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NONLINEAR PERTURBATIONS FOR LINEAR
NONAUTONOMOUS IMPULSIVE
DIFFERENTIAL EQUATIONS AND

NONUNIFORM (H,K, µ, ν)-DICHOTOMY∗

Jimin Zhang1,5, Liu Yang2, Meng Fan3,† and Ming Chen4

Abstract We explore nonlinear perturbations of a flow generated by a linear
nonautonomous impulsive differential equation x′ = A(t)x, t ̸= τi,∆x|t=τi =
Bix(τi), i ∈ Z in Banach spaces. Here we assume that the linear nonau-
tonomous impulsive equation admits a more general dichotomy on R called
the nonuniform (h, k, µ, ν)-dichotomy, which extends the existing uniform or
nonuniform dichotomies and is related to the theory of nonuniform hyperbolic-
ity. Under nonlinear perturbations, we establish a new version of the Grobman-
Hartman theorem and construct stable and unstable invariant manifolds for
nonlinear nonautonomous impulsive differential equations x′ = A(t)x+f(t, x),
t ̸= τi,∆x|t=τi = Bix(τi) + gi(x(τi)), i ∈ Z with the help of nonuniform
(h, k, µ, ν)-dichotomies.

Keywords Nonautonomous impulsive differential equations, topological equiv-
alence, nonuniform (h, k, µ, ν)-dichotomy, invariant manifolds.
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1. Introduction

The theory of impulsive differential equations describes a smooth evolution of a
dynamics that at certain times changes instantaneously and has been becoming an
important field of investigation because of its wide applicability in physics, chem-
istry, biology, control theory, robotics and so on. For more details on this theory
and on its applications, we refer the reader to the references [1, 17,27].

As one of the most important and useful properties in differential equations, the
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nonlinear perturbation theory has been extensively studied in mathematics and fre-
quently used in applied science. In the nonlinear perturbation theory, the Grobman-
Hartman theorem and invariant manifolds theory are the most important two as-
pects. The classical Grobman-Hartman theorem essentially introduced in seminal
work of Grobman [12] and Hartman [13] states that the topological equivalence
between the nonlinear perturbed system and its corresponding linearization is es-
tablished and has long been studied such as differential equations [3,6,21,23,29,35],
difference equations [6, 16, 22], impulsive differential equations [2, 10, 25, 26, 30], dy-
namical systems on measure chains [31,32]. The study of invariant manifolds, which
is important in the geometric study of global dynamical systems, is another research
direction in the nonlinear perturbation theory and has seen much progress in the
past decades for uniformly hyperbolic systems [11,14,15] and nonuniformly hyper-
bolic systems [4–6,32,33,35].

It is well known that the notion of uniform dichotomies and nonuniform di-
chotomies is an important method and tool in the study of the qualitative and
stability problems for nonautonomous dynamical systems. In the past studies of
the Grobman-Hartman type theorems and invariant manifolds theory, the (uni-
form or nonuniform) dichotomy together with some of its variants and generaliza-
tions is a key and general assumption in the nonautonomous case for the corre-
sponding linearized systems. However, there is increasing recognition that nonau-
tonomoous dynamical systems can exhibit various different kinds of dichotomic
behavior and the growing interest is to look for more general types of dichotomic
behavior [6–10,18–20,24,28,36].

Motivated by the existing nice studies and the above considerations, we consider
the following linear nonautonomous impulsive differential equation

x′ = A(t)x, t ̸= τi, ∆x|t=τi = Bix(τi), i ∈ Z (1.1)

and its nonlinear perturbed system

x′ = A(t)x+ f(t, x), t ̸= τi,

∆x|t=τi = Bix(τi) + gi(x(τi)), i ∈ Z,
(1.2)

where I = {τi}∞i=−∞ is a sequence of numbers

· · · < τj < · · · < τ−2 < τ−1 < τ0 < τ1 < τ2 < · · · < τi < · · · ,

lim
i→∞

τi = ∞ and lim
j→−∞

τj = −∞.

In this paper, we first introduce a more general dichotomy on R called the nonuni-
form (h, k, µ, ν)-dichotomy for the linear nonautonomous impulsive equation (1.1).
The new dichotomy is not only more general and includes the existing dichotomy as
special cases in the literatures, but also exhibits more rich and widely dichotomic
behavior for nonautonomous impulsive equations. Specially, it has been proved that
any linear nonautonomous differential or impulsive equation in a finite-dimensional
space has a nonuniform (h, k, µ, ν)-dichotomy in terms of appropriate Lyapunov
exponents or Lyapunov functions (see [34, 35]). This means that the nonuniform
(h, k, µ, ν)-dichotomy widely exists and arises naturally in nonautonomous equa-
tions. We also establish a new version of the Grobman-Hartman theorem and con-
struct invariant manifolds for the nonlinear perturbed system (1.2) if (1.1) admits
a nonuniform (h, k, µ, ν)-dichotomy on R.



Nonlinear perturbations for linear nonautonomous . . . 1087

The content of this paper is as follows. In the next section, we introduce the
nonuniform (h, k, µ, ν)-dichotomy on R for the linear nonautonomous impulsive
equation (1.1) and state our main results. The rigorous proofs of the main results
are given in Section 3.

2. Nonuniform (h, k, µ, ν)-dichotomy and main re-
sults

In this section, we introduce the notion of the nonuniform (h, k, µ, ν)-dichotomy for
the linear nonautonomous impulsive differential equation (1.1) and establish our
main results.

2.1. Nonuniform (h, k, µ, ν)-dichotomy on R
We let T (t, s) be the evolution operator associated with equation (1.1) satisfying
T (t, s)x(s) = x(t) for t, s ∈ R and any solution x(t) of equation (1.1) and assume
that T (t, s) is invertible for all t, s ∈ R. We define

∆ :=

m

∣∣∣∣∣∣m : R → (0,+∞) is an increasing function with

lim
t→∞

u(t) = ∞ and lim
t→−∞

u(t) = 0

 .

Equation (1.1) is said to admit a nonuniform (h, k, µ, ν)-dichotomy on R if there
exist projections P (t) such that P (t)T (t, s) = T (t, s)P (s), t, s ∈ R and there exist
constants a < 0 ≤ b, ε ≥ 0 and K ≥ 0 such that

∥T (t, s)P (s)∥ ≤ K

(
h(t)

h(s)

)a

µ(|s|)ε, t ≥ s,

∥T (t, s)Q(s)∥ ≤ K

(
k(s)

k(t)

)−b

ν(|s|)ε, s ≥ t,

(2.1)

where Q(t) = I−P (t) are the complementary projections of P (t) and h, k, µ, ν ∈ ∆.
It is shown that any linear nonautonomous impulsive differential equation as in (1.1)
admits a nonuniform (h, k, µ, ν)-dichotomy if (1.1) has at least one negative (h, k)
Lyapunov exponent (see [34]). The nonuniform (h, k, µ, ν)-dichotomy includes the
existing dichotomy in impulsive differential equations as follows:

• exponential dichotomy [1,2] for h(t) = k(t) = et and ε = 0;

• (h, k)-dichotomy [10,30] for ε = 0;

• nonuniform exponential dichotomy [5] for h(t) = k(t) = µ(t) = ν(t) = et;

• nonuniform polynomial dichotomy [4] for h(t) = k(t) = µ(t) = ν(t) = t + 1,
t ∈ R+;

• ρ-nonuniform exponential dichotomy [4] for h(t) = k(t) = µ(t) = ν(t) = eρ(t),
t ∈ R+;

• nonuniform (µ, ν)-dichotomy [33] for h(t) = k(t) and µ(t) = ν(t), t ∈ R+.

