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1. Introduction

In this paper, we consider the following nonlocal elliptic problem
−(a+ b

∫
Ω

|∇u(x)|2dx)∆u+ f(x, u) = λu, x in Ω,

u(x) = 0, x on ∂Ω,
(1.1)λ

where Ω ⊆ RN (N ≥ 1) is a smooth and bounded domain, and a > 0, b > 0. This
problem is a special case of the following problem

−(a+ b

∫
Ω

|∇u(x)|2dx)∆u = g(x, u), x in Ω,

u(x) = 0, x on ∂Ω,
(1.2)

which is is related to the stationary analogue of the equation

utt − (a+ b

∫
Ω

|∇u|2dx)∆u = g(x, u)
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proposed by Kirchhoff [14] as an extension of the classical D’Alembert wave equation
for free vibrations of elastic strings. We note that (1.2) has been studied extensively
in the literature and some results on the existence of the solutions can be found in [1,
2,8,11–13,17–20,28] and the references therein. Recently, there are some interesting
results on the existence of solutions for nonlocal fractional elliptic equations also
(see [4, 5, 22, 23, 30]). Papers in the literature on eigenvalues of nonlinear problems
can be found in [3,6,7,21,25,26]. In particular, some authors considered the spectral
asymptotics and bifurcation for the uniformly elliptic equation

N∑
i,j=1

Di(aijDju) + a0(x)u+ f(x, u) = λu, x in Ω,

u(x) = 0, x on ∂Ω,

where Ω ⊆ RN (N ≥ 1) is a smooth and bounded domain; see [7–10,24]. There are
only a few results on comparing the eigenvalues of (1.1)λ with those of the relative
linear problem. Our aim is to obtain spectral asymptotics and bifurcation for (1.1)λ.

This paper is organized as follows. In Section 2, using the Liusternik-Schnirelmann
(LS) theory, we establish, given any r > 0, the existence of infinitely many eigen-
values µn,r( n = 1, 2, · · · ) for (1.1)λ associated with eigenfunctions un,r satisfying∫
Ω
u2
n,r(x)dx = r2. In Section 3, we obtain bifurcation and comparison results

concerning the eigenvalues of some related linear problems (2.1)λ. In Section 4,
we consider the asymptotic laws of the eigenvalues µn,r of (1.1)λ as n → +∞
when f is superlinear at +∞. Our paper was motivated in part by the papers
[9, 10, 15,16,24,27,29].

2. Existence of the eigenvalues of (1.1)λ

Let W 1,2
0 (Ω) denote the closure of C∞

0 (Ω) in the usual Sobolev space W 1,2(Ω)
with the scalar product (u, u) =

∫
Ω
∇u · ∇udx and the corresponding norm ∥u∥ =

∥∇u∥2 = (
∫
Ω
|∇u|2dx) 1

2 , while ∥u∥p, will denote the norm of u ∈ Lp(Ω). Problem

(1.1)λ is equivalent to its weak formulation, namely that of finding u ∈ W 1,2
0 (Ω)

and λ ∈ R such that

(a+ b∥u∥2)
∫
Ω

∇u · ∇vdx+

∫
Ω

f(x, u)vdx = λ

∫
Ω

uvdx

for all v ∈ W 1,2
0 (Ω). Let

Φ(u) =
a

2
∥∇u∥22 +

b

4
∥∇u∥42, Ψ(u) =

∫
Ω

F (x, u(x))dx

and
I(u) = Φ(u) + Ψ(u),

where

F (x, u(x)) =

∫ u(x)

0

f(x, s)ds.

For r > 0, let

Mr := {u ∈ W 1,2
0 (Ω)|

∫
Ω

u2dx = r2}
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and for each n = 1, 2, · · · , set

Kn,r = {K ⊆ Mr : K compact, symmetric, γ(K) = n}

where γ(K) denotes the genus of K.
From [9], the linear elliptic problem−∆u = λu, x in Ω,

u(x) = 0, x on ∂Ω,
(2.1)λ

has eigenvalues λ1 < λ2 · · · ≤ λn ≤ · · · and the corresponding eigenfunction to λn

is un with un ∈ Mr and

r2λn =

∫
Ω

|∇un|2dx. (2.2)

Since the set of all eigenfunctions corresponding to λn is a linear space, if we choose
vn is a eigenfunction of λn with

∫
Ω
|vn|2dx = 1, then the eigenfunction un of λn

with un ∈ Mr can be written as un = lnvn. From

r2 =

∫
Ω

|un|2dx =

∫
Ω

|lnvn|2dx = l2n

∫
Ω

|vn|2dx,

we get ln = ±r, i.e.,
un = ±rvn, n = 1, 2, · · · , (2.3)

which together with (2.2) gives

r2λn =

∫
Ω

|∇un|2dx =

∫
Ω

|∇(±rvn)|2dx = r2
∫
Ω

|∇vn|2dx,

and so

λn =

∫
Ω

|∇vn|2dx.

