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ON THE EQUIVALENCE OF TWO
DIFFERENTIAL EQUATIONS BY MEANS OF
REFLECTING FUNCTIONS COINCIDING∗

Zhengxin Zhou† and Yuexin Yan

Abstract In this article, we discuss the equivalence of two differential sys-
tems by using the method of reflecting functions. We obtain some necessary
and sufficient conditions under which certain differential equations are equiv-
alent. Given these results, new types of differential systems equivalent to the
given systems can be found. We also discussed the qualitative behavior of the
periodic solutions of such differential systems. These results are new, in the
sense that they generalize previous discussions on the equivalence of differential
systems.
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1. Introduction

x′ = X(t, x), t ∈ R, x ∈ D ⊂ Rn, (1.1)

which has a continuously differentiable right-hand side and general solution φ(t; t0, x0).
For each such system, the reflecting function [4] is defined as F (t, x) := φ(−t, t, x).
If system (1.1) is 2ω-periodic with respect to t, then T (x) := F (−ω, x) is the
Poincarémapping of (1.1) over the period [−ω, ω]. Thus, the solution x = φ(t;−ω, x0)
of (1.1) defined on [−ω, ω] is 2ω-periodic if and only if x0 is a fixed point of T (x),
and the character of stability of this periodic solution is the same as this of the fixed
point.

In recent years, many scholars have been interested in studying the qualitative
properties of the differential system (1.1) by applying the theory of reflecting func-
tion and obtained many interesting results [1–14]. Mironenko [4–9] has combined the
theory of reflecting function with the integral manifolds theory to discuss the sym-
metry and other geometric properties of the solutions of some differential systems.
Musafirov [10] has studied the case when a linear system has reflecting function
which can be expressed as a product of three exponential matrices. Veresovich [11]
and Maiorovskaya [3] have established the sufficient conditions under which the
quadratic systems have linear reflecting function. Belsky [1, 2] has discussed when
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the first-order polynomial differential equation is equivalent to the Ricatti equation
and Abel equation. Zhou [12–14] has discussed the structure of the reflecting func-
tion of some polynomial differential systems, and applied the obtained conclusions
to study the qualitative behavior of solutions of such systems.

If the reflecting functions of two differential systems coincide in their common
domain, then these systems are said to be equivalent. By this one can study
the qualitative behavior of the solutions of a complex system by using a simple
differential system with the same reflecting function. Unfortunately, in general,
it is very difficult to find out the reflecting function of (1.1). How to judge two
systems are equivalent when we do not know their reflecting functions? This is
a very important and interesting problem! Mironenko in [7–9] has studied it and
obtained some excellent results. In this paper, we will improve their conclusions
and get some new necessary and sufficient condition under which the differential
equations are equivalent.

Definition 1.1. If vector function ∆(t, x) is a non-zero solution of the differential
system

∆t(t, x) + ∆x(t, x)X(t, x)−Xx(t, x)∆(t, x) = µ(t, x)∆(t, x), (1.2)

then ∆(t, x) is said to be the µ− integral of (1.1). Where µ = µ(t, x) is a contin-
uously differentiable scalar function such that µ(t, x) + µ(−t, F (t, x)) = 0, F (t, x)
is the reflecting function of (1.1). In particular, if µ ≡ 0, then ∆(t, x) is called the
Reflecting integral [13] of (1.1).

By the Theorem 1 of [6], we know that if ∆(t, x) is the reflecting integral of
(1.1), then the system (1.1) is equivalent to the system

x′ = X(t, x) + α(t)∆(t, x), (1.3)

where α(t) is an arbitrary continuously differentiable scalar odd function.
In this paper, we will show that if ∆(t, x) is the µ-integral of (1.1), then the

systems (1.1) and (1.3) are equivalent, too. At the same time, we will prove that
when n = 1, the equations (1.1) and (1.3) are equivalent if and only if ∆(t, x) is the
µ-integral of (1.1).

In the following, we will denote ∆=∆(t, x), ∆̄=∆(−t, F (t, x)), X̄=X(−t,F (t, x)),
µ̄=µ(t, F (t, x)), F = F (t, x), α = α(t), αi = αi(t).

2. Main Results

Theorem 2.1. If ∆ is the µ-integral of (1.1), then the systems (1.1) and (1.3) are
equivalent. In addition, if systems (1.1) and (1.3) are 2ω-periodic with respect to
t, then the initial conditions at t = −ω of their 2ω− periodic solutions and their
stability characters are the same.

Proof. Let F be the reflecting function of (1.1), by its definition [4] we get

Ft + FxX + X̄ = 0, F (0, x) = 0.

