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Abstract In this paper, we prove that every first order dissipative-(T, a)-
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[0,∞) via the Leray-Schauder degree theory and the lower and upper solu-
tions method.
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1. Introduction

As is well known, the qualitative theory of dynamical systems was established by
the French mathematician Poincaré and the Russian mathematician Lyapunov in
the nineteenth century from regular solutions to irregular solutions, such as sta-
tionary, periodic, anti-periodic, quasi-periodic, almost periodic, almost automor-
phic, Birkhoff recurrent, almost recurrent, non-wondering, chain recurrent, chaos
etc, and more details can be found in Liu etc [9]. An essential problem on these
kinds of solutions is the “well-posed problem”, which was introduced by the French
mathematician Hadamard, and he believed that the mathematical model of physical
phenomena should have the following properties:

Existence a solution exists;

Uniqueness the solution is unique;

Continuity the solution’s behaviour depends continuously on the data (initial
values and boundary values) and parameters.

If a problem satisfies all above properties, then the problem is called well-posed,
otherwise ill-posed. The meaning of existence is clear, that is, there exists a solution
satisfying the mathematical model. The uniqueness of the solution means that the
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solution is unique within a certain class of functions. For example, if a problem has
many solutions but only one of them is bounded, then we would say that the solution
is unique in the space of bounded functions. The continuity of the solution means
that if the small change in the data and parameters brings about small change in
the solution, i.e., the change of the solution can be controlled by the change of the
data and parameters continuously.

In this paper, we consider the well-posedness of a new kind of solutions to
ordinary differential equations (for short ODEs), which are called “affine-periodic”
solutions. This new type solution was introduced by Li etc [20] to describe some
physical phenomena which exhibit a certain symmetry as the evolution of time and
it depicts how to interact between time and space. More details on affine-periodic
solutions can be found in [1, 2, 8, 10,13–15,19].

Now, let us consider the following first order ODE

x
′

= f(t, x),
′

=
d

dt
, (1.1)

where the nonlinearity term f is continuous and ensures the existence and unique-
ness of the solution with respect to initial value, furthermore f is an affine-periodic
function, i.e., there is some T > 0 and a ∈ R \ {0} such that

f(t+ T, x) = af(t, a−1x), ∀t ∈ R,∀x ∈ R. (1.2)

According to the size of a, system (1.1)-(1.2) can be roughly classified into several
cases:

periodic system if a = 1, then (1.1)-(1.2) is called a T -periodic system;

antiperiodic system if a = −1, then (1.1)-(1.2) is called a T -antiperiodic sys-
tem;

repulsive system if |a| > 1, then (1.1)-(1.2) is called a repulsive-(T, a)-affine-
periodic system;

dissipative system if 0 < |a| < 1, then (1.1)-(1.2) is called a dissipative-(T, a)-
affine-periodic system.

For a given (T, a)-affine-periodic system, our aim is to seek for the (T, a)-affine-
periodic solution, i.e., there exists a mapping x such that x(t) satisfies equation
(1.1) and the following equality

x(t+ T ) = ax(t), ∀t ∈ R. (1.3)

Similarly, the solution x(t) of (1.1)-(1.2) with the equality (1.3) can also be roughly
classified into several cases:

periodic solution if a = 1, then the solution x is called a T -periodic solution;

antiperiodic solution if a = −1, then the solution x is called a T -antiperiodic
solution;

repulsive solution if |a| > 1, then the solution x is called a repulsive-(T, a)-
affine-periodic solution;

dissipative solution if 0 < |a| < 1, then the solution x is called a dissipative-
(T, a)-affine-periodic solution.
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In fact, a natural concept of dissipation is to assume that there is a bounded
set such that every orbit eventually enters into the set and remains. In 1944,
Levinson [7] posed a conjecture on the existence of periodic solutions for dissipative
systems. He claimed that such a periodic system admits a periodic solution. In
the theory of dynamical systems, Levinson’s conjecture is a basic result which was
completely solved by Küpper etc [6]. Furthermore, Li etc proved this classical results
is true in dissipative-affine-periodic systems:

• Zhang etc [20] proved that every dissipative affine-periodic system admits an
affine-periodic solution via Horn’s fixed point theorem.