Finally, introduce the ”LS critical levels”

cn,r = inf
Kn,r

sup
K

2I. (2.4)

Lemma 2.1 (Lemma 2.1, [10]). Let p : 1 ≤ p ≤ p0 = (N + 2)/(N − 2) (so that
2 ≤ p + 1 ≤ 2∗) and let β = (2∗/N)(2∗ − (p + 1)). Then, for each γ : 0 ≤ γ ≤ β,
there exists c > 0 such that

∥u∥p+1
p+1 ≤ c∥∇u∥p+1−γ

2 ∥u∥γ2 (2.5)

for all u ∈ W 1,2
0 (Ω). (Here and henceforth ∥u∥p denotes the norm of u in Lp(Ω).)

We will consider the following condition:
(A1) f : Ω×R → R is continuous, f(x,−u) = −f(x, u) and satisfies

|f(x, u)| ≤ c|u|p + d

for some c, d ≥ 0 and some 0 ≤ p < p = min{2∗, 1 + 8/N}.
From the LS theory, we have the following existence result.
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Theorem 2.1. Assume (A1) holds. Then, for given r > 0, there exists a sequence
{un,r} of (weak) eigenfunctions of (1.1)λ belonging to Mr, and such that

2I(un,r) = cn,r,

where cn,r is as in (2.4); the eigenvalue µn,r corresponding to un,r satisfies

r2µn,r = a∥∇un,r∥22 + b∥∇un,r∥42 +
∫
Ω

f(x, un,r)un,r(x)dx.

Proof. (1) We first show that I is bounded below on Mr (for each r). Note from
(A1) that

I(u) ≥ a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

∫
Ω

|F (x, u(x))|dx.

Moreover, (A1) and Schwarz’s inequality imply that∫
Ω

|F (x, u(x))|dx ≤ c

∫
Ω

|u|p+1dx+ d(

∫
Ω

|u|2dx) 1
2

for some new constants c, d > 0. Next, we use the inequality (2.5) with γ = β: on
setting 2α = p+ 1− β = (p− 1)N/2, this becomes∫

Ω

|u|p+1dx ≤ c′∥∇u∥2α2 (

∫
Ω

u2dx)
β
2 ,

and we conclude that, on Mr,

I(u) ≥ a

2
∥∇u∥22 +

b

4
∥∇u∥42 − cc′rβ∥∇u∥2α2 − dr.

The assumption p < min{2∗ − 1, 1 + 8/N} is equivalent to 2α < 4, which implies
that I is bounded below on Mr (for each r).

Then

−∞ < cn,r = inf
Kn,r

sup
K

2I < +∞.

(2) We show that I satisfies the Palais-Smale condition (PS) on Mr, i.e., for
c ̸= 0, ε > 0 small enough, un ∈ I−1[c − ε, c + ε] ∩ Mr and ∥I ′Mr

(un)∥ → 0, then
there is a u ∈ Mr and a subsequence {unj} such that

∥∇(unj
− u)∥2 → 0.

We know that {un} is bounded, which implies that there exists a u∗ ∈ W 1,2
0 (Ω)

and subsequence {unj} of {un} such that unj ⇀ u∗, as j → +∞. Since

I ′Mr
(u)(v) = I ′(u)(v)− r−2I ′(u)(u)

∫
Ω

uvdx

= a

∫
Ω

∇u∇vdx+ b

∫
Ω

|∇u|2dx
∫
Ω

∇u∇vdx+

∫
Ω

f(x, u)vdx

−r−2(a∥∇u∥22 + b∥∇u∥42 +
∫
Ω

f(x, u)udx)

∫
Ω

uvdx, u, v ∈ W 1,2
0 (Ω),
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we have

(a+ b∥∇unj∥22)
∫
Ω

∇unj∇(unj − u∗)dx

= I ′(unj )(unj − u∗)−
∫
Ω
f(x, unj )(unj − u∗)dx

+r−2(a∥∇unj∥22 + b∥∇unj∥42 +
∫
Ω

f(x, unj )unjdx)

∫
Ω

unj (unj − u∗)dx

→ 0,

which together with p < 2∗ − 1 implies that

∥∇unj − u∗∥2 → 0, as j → +∞.