It is worth noting that the nonuniform (h, k, µ, ν)-dichotomy exhibits more rich
and widely dichotomic behavior which can not be characterized by the existing
dichotomies for linear nonautonomous impulsive equations.
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Example 2.1. Consider the linear nonautonomous impulsive differential equations
in R2

z′1 =
[
−δ1 + (δ2/

√
t2 + 1)

(
ln(
√
t2 + 1 + t) cos ln(

√
t2 + 1 + t)− 1

)]
z1, t ̸= τi,

∆z1|t=τi =
(
eδ̄1(τi−τi−1) − 1

)
z1,

z′2 =
(
δ3/
√
t2 + 1 + 3δ2t

2(t3 cos t3 − 1)
)
z2, t ̸= τi,

∆z2|t=τi =

[(
(
√
τ2i+1 + 1 + τi+1)/(

√
τ2i + 1 + τi)

)−δ̄2

− 1

]
z2,

(2.2)

where δi, i = 1, 2, 3 and δ̄j , j = 1, 2 are positive constants.

Set P (t)(z1, z2)
T = (z1, 0)

T and Q(t)(z1, z2)
T = (0, z2)

T for t ∈ R. Then we
obtain

T (t, s)P (s) =

e−δ1(t−s)+δ̄1(τi−τj−1)+δ2c1(t) 0

0 0


and

T (t, s)Q(s) =

0

(√
t2 + 1 + t√
s2 + 1 + s

)δ3

√

τ2i+1 + 1 + τi+1√
τ2j + 1 + τj

−δ̄2

eδ2c2(t)

0 0

 ,

where

c1(t) = ln(
√
t2 + 1 + t)(sin ln(

√
t2 + 1 + t)− 1) + cos ln(

√
t2 + 1 + t)

− cos ln(
√
s2 + 1 + s)− ln(

√
s2 + 1 + s)(sin ln(

√
s2 + 1 + s)− 1),

c2(t) = t3(sin t3 − 1) + cos t3 − cos s3 − s3(sin s3 − 1).

A direct calculation gives

∥T (t, s)P (s)∥ ≤ e2δ2e−δ1(t−s)eδ̄1t(
√

s2 + 1 + s)2δ2

≤ e2δ2e(−δ1+δ̄1)(t−s)(es(
√

s2 + 1 + s))δ̄1+2δ2

≤ e2δ2e(−δ1+δ̄1)(t−s)(e|s|(
√

|s|2 + 1 + |s|))δ̄1+2δ2 , t ≥ s

and

∥T (t, s)Q(s)∥ ≤ e2δ2

(√
s2 + 1 + s√
t2 + 1 + t

)−δ3


√
τ2j + 1 + τj√

τ2i+1 + 1 + τi+1

δ̄2

e2δ2s
3

≤ e2δ2

(√
s2 + 1 + s√
t2 + 1 + t

)−δ3+δ̄2

e2δ2|s|
3

, s ≥ t.
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It is clear that the above dichotomic behavior exhibited by (2.2) can not be char-
acterized by the existing dichotomies in the literatures. Let

h(t) = et, k(t) =
√
t2 + 1 + t, µ(t) = et(

√
t2 + 1 + t), ν(t) = et

3

,

−δ1 + δ̄1 < 0 and −δ3 + δ̄2 < 0. Then (2.2) admits a nonuniform (h, k, µ, ν)-
dichotomy on R.

2.2. Topological equivalence

Let B(X) be the space of bounded linear operators on a Banach space X. We first
assume that

(H1) A(t) ∈ B(X) for each t ∈ R with t 7→ A(t) at most with discontinuities of the
first kind at the points τi and I + Bi ∈ B(X) with (I + Bi)

−1 ∈ B(X) for
i ∈ Z;

(H2) f : R ×X → X with f(t, 0) = 0 for every t ∈ R such that t 7→ f(t, x) has at
most discontinuities of the first kind at the points τi, and gi : X → X with
gi(0) = 0 for every i ∈ Z.

To facilitate the discussion below, we define

∆1 : =

m ∈ ∆

∣∣∣∣∣∣∣∣∣
there exist positive constants l1 and ω1 ∈ N

such that any interval of length l1 of R

contains at most ω1 elements of {1/m(τi)}i∈Z

 ,

∆2 : =

m ∈ ∆

∣∣∣∣∣∣∣∣∣
there exist positive constants l2 and ω2 ∈ N

such that any interval of length l2 of R

contains at most ω2 elements of {m(τi)}i∈Z

 .

For any constant l̃ < −1, t, s ∈ R, without loss of generality, we can choose l1 = 1
and l2 = m(s), then∑

s≤τi

ml̃(τi) ≤ ω2m
l̃(s) + ω2(2m(s))l̃ + · · · = ω2m(s)l̃ζl̃

for m ∈ ∆2 and ∑
τi<t

(m(t)/m(τi))
l̃ ≤ ω11

l̃ + ω12
l̃ + · · · = ω1ζl̃

for m ∈ ∆1, where ζl̃ :=
∑∞

i=1 i
l̃.

Definition 2.1. (1.1) and (1.2) are said to be topologically equivalent if there exists
a function H : R×X → X having the following properties:

(i) H(t, x)− x is bounded uniformly with respect to t ∈ R;
(ii) for each fixed t, H(t, ·) is a homeomorphism of X into X;

(iii) L(t, ·) = H−1(t, ·) also has property (i);
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(iv) if x(t) is a solution of (1.2), then H(t, x(t)) is a solution of (1.1).

The function H satisfying the above four properties is said to be the equivalent
function of (1.1) and (1.2).

Now we state the first main finding of this paper, i.e., a new version of the
Grobman-Hartman theorem.

Theorem 2.1. Assume that (1.1) admits a nonuniform (h, k, µ, ν)-dichotomy on
R, h, k is differentiable for each t ̸= τi and h ∈ ∆2, k ∈ ∆1. If |a|, b > 1 and there
exist constants αi, γi > 0 (i = 1, 2) such that for any x, x1, x2 ∈ X

(a1)

∥f(t, x)∥ ≤ α1 min{h′(t)h(t)−1µ(|t|)−ε, k′(t)k(t)−1ν(|t|)−ε},

∥f(t, x1)− f(t, x2)∥ ≤ γ1 min

{
h′(t)

h(t)
µ(|t|)−ε,

k′(t)

k(t)
ν(|t|)−ε

}
∥x1 − x2∥,

for t ̸= τi;

(a2)

∥gi(x)∥ ≤ α2 min{µ(|τi|)−ε, ν(|τi|)−ε},

∥gi(x1)− gi(x2)∥ ≤ γ2 min{µ(|τi|)−ε, ν(|τi|)−ε}∥x1 − x2∥,
i ∈ Z;

(a3) Kγ1(1/|a|+ 1/b) +Kγ2(ω1ζa + ω2ζ−b) < 1,

then (1.2) is topologically equivalent to (1.1) and the equivalent function H(t, x)
satisfies

∥H(t, x)− x∥ ≤ Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b)

for each t ∈ R, x ∈ X.

In the above theorem, the assumed conditions seem more restrictive in contrast
with previous studies such as IS condition (see [10, 30]). This is due to the fact
that the linear system (1.1) with the nonuniform (h, k, µ, ν)-dichotomy is a nonuni-
formly hyperbolic impulsive system, which means that IS condition does not hold
when ε ̸= 0 in the nonuniform part of nonuniform (h, k, µ, ν)-dichotomies. There-
fore, our results enrich and improve the classical Palmer’s linearization theorem for
nonautonomous impulsive differential equations [2, 10, 30]. Specially, here we also
point out the size of the nonlinear term in the linearization theorem of nonuniformly
hyperbolic impulsive systems may depend on the specific forms of dichotomy (see
conditions (a1) and (a2)).