• Li etc [8] considered the existence of dissipative-repulsive-affine-periodic so-
lutions to dissipative-repulsive-affine-periodic systems using the method of
topological degree.

• Chang etc [1] proved the existence of affine-periodic solutions to a class of sec-
ond order dissipative dynamical systems by the method of topological degree.

Motivated by these fruitful results and ideas, we are concerned with the exis-
tence of dissipative-affine-periodic solutions for first order dissipative-affine-periodic
systems in R in the present paper.

The main tool we used is the lower and upper solutions (for short LUS) method
which is known to be an easy and elementary method for differential equations,
and it replaces a difficulty problem “How to find a solution of a boundary value
problem?” by an easier problem “How to find lower and upper solutions?”. This
method can be dated back to the use of successive approximation by Picard [12]
in 1893. With the development of the LUS method, monotone method, Nagumo
condition, maximal and minimal solutions, non well-ordered upper and lower solu-
tions and so on appeared in the stage of mathematics. Furthermore, LUS method
was connected with other theories including degree theory, variational method and
so on. Above all, LUS can be used to deal with many problems, such as resonant
and nonresonant problems, singular perturbation problems and so on. More details
about the LUS method can be found in the book of Coster etc [3]. Here we only
list some main results using the LUS method connected with our work.

• Fabry etc [4] obtained the existence theorems for the Picard boundary value
problem via the LUS method and the homotophy invariance of Leray-Schauder
degree. Here we list this essential theorem about the homotopy invariance of
Leray-Schauder degree.

Lemma 1.1 (Theorem 1, [4]). Let X be a Banach space, and A : X → X
be a compact mapping such that (I − A) is one to one , and Ω be an open
bounded set such that 0 ∈ (I−A)(Ω). Then the compact mapping H : Ω→ X
has a fixed point in Ω if for any λ ∈ (0, 1), the equation

x = λHx+ (1− λ)Ax

has no solution on the boundary ∂Ω.

• Wu [16] gave the existence result of anti-periodic solution to first order ODEs
using the LUS method.

• Wu etc [17,18] obtained the existence result of antiperiodic solution to second
order ODEs via the LUS method.
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• Nieto [11] showed that the LUS method is valid for finding periodic solutions
to third order ODEs.

• Howes [5] considered boundary value problems for higher order equations using
the LUS method.

Outline of this paper: In Section 2, we state our main results Theorem 2.1, as
applications: Theorems 2.2 and 2.3. In Section 3, we give the proof of our main
results via the Leray-Schauder degree theory and the LUS method. In Section 4,
we provide some examples to illustrate our results.

2. Main Results

In this section, we list our main results as an abstract Theorem 2.1, as applications:
Theorems 2.2 and 2.3.

At first, we introduce Theorem 2.1.

Theorem 2.1. Assume that the dissipative-(T, a)-affine-periodic system (1.1)-(1.2)
has a solution x0(t) in [0,∞) , and there exists a function O(t) such that

|x(t)− y(t)| ≤ O(t)|x(0)− y(0)|, ∀t ∈ [0,∞)

for any possible solutions x(t) and y(t) to (1.1)-(1.2), where O(t) satisfies dissipative
condition, i.e.,

O(t) ≤ |a|m+ε(m), mT ≤ t < (m+ 1)T,m ∈ N, ε(m) = εχN∗(m), ε > 0,

where χ is the indicator function. Then there admits a unique dissipative-(T, a)-
affine-periodic solution for (1.1)-(1.2).

Remark 2.1. In Theorem 2.1, we give a specific condition on O(t) according to the
dissipative coefficient a, which satisfies the ordinary dissipative condition in Wu [16]

O(t) ≥ 0 and lim
t→∞

O(t) = 0.

Then we introduce Theorem 2.2 for 0 < a < 1 and Theorem 2.3 for −1 < a < 0.

Theorem 2.2 (0 < a < 1). Assume that the following hold:

(i) There exist a strict lower solution α ∈ C1([0,∞);R) to (1.1)-(1.2) and a strict
upper solution β ∈ C1([0,∞);R), i.e.,

α
′
< f(t, α), β

′
> f(t, β), ∀t ∈ [0,∞).

