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AN EFFICIENT STEP METHOD FOR A
SYSTEM OF DIFFERENTIAL EQUATIONS

WITH DELAY

Diana Otrocol1,2,† and Marcel-Adrian Şerban3

Abstract Using the step method, we study a system of delay differential
equations and we prove the existence and uniqueness of the solution and the
convergence of the successive approximation sequence using the Perov’s con-
traction principle and the step method. Also, we propose a new algorithm
of successive approximation sequence generated by the step method and, as
an example, we consider some second order delay differential equations with
initial conditions.
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1. Introduction

We consider the system of delay differential equationsx′
1(t) = f1(t, x1(t), x2(t), x1(t− h), x2(t− h)), t ∈ [a, b]

x′
2(t) = f2(t, x1(t), x2(t), x1(t− h), x2(t− h))

(1.1)

with initial conditions x1(t) = φ1(t), t ∈ [a− h, a]

x2(t) = φ2(t),
(1.2)

where f1, f2 ∈ C([a, b]×R4,R), φ1, φ2 ∈ C([a− h, a],R) and h > 0 is a parameter.
We denote by x = (x1, x2), f = (f1, f2) and φ = (φ1, φ2). By a solution of the
problem (1.1)-(1.2) we mean a function x ∈ C([a − h, b],R2) ∩ C1([a, b],R2) which
satisfies the system (1.1) and the conditions (1.2).

In this paper we study this problem using the ideas of I. A. Rus [14] to obtain
existence, uniqueness theorems and the convergence of an iterative algorithm using
Perov’s theorem, fibre contraction principle and step method. As an application, we
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consider a second order functional differential equation with delay and we approxi-
mate the solution using the Chebyshev spectral method (see [18–21]). We compare
the obtained results with Matlab dde23 procedure.

Such kind of results have been proved in [15] and [4] in the case of integro-
differential equations with lags and in [2] in the case of an integral equation from
biomathematics. Other results regarding efficient and rapidly convergent algorithms
for solving Volterra differential and integral equations can be found in [5, 6, 8].

Let (X, d) be a metric space and A : X → X an operator. In this paper we
use the terminologies and notations from [13]. For the convenience of the reader we
shall recall some of them.

Denote by A0 := 1X , A1 := A, An+1 := A ◦An, n ∈ N, the iterate operators of
the operator A and by FA := {x ∈ X| A(x) = x} the fixed point set of A.

Definition 1.1. A : X → X is called a Picard operator (briefly PO) if: FA = {x∗}
and An(x) → x∗ as n → ∞, for all x ∈ X.

Definition 1.2. A : X → X is said to be a weakly Picard operator (briefly WPO)
if the sequence (An(x))n∈N converges for all x ∈ X and the limit (which may depend
on x) is a fixed point of A.

Definition 1.3. AmatrixQ ∈ R2×2
+ is called a matrix convergent to zero iffQk → 0

as k → ∞.

As concerns matrices which are convergent to zero, we mention the following
equivalent characterizations:

Theorem 1.1. (see [10]) Let Q ∈ R2×2
+ . The following statements are equivalent:

(i) Q is a matrix convergent to zero;

(ii) Qkx → 0 as k → ∞, ∀x ∈ R2;

(iii) I2 −Q is non-singular and (I2 −Q)−1 = I2 +Q+Q2 + . . . ;

(iv) I2 −Q is non-singular and (I2 −Q)−1 has nonnegative elements;

(v) λ ∈ C, det(Q− λI2) = 0 imply |λ| < 1;

(v) there exits at least one subordinate matrix norm such that ∥Q∥ < 1.

The matrices convergent to zero were used by Perov [9] to generalize the con-
traction principle in the case of generalized metric spaces with the metric taking
values in the positive cone of R2.

Definition 1.4 ( [9]). Let (X, d) be a complete generalized metric space with d :
X ×X → R2

+ and A : X → X. The operator A is called a Q-contraction if there

exists a matrix Q ∈ R2×2
+ such that:

(i) Q is a matrix convergent to zero;

(ii) d(A(x), A(y)) ≤ Qd(x, y), ∀x, y ∈ X.