2.3. Invariant manifolds

We describe the construction of stable invariant manifolds on R+ and the con-
struction of unstable invariant manifolds on R− for the nonlinear nonautonomous
impulsive differential equation (1.2). We define the stable and unstable subspaces
for each t ∈ R by E(t) = P (t)(X) and F (t) = Q(t)(X). We assume that there exist
positive constants c and q such that

∥f(t, x1)− f(t, x2)∥ ≤ c∥x1 − x2∥(∥x1∥q + ∥x2∥q) (2.3)
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and
∥gi(x1)− gi(x2)∥ ≤ c∥x1 − x2∥(∥x1∥q + ∥x2∥q) (2.4)

for any t ∈ R, i ∈ Z and x1, x2 ∈ X.
To establish the existence of stable invariant manifolds on R+, we rewrite (2.1)

of the nonuniform (h, k, µ, ν)-dichotomy as the following equivalent way:

∥T (t, s)P (s)∥ ≤ K

(
h(t)

h(s)

)a

µ(s)ε,

∥T (t, s)−1Q(t)∥ ≤ K

(
k(t)

k(s)

)−b

ν(t)ε
(2.5)

for t ≥ s ≥ 0. Let∫ ∞

0

h(τ)aq max{µ(τ)ε, ν(τ)ε}dτ +
∑
0≤τi

h(τi)
aq max{µ(τi)ε, ν(τi)ε}

be convergent and

β(t) = k(t)b/(εq)h(t)−a(q+1)/(εq)µ(t)1+1/qC(t)1/εq, (2.6)

where

C(t) =

∫ ∞

t

h(τ)aq max{µ(τ)ε, ν(τ)ε}dτ +
∑
t≤τi

h(τi)
aq max{µ(τi)ε, ν(τi)ε}.

Consider the set of initial conditions

Zβ(η) =
{
(s, ξ) : s ≥ 0, ξ ∈ Bs(β(s)

−ε/η)
}
,

where Bs(β(s)
−ε/η) ⊂ E(s) is the open ball of radius β(s)−ε/η centered at zero.

Let Zβ(1) = Zβ . Denote by X the space of functions Φ: Zβ → X that are left-
continuous in s, at most with discontinuities of the first kind at the points τi, such
that Φ(s, 0) = 0, Φ(s,Bs(β(s)

−ε)) ⊂ F (s) and

∥Φ(s, ξ1)− Φ(s, ξ2)∥ ≤ ∥ξ1 − ξ2∥ (2.7)

for every s ≥ 0 and ξ1, ξ2 ∈ Bs(β(s)
−ε). It is not difficult to show that X is a

complete metric space with the norm

|Φ|′ = sup

{
∥Φ(s, ξ)∥

∥ξ∥
: s ≥ 0 and ξ ∈ Bs(β(s)

−ε) \ {0}
}
.

Given Φ ∈ X , consider the graph

W =
{
(s, ξ,Φ(s, ξ)) : (s, ξ) ∈ Zβ

}
(2.8)

and, for each (s, u(s), v(s)) ∈ R+ × E(s)× F (s), the semiflow

Ψκ(s, u(s), v(s)) = (t, u(t), v(t)), κ = t− s ≥ 0 (2.9)

generated by (1.2), where

u(t) = T (t, s)u(s) +

∫ t

s

T (t, τ)P (τ)f(τ, u(τ), v(τ))dτ

+
∑

s≤τi<t

T (t, τ+i )P (τ+i )gi(u(τi), v(τi)),
(2.10)
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v(t) = T (t, s)v(s) +

∫ t

s

T (t, τ)Q(τ)f(τ, u(τ), v(τ))dτ

+
∑

s≤τi<t

T (t, τ+i )Q(τ+i )gi(u(τi), v(τi)).

Theorem 2.2. Assume that

(b1) (1.1) admits a nonuniform (h, k, µ, ν)-dichotomy on R+;

(b2) lim
t→∞

k(t)−bh(t)aν(t)ε = 0;

(b3) h(t)aβ(t)ε is decreasing.

If c is sufficiently small in (2.3) and (2.4), then

(c1) there exists a unique function Φ ∈ X such that W is forward invariant with
respect to Ψκ in the sense that

Ψκ(s, ξ,Φ(s, ξ)) ∈ W for any (s, ξ) ∈ Zβ·µ(2K), κ = t− s ≥ 0; (2.11)

(c2) there exists a constant d > 0 such that

∥Ψκ(s, ξ1,Φ(s, ξ1))−Ψκ(s, ξ2,Φ(s, ξ2))∥ ≤ d(h(t)/h(s))aµ(s)ε∥ξ1−ξ2∥ (2.12)

for any κ = t− s ≥ 0 and (s, ξ1), (s, ξ2) ∈ Zβ·µ(2K).

Remark 2.1. Theorem 2.2 generalizes and extends some previous works, such as,
Theorem 1 in [4], Theorem 1 in [5]. Here a new discovery is that the different forms
of functions h, k, µ, ν influence the size of stable invariant manifold (see (2.6) and
(2.8)). This implies that the types of dichotomies may play an important role in
the construction of invariant manifolds.

We now establish the existence of unstable invariant manifolds of (1.2) on R−.
In this case we say that (1.1) admits a nonuniform (h, k, µ, ν)-dichotomy on R− if
there exist constants a ≤ 0 < b, ε ≥ 0 and K ≥ 0 such that

∥T (t, s)−1P (t)∥ ≤ K

(
h(s)

h(t)

)a

µ(|t|)ε,

∥T (t, s)Q(s)∥ ≤ K

(
k(s)

k(t)

)−b

ν(|s|)ε

for 0 ≥ s ≥ t. We let∫ 0

−∞
k(τ)bq max{µ(|τ |)ε, ν(|τ |)ε}dτ +

∑
τi≤0

k(τi)
bq max{µ(|τi|)ε, ν(|τi|)ε}

be convergent and

βu(t) = h(t)a/(εq)k(t)−b(q+1)/(εq)ν(|t|)1+1/qCu(t)1/εq

for t ≤ 0, where

Cu(t) =

∫ t

−∞
k(τ)bq max{µ(|τ |)ε, ν(|τ |)ε}dτ +

∑
τi≤t

k(τi)
bq max{µ(|τi|)ε, ν(|τi|)ε}.
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Let Bu
s (β

u(s)−ε) ⊂ F (s) for s ≤ 0 be the open ball of radius βu(s)−ε centered
at zero. We consider the set of initial conditions Zu

βu = {(s, ξ) : s ≤ 0, ξ ∈
Bu

s (β
u(s)−ε)} and denote by X u the space of functions Φu : Zu

β → X that are
left-continuous in s, at most with discontinuities of the first kind at the points τi,
such that Φu(s, 0) = 0, Φu(s,Bu

s (β
u(s)−ε)) ⊂ E(s) and satisfying (2.7) for every

s ≤ 0 and ξ1, ξ2 ∈ Bu
s (β

u(s)−ε). For each Φu ∈ X u, we consider the graph Wu ={
(s,Φu(s, ξ), ξ) : (s, ξ) ∈ Zu

βu

}
and the semiflow Ψu

κ defined by Ψκ(s, u(s), v(s)) =
(t, u(t), v(t)), κ = t− s ≤ 0, where

u(t) = T (t, s)u(s)−
∫ s

t

T (t, τ)P (τ)f(τ, u(τ), v(τ))dτ

−
∑

t≤τi<s

T (t, τ+i )P (τ+i )gi(u(τi), v(τi)),

v(t) = T (t, s)v(s)−
∫ s

t

T (t, τ)Q(τ)f(τ, u(τ), v(τ))dτ

−
∑

t≤τi<s

T (t, τ+i )Q(τ+i )gi(u(τi), v(τi)).