Then, F is also reflecting function of (1.3), if and only if,

Ft + Fx(X + α(t)∆) + X̄ − α(t)∆̄ = 0, F (0, x) = 0.
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i.e.,

Fx∆− ∆̄ = 0.

Denote U := Fx∆ − ∆̄, so U(0, x) = 0. In the following, we will prove that
U(t, x) ≡ 0.

As

Ft = −FxX − X̄,

so

Ftx = − ∂

∂x
(FxX)− ˙̄∆xFx,

∂U

∂t
= Ftx∆+ Fx∆t − ˙̄∆t − ˙̄∆xFt = Ftx∆+ Fx∆t − ˙̄∆t +

˙̄∆x(FxX + X̄)

= − ∂

∂x
(FxX)∆− ˙̄XxFx∆+ Fx∆t − ˙̄∆t +

˙̄∆xFxX + ˙̄∆xX̄.

Since
∂U

∂x
=

∂

∂x
(Fx∆)− ˙̄∆xFx,

thus

∂U

∂t
+
∂U

∂x
X=

∂

∂x
(Fx∆)X− ∂

∂x
(FxX)∆− ˙̄∆xFxX− ˙̄XxFx∆+Fx∆t− ˙̄∆t+

˙̄∆xFxX+ ˙̄∆xX̄,

by the Lemma of [6] we get

∂U

∂t
+

∂U

∂x
X = Fx(∆xX −Xx∆) + Fx∆t − ˙̄Xx(Fx∆− ∆̄)− ˙̄Xx∆̄− ˙̄∆t +

˙̄∆xX̄,

using this relation and ∆ being the µ-integral of (1.1), we get

∂U

∂t
+

∂U

∂x
X + ˙̄XxU = Fx(∆t +∆xX −Xx∆) +∆t +∆xX −Xx∆

= Fxµ∆− µ∆̄ = µU, (2.1)

so, U is a solution of the Cauchy problem:

Ut + UxX + (X̄x − µE)U = 0, U(0, x) = 0.

By the uniqueness of solution of the initial problem of the linear partial differential
equation implies that U(t, x) ≡ 0. Therefore, the proof is finished.

Remark 2.1. If µ ≡ µ(t) is a continuous odd function, it is not difficult to check
that ∆ is the reflecting integral of the system (1.1) if and only if ∆̃ = e

∫
µ(t)dt∆(t, x)

is the µ-integral of the system (1.1).

Remark 2.2. Taking µ = 0 in the above Theorem 2.1, we get the Theorem 1 of [6].
That is said that my theorem is more general than Mironenko’s result.

Theorem 2.2. The differential equations (1.1) and (1.3) (n = 1) are equivalent
with the reflecting function F (t, x), if and only if, there is a function µ such that
µ(t, x) + µ(−t, F ) = 0, and ∆ is the µ-integral of (1.1).
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Proof. By Theorem 2.1, the sufficiency of the present theorem is correct. Now,
we will prove the necessity is correct too. As the equations (1.1) and (1.3) are
equivalent,

U = Fx∆− ∆̄ ≡ 0.

Let denote G = ∆t +∆xX −Xx∆, then by (2.1) we get

Ut + UxX + X̄xU = FxG+ Ḡ ≡ 0.

If tanking µ = G
∆ , then from the above relations we obtain G

∆ = − Ḡ
∆̄
, so µ+ µ̄ = 0.

Thus,
G = ∆t +∆xX −Xx∆ = µ∆,

i.e., ∆ is the µ-integral of (1.1).

Example 2.1. For the first order differential equation

x′ = t+ t3x3, (2.2)

F = x is its reflecting function. It is not difficult to check that for this equation,
there is no any reflecting integral ∆ in the form of

∆ = r0(t) + r1(t)x+ r2(t)x
2 + r3(t)x

3.

But, for this equation there is a cubic µ-integral ∆̃ = 1 + x3, where µ = 3x2(t−t3)
1+x3 .

Thus the equation (2.2) is equivalent to the equation

x′ = t+ t3x3 + α(t)(1 + x3),

where α(t) is an arbitrary continuously differentiable odd function.