Theorem 1.2 (Perov, [2, 12]). Let (X, d) be a complete generalized metric space
with d : X ×X → R2

+ and A : X → X be a Q-contraction. Then

(i) A is a Picard operator, FA = FAn = {x∗}, ∀n ∈ N∗;

(ii) d(An(x), x∗) ≤ (I2 −Q)−1Qnd(x,A(x)), ∀x ∈ X.
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Finally, we recall the following result that is a generalization of the fibre con-
traction theorem (see I. A. Rus [12], [2]):

Theorem 1.3 (Theorem 9.1., [11]). Let (Xi, di), i = 0,m, m ≥ 1, be some gener-
alized metric spaces. Let Ai : X0× · · ·×Xi → Xi, i = 0,m, be some operators. We
suppose that:

(i) (Xi, di), i = 1,m, are generalized complete metric spaces;

(ii) the operator A0 is a weakly Picard operator;

(iii) there exist the matrices Qi ∈ R2×2
+ which converge to zero, such that the oper-

ators Ai(x
0, . . . , xi−1, ·) : Xi → Xi, i = 1,m are Qi-generalized contractions,

for all xi ∈ Xi, i = 1,m;

(iv) the operators Ai, i = 1,m, are continuous.

Then the operator A : X0 × · · · ×Xm → X0 × · · · ×Xm,

A(x0, . . . , xm) = (A0(x
0), A1(x

0, x1), . . . , Am(x0, . . . , xm))

is a weakly Picard operator. Moreover, if A0 is a Picard operator, then A is a Picard
operator.

2. Main result

We begin this section with an existence theorem for the solution of the problem
(1.1)-(1.2). We denote by ∥·∥ : R2 → R2

+ the vectorial norm

∥u∥ :=

 |u1|

|u2|

 , u = (u1, u2) ∈ R2.

Relative to the problem (1.1)-(1.2) we consider the following conditions:

(H1) f ∈ C([a, b]× R4,R2), φ ∈ C([a− h, a],R2), h ∈ R∗
+, a, b ∈ R, a < b;

(H2) there exists L ∈ R2×2
+ such that∥∥f(t,u1,v1)− f(t,u2,v2)

∥∥ ≤ L(
∥∥u1 − u2

∥∥+
∥∥v1 − v2

∥∥),
t ∈ [a, b],u1,u2,v1,v2 ∈ R2;

(H′
2) there exists L′ ∈ R2×2

+ such that∥∥f(t,u1,v)− f(t,u2,v)
∥∥ ≤ L′(

∥∥u1 − u2
∥∥),

t ∈ [a, b],u1,u2,v ∈ R2.

We consider the space X := C([a−h, b],R2) endowed with the generalized norm

∥·∥B where ∥x∥B :=
(|x1|B
|x2|B

)
, x = (x1, x2) and

|xi|B := max
a−h≤t≤b

(|xi(t)| e−τ(t−a+h)), τ > 0, i = 1, 2.
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It is clear that the space (X, ∥·∥B) is a generalized Banach space. Any solution of
the problem (1.1)-(1.2) is a fixed point of the operator Af : X → X , defined by

Af (x)(t) =


φ(t), t ∈ [a− h, a]

φ(a) +
t∫

t0

f(s,x(s),x(s− h))ds, t ∈ [a, b].
(2.1)

Let m ∈ N∗ be such that:

a+ (m− 1)h < b and a+mh ≥ b.

We denote by t−1 := a− h, t0 := a, ti := a+ ih, i = 1,m− 1, tm := b.
The following result is well known (see [7]).