Theorem 2.3. Assume that (1.1) admits a nonuniform (h, k, µ, ν)-dichotomy on
R− with lim

t→−∞
k(t)bh(t)−aµ(|t|)ε = 0. If k(t)−bβ(t)ε is decreasing and c is suffi-

ciently small in (2.3) and (2.4), then there exists a unique function Φu ∈ X u such
that

Ψu
κ(s,Φ

u(s, ξ), ξ) ∈ Wu for any (s, ξ) ∈ Zu
β·ν(2K), κ = t− s ≤ 0.

Moreover, there exists a constant du > 0 such that

∥Ψu
κ(s,Φ

u(s, ξ1), ξ1)−Ψu
κ(s,Φ

u(s, ξ2), ξ2)∥ ≤ du(k(s)/k(t))−bν(|s|)ε∥ξ1 − ξ2∥

for any κ = t− s ≤ 0 and (s, ξ1), (s, ξ2) ∈ Zβ·ν(2K).

3. Proofs of main results

3.1. Proofs of Theorem 2.1

Let X(t, t0, x0) be the solution of (1.2) with the initial value X(t0) = x0 and
Y (t, t0, y0) be the solution of (1.1) with the initial value Y (t0) = y0. We first prove
some auxiliary results.

Step 1. Construction of bounded solutions.

Lemma 3.1. For any fixed (t̄, ξ) ∈ R×X, the system

z′ = A(t)z − f(t,X(t, t̄, ξ)), t ̸= τi,

∆z|t=τi = Biz(τi)− gi(X(τi, t̄, ξ)), i ∈ Z,
(3.1)

has a unique bounded solution h(t, (t̄, ξ)) and

∥h(t, (t̄, ξ))∥ ≤ Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b), t ∈ R.
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Proof. Let

h(t, (t̄, ξ)) = −
∫ t

−∞
T (t, τ)P (τ)f(τ,X(τ, t̄, ξ))dτ+

∫ ∞

t

T (t, τ)Q(τ)f(τ,X(τ, t̄, ξ))dτ

−
∑
τi<t

T (t, τ+i )P (τ+i )gi(x(τi)) +
∑
t≤τi

T (t, τ+i )Q(τ+i )gi(x(τi)).

It follows from direct calculation that h(t, (t̄, ξ)) is a solution of (3.1). By (2.1),
(a1) and (a2), we have

A1 : =

∫ t

−∞
∥T (t, τ)P (τ)∥∥f(τ,X(τ, t̄, ξ))∥dτ

+

∫ ∞

t

∥T (t, τ)Q(τ)∥∥f(τ,X(τ, t̄, ξ))∥dτ

≤ Kα1h(t)
a

∫ t

−∞
h(τ)−a−1h′(τ)dτ +Kα1k(t)

b

∫ ∞

t

k(τ)−b−1k′(τ)dτ

≤ Kα1(1/|a|+ 1/b)

and

B1 : =
∑
τi<t

∥T (t, τ+i )P (τ+i )∥∥gi(x(τi))∥+
∑
t≤τi

∥T (t, τ+i )Q(τ+i )∥∥gi(x(τi))∥

≤ Kα2

∑
τi<t

[h(t)/h(τi)]
a +Kα2k(t)

b
∑
t≤τi

k(τi)
−b

≤ Kα2(ω1ζa + ω2ζ−b).

Therefore,

∥h(t, (t̄, ξ))∥ ≤ A1 +B1 ≤ Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b)

for any t ∈ R. This means that h(t, (t̄, ξ)) is the unique bounded solution of (3.1)
since

z′ = A(t)z, t ̸= τi,

∆z|t=τi = Biz(τi), i ∈ Z,

admits a nonuniform (h, k, µ, ν)-dichotomy.

Lemma 3.2. For any fixed (t̄, ξ) ∈ R×X, the system

z′ = A(t)z + f(t, Y (t, t̄, ξ) + z) t ̸= τi,

∆z|t=τi = Biz(τi) + gi(Y (τi, t̄, ξ) + z(τi)), i ∈ Z,
(3.2)

has a unique bounded solution l(t, (t̄, ξ)) and

∥l(t, (t̄, ξ))∥ ≤ Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b), t ∈ R.

Proof. We denote by Ω1 the space of functions z : R → X that are left-continuous
in t, at most with discontinuities of the first kind at the points τi, such that

∥z∥ ≤ Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b),
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where ∥z∥ := supt∈R ∥z(t)∥. It is not difficult to show that (Ω1, ∥ · ∥) is a Banach
space. Define the mapping T on Ω1 by

(Tz)(t) =

∫ t

−∞
T (t, τ)P (τ)f(τ, Y (τ, t̄, ξ) + z(τ))dτ

−
∫ ∞

t

T (t, τ)Q(τ)f(τ, Y (τ, t̄, ξ) + z(τ))dτ

+
∑
τi<t

T (t, τ+i )P (τ+i )gi(Y (τi, t̄, ξ) + z(τi))

−
∑
t≤τi

T (t, τ+i )Q(τ+i )gi(Y (τi, t̄, ξ) + z(τi)).

It is clear that Tz is left-continuous in t, at most with discontinuities of the first
kind at the points τi and it follows from (2.1), (a1) and (a2) that

∥Tz∥ ≤ Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b).

Therefore, T (Ω1) ⊂ Ω1. In addition, for any z1(t), z2(t) ∈ Ω1, we have

A2 : =

∫ t

−∞
∥T (t, τ)P (τ)∥∥f(τ, Y (τ, t̄, ξ) + z1(τ))− f(τ, Y (τ, t̄, ξ) + z2(τ))∥dτ

+

∫ ∞

t

∥T (t, τ)Q(τ)∥∥f(τ, Y (τ, t̄, ξ) + z1(τ))− f(τ, Y (τ, t̄, ξ) + z2(τ))∥dτ

≤ Kγ1(1/|a|+ 1/b)∥z1 − z2∥

and

B2 : =
∑
τi<t

∥T (t, τ+i )P (τ+i )∥∥gi(Y (τi, t̄, ξ) + z1(τi))− gi(Y (τi, t̄, ξ) + z2(τi))∥

+
∑
t≤τi

∥T (t, τ+i )Q(τ+i )∥∥gi(Y (τi, t̄, ξ) + z1(τi))− gi(Y (τi, t̄, ξ) + z2(τi))∥

≤ Kγ2(ω1ζa + ω2ζ−b)∥z1 − z2∥.

Therefore,

∥Tz1 − Tz2∥ ≤ [Kγ1(1/|a|+ 1/b) +Kγ2(ω1ζa + ω2ζ−b)]∥z1 − z2∥.

Then by (a3), T : Ω1 → Ω1 is a contraction mapping. By the Banach fixed point
theorem (also known as the contraction mapping theorem or contraction mapping
principle), we conclude that T has a unique fixed point l(t, (t̄, ξ)), i.e.,

l(t, (t̄, ξ)) =

∫ t

−∞
T (t, τ)P (τ)f(τ, Y (τ, t̄, ξ) + l(τ))dτ

−
∫ ∞

t

T (t, τ)Q(τ)f(τ, Y (τ, t̄, ξ) + l(τ))dτ

+
∑
τi<t

T (t, τ+i )P (τ+i )gi(Y (τi, t̄, ξ) + l(τi))

−
∑
t≤τi

T (t, τ+i )Q(τ+i )gi(Y (τi, t̄, ξ) + l(τi)).
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In the following, we prove that l(t, (t̄, ξ)) is unique in the whole space. Otherwise,
assume that there is another bounded solution l0(t, (t̄, ξ)) of (3.2), which can be
written as

l0(t, (t̄, ξ)) =

∫ t

−∞
T (t, τ)P (τ)f(τ, Y (τ, t̄, ξ) + l0(τ))dτ

−
∫ ∞

t

T (t, τ)Q(τ)f(τ, Y (τ, t̄, ξ) + l0(τ))dτ

+
∑
τi<t

T (t, τ+i )P (τ+i )gi(Y (τi, t̄, ξ) + l0(τi))

−
∑
t≤τi

T (t, τ+i )Q(τ+i )gi(Y (τi, t̄, ξ) + l0(τi)).