Theorem 2.3. If n = 1 in (1.1), ∆j (j = 1, 2, ...,m) are the µj-integrals of the
first-order differential equation (1.1), then

(A). If
∑m

j=1 kj = 1, then ∆ = ∆k1
1 ∆k2

2 · · ·∆km
m is the µ =

∑m
j=1 kjµj-integral

of (1.1), and the equation (1.1) is equivalent to the equation

x′ = X(t, x) +
m∑
j=0

αj(t)∆j , (2.3)

where αj(t)(j = 0, 1, 2, ...,m) are arbitrary continuous odd functions.
(B). If

∑m
j=1 kj = 0 and

∑m
j=1 kjµj = 0, then

∆ = ∆k1
1 ∆k2

2 · · ·∆km
m = c

is the first-integral of (1.1), where c is an arbitrary constant.
(C). If ∆1 is a µ-integral of (1.1), then ∆ also is the µ-integral of (1.1), if

and only if, ∆ = ∆1ϕ(u), where u = u(t, x) is the first integral of (1.1), ϕ is a
continuously differentiable function.

Proof. (A). As ∆j (j = 1, 2, ...,m) are the µj-integral of the first-order equation
(1.1) and

∑m
j=1 kj = 1, then

∆jt +∆jxX = (Xx − µj)∆j(j = 1, 2, ...,m),
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so,

∆t +∆xX =

m∑
j=1

kj∆
k1
1 · · ·∆kj−1

j · · ·∆km
m (∆jt +∆jxX)

= (
m∑
j=1

kjXx +
m∑
j=1

kjµj)∆ = (Xx + µE)∆, (2.4)

i.e., ∆ is the µ =
∑m

j=1 kjµj-integral of (1.1). By Theorem 2.1, the equations (1.1)
and (2.3) are equivalent.

(B). Since
∑m

j=1 kj = 0 and
∑m

j=1 kjµj = 0, using (2.4), we get

∆t +∆xX = 0.

It implies that ∆ = c is the first-integral of (1.1).

(C). Necessity: If ∆1 and ∆ are the µ-integrals of (1.1), then

∆1t +∆1xX −Xx∆1 = µ∆1,

∆t +∆xX −Xx∆ = µ∆.

From these relations we get

(
∆

∆1
)t + (

∆

∆1
)xX = 0,

it implies that there exits a continuously differentiable function ϕ such that ∆
∆1

=
ϕ(u), i.e., ∆ = ∆1ϕ(u), where u = u(t, x) is the first integral of (1.1).

Sufficiency: If ∆1 is the µ−integral of (1.1) and ∆ = ∆1ϕ(u), then

∆1t +∆1xX −Xx∆1 = µ∆1, ut + uxX = 0.

So,

∆t+∆xX−Xx∆ = (∆1t+∆1xX−Xx∆1)ϕ(u)+ϕ′(u)(ut+uxX)∆1 = µ∆1ϕ(u) = µ∆.

i.e., ∆ is the µ-integral of (1.1). The proof is completed.

Remark 2.3. By Theorem 2.3 we see that for the first -order differential equation
(n = 1), if there is a µ-integral ∆1, then we know its all the µ-integral have the
form ∆ = ∆1ϕ(u), where u is the first integral.

Theorem 2.4. Suppose that u(t, x) and ∆ are respectively the first integral and the
reflecting integral of (1.1)(n ≥ 1). Then ∆̃ = ∆eϕ(t,u(t,x)) is the µ-integral of (1.1),
and the system (1.1) is equivalent to the system

x′ = X(t, x) + (α1(t) + α2(t)e
ϕ(t,u(t,x)))∆, (2.5)

where α1(t) and α2(t) are the arbitrary continuously differentiable odd functions,
ϕ(t, u) is a continuously differentiable function such that ϕ(t, u) = ϕ(−t, u), µ =
∂ϕ(t,u)

∂t .
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Proof. By the above assumptions, we get

∆t +∆xX −Xx∆ = 0, ut + uxX = 0,

so,
∆̃ + ∆̃xX −Xx∆̃ = ϕt∆̃,

i.e., ∆̃ is the µ = ϕt-integral of (1.1). By Theorem2.1, the present conclusion is
correct.

Remark 2.4. Obviously, from Theorem 2.4 we find some new types of systems,
such as system (2.5), which are equivalent to the system (1.1).

Remark 2.5. From Theorem 2.4, we know the Hamilton systemx′ = Hy(x, y),

y′ = −Hx(x, y)

is equivalent to systemx′ = Hy(x, y)(1 +
∑n

i=1 αi(t)e
ϕi(t,H(x,y))),

y′ = −Hx(x, y)(1 +
∑n

i=1 αi(t)e
ϕi(t,H(x,y))),

where αi(t) are continuously differentiable scalar odd functions, ϕi(t,H)(i = 1, 2, ..., n)
are arbitrary continuously differentiable functions such that ϕi(t,H) = ϕi(−t,H).