Theorem 2.1. We suppose that the conditions (H1) and (H2) hold. Then:

(i) the problem (1.1)-(1.2) has a unique solution x∗∈C([t−1,tm],R2)∩C1([t0,tm],R2);

(ii) the successive approximations sequence (xn)n∈N∗ , defined by

xn+1(t) :=


φ(t), t ∈ [t−1, t0]

φ(t0) +
t∫

t0

f(s,xn(s),xn(s− h))ds, t ∈ [t0, tm]

converges to x∗, ∀x0 ∈ C([t−1, tm],R2);

(iii) the operator Af is a Picard operator.

Proof. In a standard way we obtain

∥Af (x)−Af (y)∥B ≤ 1

τ
L ∥x− y∥B , ∀x,y ∈X.

We can choose τ sufficiently large such that Af is Q-contraction with Q := 1
τL. So

we can apply the Perov’s Theorem (Theorem 1.2) for Af : X → X.
Delay differential equations may be solved as ordinary differential equations over

successive intervals [tm, tm+1] by the step method (see, for example [3] or [1]).
Under the condition (H1), the step method for the problem (1.1)-(1.2) consists

of the following equations:

(p0) x0(t) = φ(t), t ∈ [t−1, t0];

(p1) x1(t) = φ(t0) +
∫ t

t0
f(s,x1(s),φ(s− h))ds, t ∈ [t0, t1];

(p2) x2(t) = x1,∗(t1) +
∫ t

t1
f(s,x2(s),x1,∗(s− h))ds, t ∈ [t1, t2];

· · ·
(pm−1) xm−1(t)=xm−2,∗(tm−2)+

∫ t

tm−2
f(s,xm−1(s),xm−2,∗(s−h))ds, t∈ [tm−2, tm−1];

(pm) xm(t) = xm−1,∗(tm−1) +
∫ t

tm−1
f(s,xm(s),xm−1,∗(s− h))ds, t ∈ [tm−1, tm];

where xi,∗ = (xi,∗
1 , xi,∗

2 ) ∈ C([ti−1, ti],R2) is the unique solution of the equation
(pi), i = 1,m.

So, by using the step method and an idea from [14], we obtain:

Theorem 2.2. We suppose that the conditions (H1) and (H ′
2) hold. Then:
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(i) the problem (1.1)-(1.2) has a unique solution x∗ in C([t−1, tm],R2), where

x∗(t) =



φ(t), t ∈ [t−1, t0]

x1,∗(t), t ∈ [t0, t1]

· · ·

xm,∗(t), t ∈ [tm−1, tm]

(ii) for each xi,0 = (xi,0
1 , xi,0

2 ) ∈ C([ti−1, ti],R2), i = 1,m, the sequence defined by:

xi,n+1(t) = xi−1,∗(ti−1) +
∫ t

ti−1
f(s,xi,n(s),xi−1,∗(s− h))ds,

for t ∈ [ti−1, ti], (with x0,∗(t0) := φ(t0)), converges and lim
n→∞

xi,n = xi,∗, i =

1,m.

Proof. In order to prove this theorem we apply Perov’s theorem for each step
[ti−1, ti], i = 1,m.

For the first step, we consider the Banach space X1 := (C([t0, t1],R2), ∥·∥1B),
where

∥·∥1B := max
t0≤t≤t1

(∥x(t)∥ e−τ(t−t0)), τ > 0

and the operator A1 : X1 → X1 defined by

A1(x)(t) = φ(t0) +
∫ t

t0
f(s,x(s),φ(s− h))ds.

For x,y ∈ X1, we obtain

∥A1(x)−A1(y)∥1B ≤ 1

τ
L′ ∥x− y∥1B .

We can choose τ sufficiently large such that A1 is Q1 := 1
τL

′-contraction, therefore
FA1 := {x∗

1}.
For the next steps, we consider the Banach spacesXi:=(C([ti−1, ti],R2),∥·∥iB), i=

2,m, where

∥x∥iB := max
ti−1≤t≤ti

(∥x(t)∥ e−τ(t−ti−1)), τ > 0,

and the operators Ai : Xi → Xi, defined by

Ai(x)(t) = xi−1,∗(ti−1) +
∫ t

ti−1
f(s,x(s),xi−1,∗(s− h))ds.