Proceeding in a similar manner to the above arguments, we have

∥l − l0∥ ≤ [Kγ1(1/|a|+ 1/b) +Kγ2(ω1ζa + ω2ζ−b)]∥l − l0∥.

Then, by (a3), one has l ≡ l0. Therefore, l(t, (t̄, ξ)) is a unique bounded solution of
(3.2) with

∥l(t, (t̄, ξ)∥ ≤ Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b), t ∈ R.

Lemma 3.3. If x(t) is any solution of (1.2), then

z′ = A(t)z + f(t, x(t) + z)− f(t, x(t)) t ̸= τi,

∆z|t=τi = Biz(τi) + gi(x(τi) + z(τi))− gi(x(τi)), i ∈ Z,
(3.3)

has a unique bounded solution z(t) ≡ 0.

Proof. Obviously, z(t) ≡ 0 is a bounded solution of (3.3). Next we show that
z(t) ≡ 0 is the unique bounded solution. Assume that z0(t) is any bounded solution
of (3.3), then z0(t) can be written in the form

z0(t) =

∫ t

−∞
T (t, τ)P (τ)[f(τ, x(τ) + z(τ))− f(τ, x(τ))]dτ

−
∫ ∞

t

T (t, τ)Q(τ)[f(τ, x(τ) + z(τ))− f(τ, x(τ))]dτ

+
∑
τi<t

T (t, τ+i )P (τ+i )[gi(x(τi) + z(τi))− gi(x(τi))]

−
∑
t≤τi

T (t, τ+i )Q(τ+i )[gi(x(τi) + z(τi))− gi(x(τi))].

It is easy to show that

∥z0 − 0∥ ≤ [Kγ1(1/|a|+ 1/b) +Kγ2(ω1ζa + ω2ζ−b)]∥z0 − 0∥,

which implies that z(t) ≡ 0.
Step 2. Construction of the topologically equivalent function.
Define

H(t, x) = x+ h(t, (t, x)), L(t, y) = y + l(t, (t, y)), x, y ∈ X. (3.4)
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Lemma 3.4. For any fixed (t̄, x(t̄)) ∈ R × X, H(t,X(t, t̄, x(t̄))) is a solution of
(1.1).

Proof. It follows from Lemma 3.1 that

h(t, (t,X(t, t̄, x(t̄)))) = h(t, (t̄, x(t̄)))

and

H(t,X(t, t̄, x(t̄))) = X(t, t̄, x(t̄))+h(t, (t,X(t, t̄, x(t̄)))) = X(t, t̄, x(t̄))+h(t, (t̄, x(t̄))).

Since X(t, t̄, x(t̄)) and h(t, (t̄, x(t̄))) are solutions of (1.2) and (3.1), respectively, for
t ̸= τi, we have

H ′(t,X(t, t̄, x(t̄))) = X ′(t, t̄, x(t̄)) + h′(t, (t̄, x(t̄)))

= A(t)X(t, t̄, x(t̄)) + f(t,X(t, t̄, x(t̄)))

+A(t)h(t, (t̄, x(t̄)))− f(t,X(t, t̄, x(t̄)))

= A(t)H(t,X(t, t̄, x(t̄))),

and, for t = τi, i ∈ Z, we have

H(τ+i , X(τ+i , t̄, x(t̄))) = X(τ+i , t̄, x(t̄)) + h(τ+i , (t̄, x(t̄)))

= BiX(τi, t̄, x(t̄)) + gi(X(τi, t̄, x(t̄)))

+Bih(τi, (t̄, x(t̄)))− gi(X(τi, t̄, x(t̄)))

= BiH(τi, X(τi, t̄, x(t̄))).

This implies that H(t,X(t, t̄, x(t̄))) is a solution of (1.1).
A similar argument to the proof of Lemma 3.4, we have

Lemma 3.5. For any fixed (t̄, y(t̄))∈R×X, L(t, Y (t, t̄, y(t̄))) is a solution of (1.2).

Lemma 3.6. For any fixed t ∈ R and y ∈ X, H(t, L(t, y)) = y holds.

Proof. Let y(t) be any solution of (1.1). It follows from Lemma 3.4 and Lemma
3.5 that L(t, y(t)) is a solution of (1.2) and H(t, L(t, y(t))) is a solution of (1.1).
Moreover, one has

H ′(t, L(t, y(t)))− y′(t) = A(t)H(t, L(t, y(t)))−A(t)y(t)

= A(t)(H(t, L(t, y(t)))− y(t)), t ̸= τi

and

H(τ+i , L(τ+i , y(τ+i )))− y(τ+i ) = BiH(τi, L(τi, y(τi)))−Biy(τi)

= Bi(H(τi, L(τi, y(τi)))− y(τi)), i ∈ Z.

In addition,

∥H(t, L(t, y(t)))− y(t)∥ ≤ ∥H(t, L(t, y(t)))− L(t, y(t))∥+ ∥L(t, y(t))− y(t)∥
≤ 2[Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b)]

for any t ∈ R. This shows that H(t, L(t, y(t)))− y(t) is a bounded solution of (1.1),
and hence

H(t, L(t, y(t)))− y(t) ≡ 0.

For any fixed t ∈ R, y ∈ X, there exists a solution of (1.1) with the initial value
y(t) = y. Then H(t, L(t, y)) = y holds.

Similarly, we have
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Lemma 3.7. For any fixed t ∈ R, x ∈ X, L(t,H(t, x)) = x holds.

We are now at the right position to establish Theorem 2.1. We are going to
prove topological equivalence between (1.1) and (1.2), that is, to verify that H(t, x)
is a topologically equivalent function.

Proof of condition (i). It follows from (3.4) and Lemma 3.1 that for any t ∈ R

∥H(t, x)− x∥ = ∥h(t, x)∥ ≤ Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b), x ∈ X.

Proof of condition (ii). By Lemma 3.6 and Lemma 3.7, for each fixed t ∈ R,
L(t, ·) = H−1(t, ·) is homeomorphism.

Proof of condition (iii). From (3.4) and Lemma 3.2, for any t ∈ R, we have

∥L(t, y)− y∥ = ∥l(t, , y)∥ ≤ Kα1(1/|a|+ 1/b) +Kα2(ω1ζa + ω2ζ−b), y ∈ X.

Proof of condition (iv). By using Lemma 3.4 and Lemma 3.5, the condition (iv)
holds.

The proof of Theorem 2.1 is complete.

3.2. Proofs of Theorems 2.2 and 2.3

The proof of Theorem 2.3 is the similar arguments to the proof of Theorem 2.2 and
can be obtained by reversing the time. Therefore, here it is omitted.

To obtain the stable manifolds, we first introduce an auxiliary space. Let X ∗ be
the space of functions Φ: R+ ×X → X that are left-continuous in s, at most with
discontinuities of the first kind at the points τi, such that Φ|Zβ

∈ X and

Φ(s, ξ) = Φ
(
s, β(s)−εξ/∥ξ∥

)
for every (s, ξ) ̸∈ Zβ .

We note that there is a one-to-one correspondence between functions in X and
functions in X ∗. Moreover, X ∗ is a Banach space with the norm X ∗ ∋ Φ 7→ |Φ|Zβ |′.
It is not difficult to show that for each Φ ∈ X ∗ we have

∥Φ(s, ξ1)− Φ(s, ξ2)∥ ≤ 2∥ξ1 − ξ2∥ (3.5)

for every s ≥ 0 and ξ1, ξ2 ∈ E(s).
The proof of Theorem 2.2 is obtained in several steps. We first prove that, for

each Φ ∈ X ∗, there exists a unique function u satisfying (2.10).