Example 2.2. It is not difficult to check that

∆1 =

 y

−x


and

∆2 =

x(x2 + y2)

y(x2 + y2)


are the reflecting integrals of the following systemx′ = y + x(x2 + y2) cos t,

y′ = −x+ y(x2 + y2) cos t.
(2.6)

u = 2 sin t+ (x2 + y2)−1 is the first integral of the system (2.6).
Taking

ϕi(t, u) =
βi(t)

4 + u
=

(x2 + y2)βi(t)

1 + 2(2 + sin t)(x2 + y2)
, µi=

(x2 + y2)β′
i(t)

1 + 2(2 + sin t)(x2 + y2)
(i = 1, 2),

then ∆̃i = eϕi∆i(i = 1, 2) are the µi(i = 1, 2)-integrals of (2.6), where βi(t)(i = 1, 2)
are the arbitrary continuously differentiable even functions. Thus, the system (2.6)
is equivalent to the systemx′ = x(x2 + y2)[cos t+ α1 + α2e

ϕ2 ] + y[1 + α3 + α4e
ϕ1 ],

y′ = y(x2 + y2)[cos t+ α1 + α2e
ϕ2 ]− x[1 + α3 + α4e

ϕ1 ],
(2.7)
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where αi(i = 1, 2, 3, 4) are the continuously differentiable odd scalar functions.
The reflecting function of the systems (2.6) and (2.7) is

F =
1√

1 + 4(x2 + y2) sin t

 cos 2t − sin 2t

sin 2t cos 2t

x

y

 .

Thus, all the solutions of the systems (2.6) and (2.7) defined on [−π, π] are 2π-
periodic, when αi(t+ 2π) = αi(t)(i = 1, 2, 3, 4) and βj(t+ 2π) = βj(t)(j = 1, 2).

Corollary 2.1. If xφx + yφy = 2φ, then the system x′ = y + xφ(x, y),

y′ = −x+ yφ(x, y)
(2.8)

is equivalent to the system x′ = y + xφ(x, y) + (α1 + α2e
ϕ(t,u))x(x2 + y2),

y′ = −x+ yφ(x, y) + (α1 + α2e
ϕ(t,u))y(x2 + y2),

(2.9)

where u = t−arctanx
y , ϕ(t, u) is a continuously differentiable function and ϕ(t, u) =

ϕ(−t, u), αi(i = 1, 2) are the arbitrary continuously differentiable odd functions.
In addition, if the system (2.9) is 2π-periodic with respect to t, then the qualita-

tive behavior of the 2π− periodic solutions of (2.8) and (2.9) with the same initial
conditions at t = −π are the same.

Proof. It is not difficult to check that ∆ =

x(x2 + y2)

y(x2 + y2)

 and u = t− arctanx
y

are respectively the reflecting integral and the first integral of the system (2.8), by
Theorem 2.4 the present corollary is correct.

Example 2.3. The system x′ = y + x(a1x
2 + a2xy + a3y

2) = P (x, y),

y′ = −x+ y(a1x
2 + a2xy + a3y

2) = Q(x, y)
(2.10)

has the first integral u = arctan y
x − t and the reflecting integral

∆ =

x(x2 + y2)

y(x2 + y2)

 .

If taking

ϕ1 = ln
ecos t

1 + tan2 u
, ϕ2 =

γ(t)

2 + cos2 u
,

then

∆̃1 = eϕ1∆ = ecos t(x sin t+ y cos t)2

x

y
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and

∆̃2 = eϕ2∆ = e
γ(t)(x2+y2)

3(x2+y2)+xy sin 2t

x(x2 + y2)

y(x2 + y2)


are respectively the µ1-integral and µ2-integral of (2.10), where µ1 = − sin t, µ2 =

γ′(t)(x2+y2)
3(x2+y2)+xy sin 2t . Thus the system (2.10) is equivalent to the systemx′ = P (x, y) + α1e

cos tx(x sin t+ y cos t)2 + (α2 + α3e
ϕ2)x(x2 + y2),

y′ = Q(x, y) + α1e
cos ty(x sin t+ y cos t)2 + (α2 + α3e

ϕ2)y(x2 + y2),
(2.11)

where αi(i = 1, 2, 3) are the arbitrary continuously differentiable odd functions, γ(t)
is an arbitrary continuously differentiable even function, ai(i = 1, 2, 3) are constants.
If αi(t+2π) = αi(t)(i = 1, 2, 3) and γ(t+2π) = γ(t), then the qualitative behavior
of the 2π-periodic solutions of the initial conditions at t = −π of the above two
equivalent systems are the same.

Remark 2.6. By this example, one can study the qualitative behavior of the so-
lutions of a complicated system (2.11) by using a simple differential system (2.10).
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