For x,y ∈ Xi, we obtain

∥Ai(x)−Ai(y)∥iB ≤ 1

τ
L′ ∥x− y∥iB .

We can choose τ sufficiently large such that Ai is Qi :=
1
τL

′-contraction, therefore
FAi := {xi,∗}, i = 2,m.

We have that φ(t0) = x1,∗(t0) and from definition of Ai, i = 2,m, we obtain

xi−1,∗(ti−1) = xi,∗(ti−1), i = 2,m,
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therefore

x∗(t) =



φ(t), t ∈ [t−1, t0]

x1,∗(t), t ∈ [t0, t1]

· · ·

xm,∗(t), t ∈ [tm−1, tm]

is the unique solution in C([t−1, tm],R2).
Next, we will study if it is possible to replace xi,∗ by the approximation xi,n, i =

1,m in the conclusion (ii) of the Theorem 2.2. Applying the results from [14] we
have

Theorem 2.3. In the condition of Theorem 2.2, for each xi,0 ∈ C([ti−1, ti],R2), i =
1,m, the sequences defined by:

x1,n+1(t) = φ(t0) +
∫ t

t0
f(s,x1,n(s),φ(s− h))ds, for t ∈ [t0, t1] (2.2)

x2,n+1(t) = x1,n(t1) +
∫ t

t1
f(s,x2,n(s),x1,n(s− h))ds, for t ∈ [t1, t2]

· · ·

xm,n+1(t) = xm−1,n(tm−1) +
∫ t

tm−1
f(s,xm,n(s),xm−1,n(s− h))ds, for t ∈ [tm−1, tm]

converge and lim
n→∞

xi,n = xi,∗, i = 1,m.

Proof. We consider the following Banach spaces X0 := (C([t−1, t0],R2), ∥·∥0B),
where

∥·∥0B := max
t−1≤t≤t0

(∥x(t)∥ e−τ(t−t−1)), τ > 0

and Xi := (C([ti−1, ti],R2), ∥·∥iB), i = 1,m (as in the proof of Theorem 2.2) and
the operators

A0 : X0 → X0, A0(x
0)(t) = φ(t), t ∈ [t−1, t0],

Ai : Xi−1 ×Xi → Xi, i = 1,m

Ai(x
i−1,xi)(t) = xi−1(ti−1) +

∫ t

ti−1
f(s,xi(s),xi−1(s− h))ds, t ∈ [ti−1, ti],

and let A be the operator A : X0 ×X1 × · · · ×Xm → X0 ×X1 × · · · ×Xm defined
by

A(x0,x1, . . . ,xm) = (A0(x
0), A1(x

0,x1), . . . , Am(xm−1,xm)).

It is easy to see that for fixed (x0,x1, . . . ,xm) ∈ X0 ×X1 × · · · ×Xm the sequence
defined by (2.2) means (x0,n,x1,n, . . . ,xm,n) = An(x0,x1, . . . ,xm). To prove the
conclusion we need to prove that the operator A is a Picard operator and for this
we apply Theorem 1.3.

Since A0 : X0 → X0 is a constant operator then A0 is Q0-contraction where Q0

is the null matrix, so A0 is a Picard operator and x0,∗ = φ. For i = 1,m, we have
the inequalities:∥∥Ai(x

i−1,xi)−Ai(x
i−1,yi)

∥∥
iB

≤ 1
τL

′ ∥∥xi − yi
∥∥
iB

for all xi−1 ∈ Xi−1 and xi,yi ∈ Xi. For τ sufficiently large we get that Ai(x
i−1, ·) :

Xi → Xi are Qi-contractions with Qi =
1
τL

′, so we are in the conditions of Theorem
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1.3, therefore A is a Picard operator and FA = {(x0,∗, . . . ,xm,∗)}, thus

(x0,n,x1,n, . . . ,xm,n) = An(x0,x1, . . . ,xm) → (x0,∗, . . . ,xm,∗),

with x0,n = φ and x1,n, . . . ,xm,n are defined by (2.2), for all n ∈ N. From the
definitions of Ai, i = 1,m, we have

xi−1,∗(ti−1) = xi,∗(ti−1), i = 1,m

and therefore

x∗(t) =



φ(t), t ∈ [t−1, t0]

x1,∗(t), t ∈ [t0, t1]

· · ·

xm,∗(t), t ∈ [tm−1, tm]

is the unique solution in C([t−1, tm],R2).