Lemma 3.8. Let c be sufficiently small. Then, for each Φ ∈ X ∗ and (s, ξ) ∈ Zβ,
there exists a unique function u : R+ → X with u(s) = ξ such that, for any t ≥ s,
(2.10) holds and

∥u(t)∥ ≤ 2K(h(t)/h(s))aµ(s)ε∥ξ∥. (3.6)

Proof. Let Ω2 be the space of left-continuous functions x : [s,∞) → X at most
with discontinuities of the first kind at the points τi with the initial value x(s) and
∥x∥∗ ≤ β(s)−ε, where

∥x∥∗ =
1

2K
sup

{
∥x(t)∥

(h(t)/h(s))aµ(s)ε
: t ≥ s

}
. (3.7)

It is not difficult to show that (Ω2, ∥ · ∥∗) is a Banach space.
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Given (s, ξ) ∈ Zβ and Φ ∈ X ∗, define an operator L in Ω2 by

(Lu)(t) = T (t, s)ξ +

∫ t

s

T (t, τ)P (τ)f(τ, u(τ),Φ(τ, u(τ))dτ

+
∑

s≤τi<t

T (t, τ+i )P (τ+i )gi(u(τi),Φ(τi, u(τi)))

for each t ≥ s. It is easy to show that Lu is left-continuous in [s,∞) at most
with discontinuities of the first kind at the points τi, and that (Lu)(s) = ξ and
(Lu)(t) ∈ E(t) for every t ≥ s. It follows from (2.3), (2.4) and (2.5) that

C1
1 (τ) : = ∥f(τ, u(τ),Φ(τ, u(τ)))∥

≤ c (∥u(τ)∥+ ∥Φ(τ, u(τ))∥) (∥u(τ)∥+ ∥Φ(τ, u(τ))∥)q

≤ 3q+1c∥u(τ)∥q+1

≤ 6q+1cKq+1

(
h(τ)

h(s)

)a(q+1)

µ(s)ε(q+1)(∥u∥∗)q+1, τ ̸= τi

and

C2
1 (τi) : = ∥gi(u(τi),Φ(τi, u(τi)))∥

≤ c (∥u(τi)∥+ ∥Φ(τi, u(τi))∥) (∥u(τi)∥+ ∥Φ(τi, u(τi))∥)q

≤ 3q+1c∥u(τi)∥q+1

≤ 6q+1cKq+1

(
h(τi)

h(s)

)a(q+1)

µ(s)ε(q+1)(∥u∥∗)q+1, i ∈ N.

Therefore,

∥(Lu)(t)∥ ≤ ∥T (t, s)∥∥ξ∥+
∫ t

s

∥T (t, τ)P (τ)∥C1
1 (τ)dτ

+
∑

s≤τi<t

∥T (t, τ+i )P (τ+i )∥C2
1 (τi)

≤ K

(
h(t)

h(s)

)a

µ(s)ε∥ξ∥

+ 6q+1cKq+2

(
h(t)

h(s)

)a

h(s)−aqµ(s)ε(q+1)(∥u∥∗)q+1C(s).

By (2.6), we have

∥Lu∥∗ ≤ 1

2

(
∥ξ∥+ 6q+1cKq+1h(s)−aqµ(s)εq(∥u∥∗)q+1C(s)

)
≤ 1

2

(
1 + 6q+1cKq+1h(s)−aqµ(s)εqβ(s)−εqC(s)

)
β(s)−ε

≤ 1

2
(1 + 6q+1cKq+1)β(s)−ε.

If c is sufficiently small so that 6q+1cKq+1 < 1, then we have L(Ω2) ⊂ Ω2. On the
other hand, for each u1, u2 ∈ Ω2, we get

C1
2 (τ) : = ∥f(τ, u1(τ),Φ(τ, u1(τ)))− f(τ, u2(τ),Φ(τ, u2(τ)))∥

≤ 2 · 6q+1cKq+1∥u1 − u2∥∗β(s)−εq(h(τ)/h(s))a(q+1)µ(s)ε(q+1), τ ̸= τi,
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and

C2
2 (τi) : = ∥gi(u1(τi),Φ(τi, u1(τi)))− gi(u2(τi),Φ(τi, u2(τi)))∥

≤ 2 · 6q+1cKq+1∥u1 − u2∥∗β(s)−εq(h(τi)/h(s))
a(q+1)µ(s)ε(q+1), i ∈ N.

Then

∥Lu1(t)− Lu2(t)∥ ≤
∫ t

s

∥T (t, τ)P (τ)∥C1
2 (τ)dτ +

∑
s≤τi<t

∥T (t, τ+i )P (τ+i )∥C2
2 (τi)

≤ 2 · 6q+1cKq+2∥u1 − u2∥∗
(
h(t)

h(s)

)a

µ(s)ε.

Taking c sufficiently small such that 6q+1cKq+1 < 1, we have

∥Lu1 − Lu2∥∗ ≤ 6q+1cKq+1∥u1 − u2∥∗.

Then L is a contraction in Ω2, and there exists a unique function u ∈ Ω2 such that
Lu = u. Moveover, it is easy to show that

∥u∥∗ ≤ 1

2
∥ξ∥+ 1

2
6q+1cKq+1∥u∥∗,

and
∥u(t)∥ ≤ 2K(h(t)/h(s))aµ(s)ε∥ξ∥ for any t ≥ s,

since K/(1− (1/2)6q+1cKq+1) < 2K.
Let u = uΦ

ξ be the unique function given by Lemma 3.8, that is,

u(t) = T (t, s)ξ +

∫ t

s

T (t, τ)P (τ)f(τ, u(τ),Φ(τ, u(τ))dτ

+
∑

s≤τi<t

T (t, τ+i )P (τ+i )gi(u(τi),Φ(τi, u(τi)))
(3.8)

for each t ≥ s.

Lemma 3.9. Given c sufficiently small and Φ ∈ X ∗, the following properties hold:

1. for each (s, ξ) ∈ Zβ and t ≥ s, if

Φ(t, u(t)) = T (t, s)Φ(s, ξ) +

∫ t

s

T (t, τ)Q(τ)f(τ, u(τ),Φ(τ, u(τ)))dτ

+
∑

s≤τi<t

T (t, τ+i )Q(τ+i )gi(u(τi),Φ(τi, u(τi))),
(3.9)

then

Φ(s, ξ) = −
∫ ∞

s

T (τ, s)−1Q(τ)f(τ, u(τ),Φ(τ, u(τ)))dτ

−
∑
s≤τi

T (τ+i , s)−1Q(τ+i )gi(u(τi),Φ(τi, u(τi))).
(3.10)

2. if identity (3.10) holds for each s ≥ 0 and ξ ∈ Bs(β(s)
−ε), then (3.9) holds

for each (s, ξ) ∈ Zβ·µ(2K).
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Proof. By (2.5), (2.3), (2.4), (3.5) and (3.6), for each τ ≥ s we have

C1
3 (τ) : = ∥T (τ, s)−1Q(τ)∥ · ∥f(τ, u(τ),Φ(τ, u(τ)))∥

≤ 3q+1cK

(
k(τ)

k(s)

)−b

ν(τ)ε∥u(τ)∥q+1

≤ 6q+1cKq+2

(
k(τ)

k(s)

)−b

ν(τ)ε
(
h(τ)

h(s)

)a(q+1)

µ(s)ε(q+1)∥ξ∥q+1

≤ 6q+1cKq+2

(
k(τ)

k(s)

)−b

ν(τ)ε
(
h(τ)

h(s)

)a(q+1)

µ(s)ε(q+1)β(s)−ε(q+1)

and similarly, for each τi ≥ s we have

C2
3 (τi) : = ∥T (τ+i , s)−1Q(τ+i )∥ · ∥gi(u(τi),Φ(τi, u(τi)))∥

≤ 3q+1cK

(
k(τi)

k(s)

)−b

ν(τi)
ε∥u(τi)∥q+1

≤ 6q+1cKq+2

(
k(τi)

k(s)

)−b

ν(τi)
ε

(
h(τi)

h(s)

)a(q+1)

µ(s)ε(q+1)∥ξ∥q+1

≤ 6q+1cKq+2

(
k(τi)

k(s)

)−b

ν(τi)
ε

(
h(τi)

h(s)

)a(q+1)

µ(s)ε(q+1)β(s)−ε(q+1).