(3) We show that cn,r is a critical value of I(u) in Mr, i.e., there exists a
un,r ∈ Mr such that cn,r = 2I(un,r) and I|′Mr

(un,r) = 0.

On the contrary, suppose that there is a ε0 > 0 such that 2I−1[cn,r − ε0, cn,r −
ε0] ∩ K = ∅, where K = {u ∈ Mr|I|′Mr

(u) = 0}. Let Ac = {u|2I(u) ≤ c} and
Kc = {u|2I(u) = c, I|′Mr

(u) = θ}. From [21], let N be a neighourhood of Kc, there

exists a η(t, x) ∈ C([0, 1],W 1,2
0 (Ω)) and ε0 > ε > 0 such that

(1) η(0, u) = u for all u ∈ W 1,2
0 (Ω);

(2) η(t, u) = u for all u ∈ 2I−1[cn,r − ε0, cn,r + ε0] and for all t ∈ [0, 1];

(3) ηt(u) is a homeomorphism from W 1,2
0 (Ω) onto W 1,2

0 (Ω) for all t ∈ [0, 1];

(4) I(η(t, u)) ≤ I(u) for all u ∈ W 1,2
0 (Ω), for all t ∈ [0, 1];

(5) η1(Acn,r+ε) ⊆ Acn,r−ε;

Since cn,r = infKn,r supK 2I < +∞, there is a An ⊆ Mr such that cn,r ≤
supu∈An

2I(u) ≤ cn,r + ε. Then γ(An) ≥ n and γ(η1(An)) = γ(An) ≥ n and
η1(An) ⊆ Acn,r−ε and so

cn,r = inf
Kn,r

sup
K

2I ≤ sup
u∈η1(An)

2I(u) ≤ cn,r − ε.

This is contradiction.

Consequently, there exists a un,r ∈ Mr such that

cn,r = 2I(un,r)

and

I ′(un,r)(v) = r−2I ′(un,r)(un,r) · un,r(v), ∀v ∈ W 1,2
0 (Ω).

Let µn,r = r−2I ′(un,r)(un,r). Note one has

(a+ b∥∇un,r∥22)
∫
Ω

∇un,r∇vdx+

∫
Ω

f(x, un,r)v(x)dx = µn,r

∫
Ω

un,rvdx, ∀v ∈ W 1,2
0 .

(2.6)
Let v = un,r. Then (2.6) becomes

r2µn,r = (a+ b∥∇un,r∥22)∥∇un,r∥22 +
∫
Ω

f(x, un,r)un,rdx.

The proof is complete.



514 B. Yan, D. O’Regan & R. P. Agarwal

Corollary 2.1. Let f ≡ 0 and equation (1.1)λ becomes−(a+ b∥∇u∥22)∆u = λu, x in Ω,

u(x) = 0, x on ∂Ω.
(2.7)λ

Then, (2.7)λ has branches

Cn = {(aλn + br2λ2
n,±rvn)|, r > 0}, n = 1, 2, · · · .

Proof. From the L-S procedure in Theorem 2.1, (2.7)λ has exactly the eigenvalues
µ0
n,r with the corresponding eigenfunction u0

n,r(∥u0
n,r∥2 = r) which satisfies−∆u0

n,r = µ0
n,r

1
a+b∥∇u0

n,r∥2
2
u0
n,r, x in Ω,

u0
n,r(x) = 0, x on ∂Ω.

Comparing (2.7)λ with (2.1)λ, we get

µ0
n,r

1

a+ b∥∇u0
n,r∥22

= λn

and u0
n,r = knun, where un is the corresponding eigenvalue function to λn of (2.1)λ

with ∥un∥2 = r. Moreover,

c0n,r = 2Φ(u0
n,r) = a∥∇u0

n,r∥22 +
b

2
∥∇u0

n,r∥42, µ0
n,r = aλn + b∥∇u0

n,r∥22λn. (2.8)

Since u0
n,r = knun, one has

r = ∥u0
n,r∥2 = ∥knun∥2 = |kn|r,

which implies kn = ±1 and u0
n,r = ±un. Hence, (2.8) becomes

c0n,r = 2Φ(u0
n,r) = a∥∇un∥22 +

b

2
∥∇un∥42, µ0

n,r = aλn + b∥∇un∥22λn.