(ii) α and β are (T, a)-affine-periodic functions, i.e.,

α(t+ T ) = aα(t), β(t+ T ) = aβ(t), ∀t ∈ [0,∞).

(iii) α is a negative function and β is a positive function on [0,∞), i.e.,

α(t) < 0 < β(t), ∀t ∈ [0,∞).

Then the dissipative-(T, a)-affine-periodic system (1.1)-(1.2) admits a dissipative-
(T, a)-affine-periodic solution in the order interval (α, β).
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Remark 2.2. It should be emphasized that the lower solution α and the upper
solution β in Theorem 2.2 may not satisfy α + β = 0 for 0 < a < 1, which is
necessary in Fabry [4] where the solution x holds |x(t)| < ψ(t), that is, if set
α = −ψ, β = ψ, then α + β = 0. In this sense, we weaken the conditions on the
lower and upper solutions.

Theorem 2.3 (−1 < a < 0). Assume that there exists a function ψ ∈ C1([0,∞);R)
satisfying the following conditions:

(i) −ψ is a strict lower solution and ψ is a strict upper solution for (1.1)-(1.2),
i.e.,

−ψ
′
< f(t,−ψ), ψ

′
> f(t, ψ), ∀t ∈ [0,∞).

(ii) ψ is a (T,−a)-affine-periodic function, i.e.,

ψ(t+ T ) = −aψ(t), ∀t ∈ [0,∞).

(iii) ψ is a positive function, i.e.,

ψ(t) > 0, ∀t ∈ [0,∞).

Then dissipative-(T, a)-affine-periodic system (1.1)-(1.2) admits a dissipative-(T, a)-
affine-periodic solution in the order interval (−ψ,ψ).

3. Proof of Main Results

In this section, we prove Theorem 2.1, Theorem 2.2 and Theorem 2.3.

3.1. Proof of Theorem 2.1

Proof. Since x0(t) is a solution to (1.1)-(1.2), then xi(t) , a−ix0(t + iT ) is also
the solution to (1.1)-(1.2) for all i ∈ N. In fact,

x
′

i(t) = a−ix
′

0(t+ iT )

= a−if(t+ iT, x0(t+ iT ))

= f(t, a−ix0(t+ iT ))

= f(t, xi(t)).

Furthermore∣∣∣a−(i+1)x0((i+ 1)T )− a−ix0(iT )
∣∣∣ ≤ |a|−iO(iT )

∣∣a−1x0(T )− x0(0)
∣∣

≤ |a|ε(i)
∣∣a−1x0(T )− x0(0)

∣∣
and then∣∣∣a−(m+1)x0((m+ 1)T )

∣∣∣ ≤ m∑
i=0

∣∣∣a−(i+1)x0((i+ 1)T )− a−ix0(iT )
∣∣∣+ |x0(0)|

≤ (m|a|ε + 1)
∣∣a−1x0(T )− x0(0)

∣∣+ |x0(0)| .
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Thus

|x0((m+ 1)T )| ≤ |a|m+1
(
(m|a|ε + 1)

∣∣a−1x0(T )− x0(0)
∣∣+ |x0(0)|

)
,

which indicates that {x0(mT )} is bounded for any m ∈ N.
Analogously,∣∣∣a−(i+1)x0(s+ (i+ 1)T )− a−ix0(s+mT )

∣∣∣ ≤|a|−iO(s+ iT )
∣∣a−1x0(T )− x0(0)

∣∣
≤|a|ε(i) |x0(T )− x0(0)|

for all s ∈ [0, T ) and then

∣∣∣a−(m+1)x0(s+ (m+ 1)T )
∣∣∣ ≤ m∑

i=0

∣∣∣a−(i+1)x0(s+ (i+ 1)T )− a−ix0(s+ iT )
∣∣∣+ |x0(s)|

≤ (m|a|ε + 1)
∣∣a−1x0(T )− x0(0)

∣∣+ |x0(s)| .