Then ∫ ∞

s

C1
3 (τ)dτ +

∑
s≤τi

C2
3 (τi)

≤ 6q+1cKq+2k(s)bh(s)−a(q+1)µ(s)ε(q+1)β(s)−ε(q+1)

×

∫ ∞

s

k(τ)−bh(τ)a(q+1)ν(τ)εdτ +
∑
s≤τi

k(τi)
−bh(τi)

a(q+1)ν(τi)
ε


≤ 6q+1cKq+2k(s)bh(s)−a(q+1)µ(s)ε(q+1)β(s)−εqC(s) < ∞.

This implies that the right-hand side of (3.10) is always well-defined.
Now we assume that (3.9) holds for each (s, ξ) ∈ Zβ and t ≥ s. Identity (3.9)

can be written in the form

Φ(s, ξ) = T (t, s)−1Φ(t, u(t))−
∫ t

s

T (τ, s)−1Q(τ)f(τ, u(τ),Φ(τ, u(τ)))dτ

−
∑

s≤τi<t

T (τ+i , s)−1Q(τ+i )gi(u(τi),Φ(τi, u(τi))).
(3.11)

By (2.5), (3.5) and (3.6), we obtain

∥T (t, s)−1Φ(t, u(t))∥ ≤ 4K2

(
k(t)

k(s)

)−b

ν(t)ε
(
h(t)

h(s)

)a

µ(s)εβ(s)−ε

≤ 4K2k(t)−bh(t)aν(t)εk(s)bh(s)−aµ(s)εβ(s)−ε.

Therefore, letting t → ∞ in (3.11) yields identity (3.10).



1102 J. Zhang, L. Yang, M. Fan & M. Chen

Assume that (3.10) holds for any (s, ξ) ∈ Zβ . For each (s, ξ) ∈ Zβ·µ(2K), by
(3.6), we have

∥u(t)∥ ≤ 2K

(
h(t)

h(s)

)a

µ(s)ε∥ξ∥ ≤ β(t)−ε h(t)
aβ(t)ε

h(s)aβ(s)ε
≤ β(t)−ε,

and hence, (t, u(t)) ∈ Zβ for any t ≥ s. It follows from (3.10) that

T (t, s)Φ(s, ξ) = −
∫ t

s

T (t, τ)Q(τ)f(τ, u(τ),Φ(τ, u(τ)))dτ

−
∫ ∞

t

T (t, τ)Q(τ)f(τ, u(τ),Φ(τ, u(τ)))dτ

−
∑

s≤τi<t

T (t, τ+i )Q(τ+i )gi(u(τi),Φ(τi, u(τi)))

−
∑
t≤τi

T (t, τ+i )Q(τ+i )gi(u(τi),Φ(τi, u(τi)))

= −
∫ t

s

T (t, τ)Q(τ)f(τ, u(τ),Φ(τ, u(τ)))dτ

−
∑

s≤τi<t

T (t, τ+i )Q(τ+i )gi(u(τi),Φ(τi, u(τi))) + Φ(t, u(t)),

using (3.10) in the last identity with (s, ξ) replaced by (t, u(t)).

Lemma 3.10. If c is sufficiently small, then there exists a K1 > 0 such that

∥u1(t)− u2(t)∥ ≤ K1(h(t)/h(s))
aµ(s)ε∥ξ1 − ξ2∥ (3.12)

for any Φ ∈ X ∗, (s, ξ1), (s, ξ2) ∈ Zβ and t ≥ s.

Proof. Write ui = uΦ
ξi
. By (2.5), (2.3), (2.4), (3.5) and (3.6), we have

C1
4 : =

∫ t

s

∥T (t, τ)P (τ)∥|f(τ, u1(τ),Φ(τ, u1(τ)))− f(τ, u2(τ),Φ(τ, u2(τ)))∥dτ

≤ 2 · 6q+1cKq+2∥u1 − u2∥∗
(
h(t)

h(s)

)a

µ(s)ε(q+1)β(s)−εq

∫ t

s

h(τ)aqµ(τ)εdτ

and

C2
4 : =

∑
s≤τi<t

∥T (t, τ+i )P (τ+i )∥|gi(u1(τi),Φ(τi, u1(τi)))− gi(u2(τi),Φ(τi, u2(τi)))∥

≤ 2 · 6q+1cKq+2∥u1 − u2∥∗
(
h(t)

h(s)

)a

µ(s)ε(q+1)β(s)−εq
∑

s≤τi<t

h(τi)
aqµ(τi)

ε.

Then

∥u1(t)− u2(t)∥ ≤ ∥T (t, s)(ξ1 − ξ2)∥+ C1
4 + C2

4

≤ K

(
h(t)

h(s)

)a

µ(s)ε(∥ξ1 − ξ2∥+ 2 · 6q+1cKq+1∥u1 − u2∥∗).
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This implies that

∥u1 − u2∥∗ ≤ 1

2
∥ξ1 − ξ2∥+ 6q+1cKq+1∥u1 − u2∥∗,

which yields (3.12) with K1 = K/(1− 6q+1cKq+1).

Lemma 3.11. If c is sufficiently small, then there exists a K2 > 0 such that

∥uΦ1(t)− uΦ2(t)∥ ≤ K2(h(t)/h(s))
a∥ξ∥ · |Φ1 − Φ2|′ (3.13)

for any Φ1,Φ2 ∈ X ∗, (s, ξ) ∈ Zβ and t ≥ s.

Proof. For simplicity, write ui = uΦi

ξ for i = 1, 2. Note that

∥Φ1(τ, u1(τ))− Φ2(τ, u2(τ))∥
≤ ∥Φ1(τ, u1(τ))− Φ2(τ, u1(τ))∥+ ∥Φ2(τ, u1(τ))− Φ2(τ, u2(τ))∥
≤ ∥u1(τ)∥ · |Φ1 − Φ2|′ + 2∥u1(τ)− u2(τ)∥.

With similar arguments to those in Lemmas 3.8 and 3.10, we obtain

C1
5 (τ) : = ∥f(τ, u1(τ),Φ1(τ, u1(τ)))− f(τ, u2(τ),Φ2(τ, u2(τ)))∥

≤ 3qc [3(∥u1(τ)− u2(τ)∥)(∥u1(τ)∥q + ∥u2(τ)∥q)
+ (∥u1(τ)∥ · |Φ1 − Φ2|′)(∥u1(τ)∥q + ∥u2(τ)∥q)]

≤ [2 · 6q+1cKq+1∥u1 − u2∥∗ + 4 · 6qcKq+1∥ξ∥ · |Φ1 − Φ2|′]
× (h(τ)/h(s))a(q+1)µ(s)ε(q+1)β(s)−εq, τ ≥ s

and

C2
5 (τi) : = ∥gi(u1(τi),Φ1(τi, u1(τi)))− gi(u2(τi),Φ2(τi, u2(τi)))∥

≤ 3qc [3(∥u1(τi)− u2(τi)∥)(∥u1(τi)∥q + ∥u2(τi)∥q)
+ (∥u1(τi)∥ · |Φ1 − Φ2|′)(∥u1(τi)∥q + ∥u2(τi)∥q)]

≤ [2 · 6q+1cKq+1∥u1 − u2∥∗ + 4 · 6qcKq+1∥ξ∥ · |Φ1 − Φ2|′]
× (h(τi)/h(s))

a(q+1)µ(s)ε(q+1)β(s)−εq, τi ≥ s.

