7,
we present the denoising error image.

Figure 6. Left column : Zoom of the results of TVH and right column : Zoom of the images restored
using NLH.
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(a) The smooth image using TVH model (b) The texture of u− f using TVH model

(c) The smooth image u using our model (d) The texture of u− f using our model

Figure 7. Here, we compare the texture of restored images between our model and TVH model.

In the next experiment, an another comparison emphasizes the efficiency of the
proposed model as preserving texture and fine details compared with the non local
p-Laplacian equation (NLPL) presented in [6] where the authors use the L2 norm
in fidelity term. We use the same parameters for both algorithms and we compare
the results. Fig. 8 shows that using our model gives better results where the PSNR
and SNR of the noisy images, restored ones by the NLPL and by our model are
displayed in Table 3. To validate the ability of the proposed model to preserve
the texture, we shall zoom the region containing the texture (cf. Fig 9) and we
compare the NLPL and our denoising error image (Fig. 10). Our denoising error
image contains many less details which proves that the proposed model is more
robust in preserving texture and fine details.
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Figure 8. Left column: Top to Bottom: Noisy image A, Noisy image B, Noisy Barbara image and
Noisy image C. Middle column: Restored images by NLPL and Right column: Restored images by our
proposed model.

Now, we evaluate the performance and the efficiency of our proposed model com-
pared to Nonlocal means presented in [8] by using CPU time. For the comparison
we used a different textured test images and the same parameters to compute the
weight function (patches size of 11× 11 and a search window of 23× 23 ) for both
algorithms. Table shows that the proposed model delivers acceptable results as
compared to the algorithm in [8] in a shorter amount of time. Figure 11 depicts,
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Table 3. PSNR and SNR values of noisy images and the restored ones by NLPL and our model.

PSNR SNR PSNR SNR PSNR SNR
Noisy Noisy NLPL NLPL NLH NLH

Image A 24.6100 4.5701 26.7278 6.6883 27.0838 7.0442
Image B 24.6135 9.3076 27.5997 12.2951 27.7156 12.4105
Barbara 24.6005 11.2148 29.2001 15.8145 30.5295 17.1439
Image C 24.6120 8.0629 28.5136 11.9647 28.8496 12.3007

Figure 9. Left column : Zoom of the result of NLPL and Right column : Zoom of the image restored
by our model.

Figure 10. Left column: original image (top) and noisy image (bottom). Middle column: NLPL de-
noising result and error (PSNR=27.6702). Right column: our model denoising result and error (PSNR=
28.3045).
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from left to right, the output image of NLmeans method, and the output of the
proposed model. While NLmeans was able to recover a better image, the proposed
method computed its output (on the right) in a shorter time as presented in Table
4. In fact, NLmeans does not even recover an image of comparable quality to that of
the proposed method in more time in the experiment presented in Figure 11. This
proves that can indeed be very efficient in regards to both quality and computation
time.

Table 4. CPU time and PSNR of our method and NLmeans method, respectively, for textured images
displayed in Figure (11)

Image C Lena image Image D
Image PSNR Time (s) PSNR Time (s) PSNR Time (s)
Proposed Model 28.9939 59.7811 32.4431 149.2656 12.6062 17.8987
NLmeans 28.8566 139.6565 32.2499 218.9331 12.6016 24.9257

Figure 11. Left column: Top to Bottom: Noisy image C, Noisy Lena image, and Noisy image D.
Middle column: Restored images by NLmeans and Right column: Restored images by our proposed
model.
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4. Conclusion

In this paper, we have proposed a new nonlocal reaction-diffusion system based
on the decomposition approach of H−1 norm for filtering textured images. The
proposed model is more robust than the local models in removing noise and specially
in preserving small details and texture.
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[26] S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total
variation minimization and the H−1 norm, Multiscale Model. Simul., 2003,
1(3), 349–370.

[27] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffu-
sion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,
12, 629–639.



A new nonlocal model for the restoration of textured images 2095

[28] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise re-
moval algorithms, Phys. D, 1992, 60(1-4), 259–268. Experimental mathematics:
computational issues in nonlinear science (Los Alamos, NM, 1991).

[29] O. Seungmi, W. Hyenkyun, Y. Sangwoon and K. Myungjoo, Non-convex hybrid
total variation for image denoising, J. Vis. Commun. Image R., 2013, 24, 332–
344.

[30] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl. (4),
1987, 146, 65–96.

[31] L. P. Yaroslavsky, Digital picture processing, 9 of Springer Series in Informa-
tion Sciences, Springer-Verlag, Berlin, 1985. An introduction.


	Introduction
	Existence
	Approximate problem
	Schaeffer's fixed�point method
	 Passage to the limit
	Uniqueness

	Numerical aspects and results
	Conclusion