From (2.2), we have

r2λn =

∫
Ω

|∇un|2dx = ∥∇un∥22 = ∥∇u0
n,r∥22,

and so

c0n,r = 2Φ(u0
n,r) = ar2λn +

b

2
r4λ2

n, µ0
n,r = aλn + br2λ2

n, (2.9)

which together with (2.3) implies that (2.7)λ has branches

Cn = {(aλn + br2λ2
n,±rvn)|, r > 0}, n = 1, 2, · · · .

The proof is complete.
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3. Bifurcation and comparison results concerning
the eigenvalues of some related linear problem
to (1.1)λ

In the last section, we obtained the branches of solutions of (1.1)λ when f ≡ 0.
Now we consider the case f ̸≡ 0.

Theorem 3.1. Let the assumptions of Theorem 2.1 be satisfied with p > 1 and d =
0 in the growth assumption (A1). Then each aλn is a bifurcation point (in W 1,2

0 (Ω))
for (1.1)λ; more precisely, for each n = 1, 2, · · · , the eigenvalue-eigenfunction pairs
(µn,r, un,r) given by Theorem 2.1 satisfy µn,r = aλn + br2λ2

n +O(rmin{2,p−1}).

Proof.
There are two cases to be considered, namely p < 1 + 4/N and 1 + 4/N ≤ p <

1 + 8/N .
(a) The case p < 1 + 4/N . Let γ = p− 1. Then (see Lemma 2.1) we have

∥u∥p+1
p+1 ≤ c∥∇u∥22∥u∥

p−1
2 , u ∈ W 1,2

0 (Ω). (3.1)

Note

|I(u)− Φ(u)| = |
∫
Ω

F (x, u)dx| ≤ c

∫
Ω

|u|p+1dx. (3.2)

Since

Φ(u) =
a

2
∥u∥2 + b

4
∥u∥4,

from (3.1), we have ∫
Ω

|u|p+1dx ≤ cΦ(u)∥u∥p−1
2 .

Hence, for all u ∈ Mr, one has∫
Ω

|u|p+1dx ≤ cΦ(u)rp−1.

Therefore from (3.2), we have

(1− crp−1)Φ(u) ≤ I(u) ≤ (1 + crp−1)Φ(u),

and so

(1− crp−1) inf
Kn,r

sup
K

2Φ(u) ≤ inf
Kn,r

sup
K

2I(u) ≤ (1 + crp−1) inf
Kn,r

sup
K

2Φ(u),

i.e.,
(1− crp−1)c0n,r ≤ cn,r ≤ (1 + crp−1)c0n,r,

which implies that
|cn,r − c0n,r| ≤ cc0n,rr

p−1.

Now (2.9) guarantees that
|cn,r − c0n,r| ≤ crp+1

and
|cn,r| ≤ cr2. (3.3)
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From Theorem 2.1 and (3.2), we have

cn,r = a∥∇un,r∥22 +
b

2
∥∇un,r∥42 + 2

∫
Ω

F (x, un,r)dx

≥ a∥∇un,r∥22 +
b

2
∥∇un.r∥42 − 2crp−1∥∇un,r∥22

= (a− 2crp−1)∥∇un,r∥22 +
b

2
∥∇un,r∥42,

which together with (3.3) implies that

∥∇un,r∥22 ≤
√
(a− 2crp−1)2 + 2bcn,r − (a− 2crp−1)

b

=
2cn,r√

(a− 2crp−1)2 + 2bcn,r + (a− 2crp−1)

≤ cr2

and
∥∇un,r∥42 ≤ cr4.

From Theorem 2.1 and (3.2), one has

|cn,r − r2µn| ≤
b

2
∥∇un,r∥42 + 2|

∫
Ω

F (x, un,r)dx|+ |
∫
Ω

f(x, un,r)un,rdx|

≤ b

2
∥∇un,r∥42 + c|

∫
Ω

|un,r(x)|p+1dx|

≤ b

2
∥∇un,r∥42 + c∥∇un,r∥22∥u∥

p−1
2

≤ crmin{4,p+1}.