3. Application

We consider the following second order delay differential equation

− x′′(t) = f(t, x(t), x(t− h)), t ∈ [a, b] (3.1)

with initial conditions x(t) = φ(t), t ∈ [a− h, a]

x′(t) = φ′(t), t ∈ [a− h, a],
(3.2)

where f : [a, b]× R× R → R, h ∈ R∗
+, a, b ∈ R, a < b, φ, φ′ : [a− h, a] → R.

The problem (3.1)-(3.2) can be written in the following form y′1(t)

y′2(t)

 =

 y2(t)

−f(t, y1(t), y1(t− h))

 , t ∈ [a, b] (3.3)

with initial conditions  y1(t)

y2(t)

 =

 φ(t)

φ′(t)

 , t ∈ [a− h, a] (3.4)

where y :=

 y1

y2

=

 x

x′

, F∈C([a, b]×R4,R2), F (t,y,v)=F (t, y1, y2, v1, v2) := f1 (t,y,v)

f2 (t,y,v)

 =

 y2

−f (t, y1, v1)

, φ ∈ C([a − h, a],R2), φ :=

φ1

φ2

 =

 φ

φ′


and h > 0 is a parameter.

Relative to the problem (3.3)-(3.4) we consider the following conditions:
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(C1) f ∈ C([a, b]× R2,R), φ ∈ C1([a− h, a],R);
(C2) there exists lf ∈ R+ such that

|f(t, u1, v)− f(t, u2, v)| ≤ lf |u1 − u2| ,

t ∈ [a, b], u1, u2, v ∈ R.

Let m ∈ N∗ be such that:

a+ (m− 1)h < b and a+mh ≥ b.

We denote by t−1 := a− h, t0 := a, ti := a+ ih, i = 1,m− 1, tm := b.
Applying the results from Section 2 we have the following theorems.

Theorem 3.1. We suppose that the conditions (C1) and (C2) hold. Then:

(i) the problem (3.3)-(3.4) has a unique solution y∗ in C([t−1, tm],R2) where

y∗(t) =



φ(t0), t ∈ [t−1, t0]

y1,∗(t), t ∈ [t0, t1]

· · ·

ym,∗(t), t ∈ [tm−1, tm]

(ii) for each yi,0 ∈ C([ti−1, ti],R2), i = 1,m− 1, ym,0 ∈ C([tm−1, tm],R2), the
sequence defined by:

yi,n+1(t) = yi−1,∗(ti−1) +
∫ t

ti−1
F(s,yi,n(s),yi−1,∗(s− h))ds,

for t ∈ [ti−1, ti], converges and lim
n→∞

yi,n = yi,∗, i = 1,m.

Proof. From condition (C1) we have that F ∈ C([a, b] × R4,R2), φ ∈ C([a −
h, a],R2).

From (C2) we have

∥∥F(t,u1,v)− F(t,u2,v)
∥∥ =

∥∥∥∥∥∥
 u1

2

−f(t, u1
1, v1)

−

 u2
2

−f(t, u2
1, v1)

∥∥∥∥∥∥
≤

 0 1

lf 0

∣∣u1
1 − u2

1

∣∣∣∣u1
2 − u2

2

∣∣
 ,

for all u1 = (u1
1, u

1
2), u2 = (u2

1, u
2
2), v = (v1, v2) ∈ R2. So the problem (3.3)-(3.4)

verifies the conditions of the Theorem 2.2.