Then

∥u1(t)− u2(t)∥ ≤
∫ t

s

∥T (t, τ)P (τ)∥C1
5 (τ)dτ +

∑
s≤τi<t

∥T (t, τ+i )P (τ+i )∥C2
5 (τi)

≤ [2 · 6q+1cKq+1∥u1 − u2∥∗ + 4 · 6qcKq+1∥ξ∥ · |Φ1 − Φ2|′]

×K

(
h(t)

h(s)

)a

µ(s)ε(q+1)β(s)−εqC(s).

This implies that

∥u1 − u2∥∗ ≤ [6q+1cKq+1∥u1 − u2∥∗ + 2 · 6qcKq+1∥ξ∥ · |Φ1 − Φ2|′]µ(s)−ε.

This establishes inequality (3.13).

Lemma 3.12. If c is sufficiently small, then there exists a unique function Φ ∈ X ∗

such that (3.10) holds for any (s, ξ) ∈ Zβ.
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Proof. For each Φ ∈ X ∗ and (s, ξ) ∈ Zβ , we define an operator J by

(JΦ)(s, ξ) = −
∫ ∞

s

T (τ, s)−1Q(τ)f(τ, u(τ),Φ(τ, u(τ)))dτ

−
∑
s≤τi

T (τ+i , s)−1Q(τ+i )gi(u(τi),Φ(τi, u(τi))),

where u = uΦ
ξ is the unique function given by Lemma 3.8. It is easy to show

that JΦ is left-continuous in s at most with discontinuities of the first kind at the
points τi, and that (JΦ)(s, 0) = 0 for s ≥ 0. Moreover, for any ξ1, ξ2 ∈ Bs(β(s)

−ε),
let ui = uΦ

ξi
for i = 1, 2, by (2.5), (3.6) and (3.12), we have

C1
6 (τ) : = ∥f(τ, u1(τ),Φ(τ, u1(τ)))− f(τ, u2(τ),Φ(τ, u2(τ)))∥

≤ 6q+1cKqK1

(
h(τ)

h(s)

)a(q+1)

µ(s)ε(q+1)β(s)−εq∥ξ1 − ξ2∥

and

C2
6 (τi) : = ∥gi(u1(τi),Φ(τi, u1(τi)))− gi(u2(τi),Φ(τi, u2(τi)))∥

≤ 6q+1cKqK1

(
h(τi)

h(s)

)a(q+1)

µ(s)ε(q+1)β(s)−εq∥ξ1 − ξ2∥.

Therefore,

∥(JΦ)(s, ξ1)− (JΦ)(s, ξ2)∥

≤
∫ ∞

s

∥T (τ, s)−1Q(τ)∥C1
6 (τ)dτ +

∑
s≤τi

∥T (τ+i , s)−1Q(τ+i )∥C2
6 (τi)

≤ 6q+1cKq+1K1k(s)
bh(s)−a(q+1)µ(s)ε(q+1)β(s)−εqC(s)∥ξ1 − ξ2∥

≤ 6q+1cKq+1K1∥ξ1 − ξ2∥.

If c is sufficiently small, then

∥(JΦ)(s, ξ1)− (JΦ)(s, ξ2)∥ ≤ ∥ξ1 − ξ2∥

and one can extend JΦ to R+ × X by (JΦ)(s, ξ) = (JΦ)
(
s, β(s)−εξ/∥ξ∥

)
for any

(s, ξ) ̸∈ Zβ , and hence, J(X ∗) ⊂ X ∗.

Now we show that J is a contraction. Given Φ1,Φ2 ∈ X ∗ and writing ui = uΦi

ξ

for i = 1, 2, by (3.5), (3.6) and (3.13), for each (s, ξ) ∈ Zβ we have

C1
7 (τ) : = ∥f(τ, u1(τ),Φ1(τ, u1(τ)))− f(τ, u2(τ),Φ2(τ, u2(τ)))∥

≤ 3qc
(
3∥u1(τ)− u2(τ)∥+ ∥u1(τ)∥ · |Φ1 − Φ2|′

)
(∥u1(τ)∥q + ∥u2(τ)∥q)

≤ 2 · 6qcKq(2K + 3K2)∥ξ∥ · |Φ1 − Φ2|′
(
h(τ)

h(s)

)a(q+1)

µ(s)ε(q+1)β(s)−εq

and

C2
7 (τi) : = ∥gi(u1(τi),Φ1(τi, u1(τi)))− gi(u2(τi),Φ2(τi, u2(τi)))∥

≤ 3qc
(
3∥u1(τi)− u2(τi)∥+ ∥u1(τi)∥ · |Φ1 − Φ2|′

)
(∥u1(τi)∥q + ∥u2(τi)∥q)

≤ 2 · 6qcKq(2K + 3K2)∥ξ∥ · |Φ1 − Φ2|′
(
h(τi)

h(s)

)a(q+1)

µ(s)ε(q+1)β(s)−εq.
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Therefore,

∥(JΦ1)(s, ξ)− (JΦ2)(s, ξ)∥

≤
∫ ∞

s

∥T (τ, s)−1Q(τ)∥C1
7 (τ)dτ +

∑
s≤τi

∥T (τ+i , s)−1Q(τ+i )∥C2
7 (τi)

≤ 2 · 6qcKq(2K + 3K2)∥ξ∥ · |Φ1 − Φ2|′

and provided that c is sufficiently small, the operator J is a contraction. Therefore,
there exists a unique function Φ∈X ∗ such that (3.10) holds for every (s, ξ)∈Zβ .

We are now at the right position to establish Theorem 2.2. It follows from
Lemma 3.8 that, for each (s, ξ) ∈ Zβ and Φ ∈ X ∗, there exists a unique function
u = uΦ

ξ ∈ Ω2. By Lemmas 3.9 , 3.12 and the one-to-one correspondence between

X and X ∗, for each s ≥ 0 and ξ ∈ Bs ((β(s) · µ(s))−ε/(2K)), there exists a unique
function Φ ∈ X such that (3.9) holds. For each (s, ξ) ∈ Zβ(s)·µ(s)(2K), by (3.6), we
have

∥u(t)∥ ≤ 2K(h(t)/h(s))aµ(s)ε
1

2K
(β(s) · µ(s))−ε

≤ (h(t)/h(s))aβ(s)−ε ≤ β(s)−ε,

which implies that (t, u(t)) ∈ Zβ for any t ≥ s. Therefore, (2.11) holds and W is
forward invariant under the semiflow Ψκ. For any (s, ξ1), (s, ξ2) ∈ Zβ(s)·µ(s)(2K)
and κ = t− s ≥ 0, by Lemmas 3.10, we have

∥Ψκ(s, ξ1,Φ(s, ξ1))−Ψκ(s, ξ2,Φ(s, ξ2))∥
= ∥(t, uξ1(t),Φ(t, uξ1(t)))− (t, uξ2(t),Φ(t, uξ2(t)))∥
≤ 3∥uξ1(t)− uξ2(t)∥ ≤ 3K1(h(t)/h(s))

aµ(s)ε∥ξ1 − ξ2∥.

The proof of Theorem 2.2 is complete.
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