Then

|r2µn,r − r2µ0
n,r(r)| = |r2µn,r − cn,r + cn,r − c0n,r + c0n,r − r2µ0

n,r(r)|

≤ |r2µn,r − cn,r|+ |cn,r − c0n,r|+ |c0n,r − r2µ0
n,r(r)|

≤ c1r
min{4,p+1} + c2r

p+1 + c3r
4.

≤ crmin{4,p+1},

which implies that

|µn,r − µ0
n,r| ≤ crmin{2,p−1}.

Consequently,
µn,r = aλn + br2λ2

n +O(rmin{2,p−1}).

(b) The case 1 + 4/N ≤ p < 1 + 8/N . Let γ = β > 0, which guarantees that
4 ≥ p+ 1− β ≥ 2. Then (2.5) becomes

∥u∥p+1
p+1 ≤ c∥∇u∥p+1−β

2 ∥u∥β2 , u ∈ W 1,2
0 (Ω). (3.4)

Since

Φ(u) =
a

2
∥u∥2 + b

4
∥u∥4, and 4 ≥ p+ 1− β ≥ 2,
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(3.4) guarantees that ∫
Ω

|u|p+1dx ≤ cΦ(u)∥u∥β2 ,

and so, ∫
Ω

|u|p+1dx ≤ cΦ(u)rβ , ∀u ∈ Mr,

Therefore from (3.2), we have

(1− crβ)Φ(u) ≤ I(u) ≤ (1 + crβ)Φ(u),

and so

(1− crβ) inf
Kn,r

sup
K

2Φ(u) ≤ inf
Kn,r

sup
K

2I(u) ≤ (1 + crβ) inf
Kn,r

sup
K

2Φ(u),

i.e.,
(1− crβ)c0n,r ≤ cn,r ≤ (1 + crβ)c0n,r,

which implies that
|cn,r − c0n,r| ≤ cc0n,rr

β .

Now (2.9) guarantees that
|cn,r − c0n,r| ≤ crβ+2.

Since β + 2 ≥ p+ 1, we have

|cn,r − c0n,r| ≤ crp+1 and cn,r ≤ c0n,r + crp+1 ≤ cr2 (3.5)

for some new constant c. In the following we show that

∥∇un,r∥22 ≤ cr2 and ∥∇un,r∥42 ≤ cr4. (3.6)

From Theorem 2.1, we have

cn,r = 2I(un,r)

= a∥∇un,r∥22 +
b

2
∥∇un.r∥42 + 2

∫
Ω

F (x, un,r)dx

≥ a∥∇un,r∥22 +
b

2
∥∇un,r∥42 − 2c∥∇un,r∥p+1−β

2 rβ

≥ (a− 2crβ)∥∇un,r∥22 +
b

2
∥∇un,r∥42, if ∥∇un,r∥2 ≤ 1,

which together with (3.5) implies that

∥∇un,r∥22 ≤
√

(a− 2crβ)2 + 2bcn,r − (a− 2crβ)

b

=
2cn,r√

(a− 2crβ)2 + 2bcn,r + (a− 2crβ)

≤ cr2

and
∥∇un,r∥42 ≤ cr4.
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Similarly, from

cn,r = 2I(un,r)

= a∥∇un,r∥22 +
b

2
∥∇un.r∥42 + 2

∫
Ω

F (x, un,r)dx

≥ a∥∇un,r∥22 +
b

2
∥∇un,r∥42 − 2c∥∇un,r∥p+1−β

2 rβ

≥ a∥∇un,r∥22 + (
b

2
− 2crβ)∥∇un,r∥42, if ∥∇un,r∥2 > 1,

we get

∥∇un,r∥22 ≤

√
a2 + 4cn,r(

b
2 − 2crβ)− a

2( b2 − 2crβ)

=
2cn,r√

a2 + 4cn,r(
b
2 − 2crβ) + a

≤ cr2

and

∥∇un,r∥42 ≤ cr4.

Hence, (3.6) is true.

From the definitions of cn,r and µn,r, we have, from (3.6),

|cn,r − r2µn| ≤
b

2
∥∇un,r∥42 + |2

∫
Ω

F (x, un,r)dx−
∫
Ω

f(x, un,r)un,rdx|

≤ b

2
∥∇un,r∥42 + c|

∫
Ω

|un,r(x)|p+1dx|

≤ b

2
∥∇un,r∥42 + c∥∇un,r∥p+1−β

2 ∥u∥β2
≤ crmin{4,p+1},

and so

|r2µn,r − r2µ0
n,r(r)| = |r2µn,r − cn,r + cn,r − c0n,r + c0n,r − r2µ0

n,r(r)|

≤ |r2µn,r − cn,r|+ |cn,r − c0n,r|+ |c0n,r − r2µ0
n,r(r)|

≤ c1r
min{4,p+1} + c2r

p+1 + c3r
4.