Theorem 3.2. In the condition of Theorem 3.1, for each yi,0 ∈ C([ti−1, ti],R2), i =
1,m, the sequences defined by:

y1,n+1(t) = φ(t0) +
∫ t

t0
F(s,y1,n(s),φ(s− h))ds, for t ∈ [t0, t1] (3.5)

y2,n+1(t) = y1,n(t1) +
∫ t

t1
F(s,y2,n(s),y1,n(s− h))ds, for t ∈ [t1, t2]

· · ·

ym,n+1(t) = ym−1,n(tm−1) +
∫ t

tm−1
F(s,ym,n(s),ym−1,n(s− h))ds, for t∈ [tm−1, tm]

converge and lim
n→∞

yi,n = yi,∗, i = 1,m.
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4. Numerical method

In this section we test some second order initial value problems to show the efficiency
and accuracy of the proposed method. We follow the technique from D. Trif [20]
where the approximating solution is given by a finite sum of the Chebyshev series.
The same technique was used in [2, 4, 15] for integro-differential equations with
delays.

We divide the working interval by the points Pk = k, k = 0, 1, . . . ,M , where
M = 8 and represents the number of subintervals. On each subinterval Ik =
[Pk−1, Pk], k = 1, . . . ,M , we find the numerical solution by the following form

y1,k = c10,k
T0

2
+ c11,kT1(ξ) + c12,kT2(ξ) + . . .+ c1n−1,kTn−1(ξ),

y2,k = c20,k
T0

2
+ c21,kT1(ξ) + c22,kT2(ξ) + . . .+ c2n−1,kTn−1(ξ),

where Ti(ξ) = cos(i arccos(ξ)) are Chebyshev polynomials of i degree, i = 0, . . . , n−
1 (n = 25), and t = αξ + β where α = (Pk − Pk−1)/2 and β = (Pk + Pk−1)/2
(see [17,18]).

For the efficiency estimation of this algorithm, the integral equation system is
written in the form of delay differential system and we use the Matlab command
dde23 (Matlab procedure which solves numerically delay differential equations, for
details see Shampine [16]) to solve it and we compare the running times. We impose
the relative error to 10−8 and the absolute error to 10−12 to obtain a accuracy
comparable with the step method. We display the graph of solutions.

Example 4.1. Consider the following:x′′(t) = e−2t x
2(t−τ)
x(t) , t ∈ [0, 8], τ = 1

x(t) = e−t, x′(t) = −e−t, t ∈ [−1, 0].

Exact solution: x(t) = e−t.

For this example, the step method obtains the solution in 1377 iterations with an
error of 10−9 in 0.061830 CPU seconds. The Matlab program dde23 needs 0.737448
CPU seconds for a similar precision.

0 2 4 6 8
−0.5

0

0.5

1

1.5

t

x

 

 

x=y
1
 numeric

x=y
1
 exact

0 2 4 6 8
−1.5

−1

−0.5

0

0.5

t

x

 

 

x′=y
2
 numeric

x′=y
2
 exact

Figure 1. The graphs of the exact and numerical solution for Example 4.1.
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Example 4.2. Consider the following:x′′(t) = x2(t− τ)− 1

4
√

(1+t)3
− (1 + t) + τ, t ∈ [0, 8], τ = 1

x(t) =
√
1 + t, x′(t) = 1

2
√
1+t

, t ∈ [−1, 0].

Exact solution: x(t) =
√
1 + t.

In this case, the step method obtains the solution in 686 iterations with an error
of 10−8 in 0.017437 CPU seconds. The Matlab program dde23 needs 0.490628 CPU
seconds for a similar precision.
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Figure 2. The graphs of the exact and numerical solution and absolute error evolution for Example 4.2.

5. Conclusions

In this paper we introduce a combination of a step method and a Chebyshev spectral
method.

For the first example, the running time of the step method is 11 times faster
than Matlab dde23 procedure and for the second example is 28 times faster than
Matlab dde23 procedure for the similar precision. The above comparisons validate
the step method from the accuracy and efficiency point of view.
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