≤ crmin{4,p+1},

which means that

|µn,r − µ0
n,r| ≤ crmin{2,p−1}.

Consequently,

µn,r = aλn + br2λ2
n +O(rmin{2,p−1}).

The proof is complete.
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4. The asymptotic distribution of the eigenvalue
µn,r of (1.1)λ

In this section, we consider the asymptotic laws of the eigenvalue µn,r of (1.1)λ.

Lemma 4.1. Assume (A1) holds. For r > 0 and n = 1, 2, ..., let µn,r, cn,r be as in
Theorem 2.1 , and let λn be the eigenvalues of the linear problem (2.1)λ. Then

|cn,r − c0n,r| ≤ crβ(c0n,r)
α + dr (4.1)

and

|cn,r −
1

2
r2µn,r| ≤

a

2

√
2bcn,r +O(c

− 1
2

n,r ) + crβ(
√
2bcn,r)

α(1 +O(c
α
2 −1
n,r )), (4.2)

where α = (p−1)N/4 and β = (p+1)− (p−1)N/2; here and henceforth c, d denote
some, but not always the same, positive constants.

Proof. First notice that the growth assumption (A1) implies

|
∫
Ω

F (x, u)dx| ≤ c

∫
Ω

|u|p+1dx+ d

∫
Ω

|u|dx,

and similarly

|
∫
Ω

f(x, u)udx| ≤ c

∫
Ω

|u|p+1dx+ d

∫
Ω

|u|dx.

Next, as 1 ≤ p < p0, from Lemma 2.1, if
∫
Ω
u2dx = r2, we have

|
∫
Ω

F (x, u)dx| ≤ c∥∇u∥2α2 rβ + dr, (4.3)

and similarly

|
∫
Ω

f(x, u)udx| ≤ c∥∇u∥2α2 rβ + dr, (4.4)

with α and β as in the statement of Lemma 4.1.
To prove (4.1), observe that (4.3) implies

I(u) = Φ(u) +

∫
Ω

F (x, u)dx

≤ Φ(u) + rβ(Φ(u))α + dr

holds. In other words, we have

I(u) ≤ g(Φ(u))

where g : R+ → R+ is defined by

g(t) = t+ crβtα + dr.

As g is continuous and nondecreasing, we get

inf
Kn,r

sup
K∈Kn,r

I(u) ≤ inf
Kn,r

sup
K∈Kn,r

g(Φ(u)) = g( inf
Kn,r

sup
K∈Kn,r

Φ(u)).
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Now Theorem 2.1 implies that

cn,r ≤ 2g(c0n,r) = c0n,r + crβ(c0n,r)
α + dr

for some new constants c and d > 0. Therefore,

|cn,r − c0n,r| ≤ crβ(c0n,r)
α + dr,

which shows (4.1) is true.
Since

cn,r = a∥un,r∥22 +
b

2
∥un,r∥42 + 2

∫
Ω

F (x, u)dx,

we have

∥∇un,r∥22 =

√
a2 + 2b(cn,r − 2

∫
Ω
F (x, un,r)dx)− a

b
=

√
2bcn,r +O(c

− 1
2

n,r ).

From Theorem 2.1 and (4.3)-(4.4), we have

|cn,r − 1
2r

2µn,r| = |a
2
∥∇un,r∥22 + 2

∫
Ω

F (x, un,r)dx− 1

2

∫
Ω

f(x, un,r)un,rdx|

≤ a

2
(
√
2bcn,r +O(c

− 1
2

n,r )) + crβ(
√
2bcn,r +O(c

− 1
2

n,r ))
α

=
a

2

√
2bcn,r +O(c

− 1
2

n,r ) + crβ(
√
2bcn,r)

α(1 +O(c
α
2 −1
n,r )),

which completes the proof of the lemma.

Lemma 4.2 (Theorem 2, [7]). The eigenvalues λn of (2.1)λ satisfy, as n → +∞
λn = kn2/N +O(n1/N log n), n = 1, 2, · · · , (4.5)

where
k = (2π)2(V )−2/N (4.6)

and V is the value of B(θ, 1).

Theorem 4.1. Assume that (A1) holds. Then given any r > 0, (1.1)λ has infinitely
many eigenfunctions un,r(n = 1, 2, ...) with

∫
Ω
u2
n,rdx = r2, whose corresponding

eigenvalues µn,r satisfy, as n → +∞ and with k as in (4.6),

µn,r =

 br2kn4/N +O(n3/N log n)), if 0 < p ≤ (N + 4)/N ;

O(kn4α/N ), if (N + 4)/N < p < p,

where p is defined in (A1).

Proof. (1) We consider the case α < (p−1)(N/4) ≤ 1, i.e., p ≤ (N +4)/N , which
implies that 0 < 2α ≤ 1. Then, we have

cn,r = c0n,r +O((c0n,r)
α)

=
b

2
r4λ2

n +O(λn) +O(
b

2
r4λ2

n +O(λn))
α

=
b

2
r4λ2

n +O(λn) +O(
b

2
r4λ2

n(1 +O(λ−1
n ))α

=
b

2
r4λ2

n +O(λn) +O((
b

2
r4)αλ2α

n (1 +O(λ2α−1
n )))

=
b

2
r4λ2

n +O(λn)
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and

(cn,r)
α = (

b

2
r4λ2

n +O(λn))
α

= (
b

2
r4λ2

n(1 +O(λ−1
n ))α

= (
b

2
r4)αλ2α

n (1 +O(λ−1
n ))

= O(λn),

(cn,r)
1
2 = O(λn),

which together (4.1) and (4.2) imply that

|1
2
r2µn,r − c0n,r| = |1

2
r2µn,r − cn,r + cn,r − c0n,r|

≤ |1
2
r2µn,r − cn,r|+ |cn,r − c0n,r|

≤ a

2

√
2bcn,r+O(c

− 1
2

n,r )+crβ(
√

2bcn,r)
α(1+O(c

α
2−1
n,r ))+crβ(c0n,r)

α+dr

= O(λn),

and so
1

2
r2µn,r = c0n,r +O(λn) = ar2λn +

b

2
r4λ2

n +O(λn).

Consequently

µn,r = 2aλn + br2λ2
n +O(λn) = br2λ2

n +O(λn).

Since
λn = kn2/N +O(n1/N log n),

we have

µn,r = br2(kn2/N +O(n1/N log n))2 +O(kn2/N +O(n1/N log n))

= br2k2n4/N +O(n3/N log n).

(2) We consider the case (N + 4)/N < p < p, i.e., 2 ≥ α > 1. Lemma 4.1
guarantees that

cn,r = c0n,r +O((c0n,r))
α = O(λ2α

n )

and
(cn,r)

α = O(λ2α2

n ),

which together (4.1) and (4.2) imply that

|1
2
r2µn,r − c0n,r| = |1

2
r2µn,r − cn,r + cn,r − c0n,r|

≤ |1
2
r2µn,r − cn,r|+ |cn,r − c0n,r|

≤ a

2

√
2bcn,r+O(c

− 1
2

n,r )+crβ(
√

2bcn,r)
α(1+O(c

α
2−1
n,r ))+crβ(c0n,r)

α+dr

= O(λ2α
n ) +O(λα2

n )

= O(λ2α
n ),
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and so
1

2
r2µn,r = c0n,r +O(λ2α

n ) = O(λ2α
n ).

Consequently
µn,r = O(λ2α

n ).

Since
λn = kn2/N +O(n1/N log n),

then
µn,r = O(kn4α/N ).

The proof is complete.
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31, 155–167.

[19] T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal
elliptic transmission problem, Appl. Math. Lett., 2003, 16, 243–248.

[20] K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via
the Yang index, J. Differ. Equ., 2006, 221, 246–255.

[21] G. Prodi, Eigenvalues of non-linear problems, Cremonese, Roma, 1974.

[22] P. Pucci, M. Xiang and B. Zhang, Existence and multiplicity of entire solutions
for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 2016, 5(1), 27–55.

[23] V. Radulescu, M. Xiang and B. Zhang, Multiplicity of solutions for a class of
quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity,
2016, 29(10), 3186–3205.

[24] T. Shibata, Asymptotic properties of variational eigenvalues for semilinear el-
liptic operators, Boll. Un. Mat. Ital., 1988, 7(2B), 411–426.

[25] T. Shibata, Precise asymptotic formulas for semilinear eigenvalue problems,
Ann. Henri Poincaré, 2001, 2, 713–732.
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