Hence

|x0(s+ (m+ 1)T )| ≤ |a|m+1
(
(m|a|ε + 1)

∣∣a−1x0(T )− x0(0)
∣∣+ |x0(s)|

)
,

which indicates that {x0(s+mT )} is bounded for all s ∈ [0, T ) and any m ∈ N.
Furthermore, for any possible solution x(t) to (1.1)-(1.2), we have

|x(t)− x0(t)| ≤ O(t)|x(0)− x0(0)|,

thus

|x(t)| ≤ |x0(t)|+O(t)|x(0)− x0(0)|,

which indicates that x(t) is bounded in [0,∞).
Set

B = {x ∈ R : ‖x‖ ≤ r},

where

‖x‖ = max
t∈[0,∞)

|x(t)|, ∀x ∈ B.

Define the Poincaré mapping

P : B −→ B,

p −→ a−1x(T ; p),

where x(t; p) is the semiflow for (1.1)-(1.2) with respect to initial value p, i.e.,
x(0; p) = p. Then we claim that P is a contractive mapping. Indeed,

|P (p1)− P (p2)| = |a|−1|x(T ; p1)− x(T ; p2)| ≤ |a|−1O(T )|p1 − p2| ≤ |a|ε|p1 − p2|

for all pi ∈ B(i = 1, 2). Using Banach contraction mapping principle, there exists a
unique fixed point p∗ ∈ B such that

a−1x(T ; p∗) = p∗.



1630 M. Liu, F. Xu, X. Yang & Y. Li

Furthermore

x(t+ T ; p∗) = p∗ +

∫ t+T

0

f(s, x(s; p∗))ds

= p∗ +

∫ T

0

f(s, x(s; p∗))ds+

∫ t+T

T

f(s, x(s; p∗))ds

= p∗ +

∫ T

0

f(s, x(s; p∗))ds+

∫ t

0

f(s+ T, x(s+ T ; p∗))ds

= x(T ; p∗) + a

∫ t

0

f(s, a−1x(s+ T ; p∗))ds,

hence

a−1x(t+ T ; p∗) = a−1x(T ; p∗) +

∫ t

0

f(s, a−1x(s+ T ; p∗))ds,

that is

a−1x(t+ T ; p∗) = p∗ +

∫ t

0

f(s, a−1x(s+ T ; p∗))ds.

By the uniqueness of the solution with respect to initial value,

x(t; p∗) = a−1x(t+ T ; p∗),

that is

x(t+ T ; p∗) = ax(t; p∗).

This completes the proof of Theorem 2.1.
From the proof of Theorem 2.1, we have the following corollary:

Corollary 3.1. The existence of (T, a)-affine-periodic solution to (1.1)-(1.2) is e-
quivalent to the existence of solution to (1.1)-(1.2) with (T, a)-affine-periodic bound-
ary condition

ax(0) = x(T ).

3.2. Proof of Theorem 2.2

Proof. Consider the auxiliary system

x
′

= −λkx+ (1− λ)f(t, x), 0 ≤ λ ≤ 1 (3.1)

with (T, a)-affine-periodic boundary condition

ax(0) = x(T ), (3.2)

where

k > max

{
−(λT )−1 ln a, max

t∈[0,T ]

{
−α

′
(t)

α(t)
,−β

′
(t)

β(t)

}}
for 0 < λ < 1.
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Then the solution to (3.1)-(3.2) is

x(t) = e−λkt
(
a− e−λkT

)−1
(1− λ)

∫ T

0

e−λk(T−s)f(s, x(s))ds

+ (1− λ)

∫ t

0

e−λk(t−s)f(s, x(s))ds. (3.3)

Set
Ca,T = {x ∈ C(R;R) : x(t+ T ) = ax(t), ∀t ∈ [0,∞)}

with the usual maximum norm ‖ · ‖ = max[0,T ] | · |, then (C(T,a), ‖ · ‖) is a Banach
space.

Define a mapping

Rλ : [α, β] −→ Ca,T ,

φ −→ Rλφ,

where
[α, β] = {x ∈ Ca,T : α(t) ≤ x(t) ≤ β(t), ∀t ∈ [0, T ]}

and

(Rλφ)(t) =e−λkt
(
a− e−λkT

)−1
(1− λ)

∫ T

0

e−λk(T−s)f(s, φ(s))ds

+ (1− λ)

∫ t

0

e−λk(t−s)f(s, φ(s))ds.

Next, we claim that Rλ is well-defined, i.e., Rλφ is a (T, a)-affine-periodic func-
tion. In fact

(Rλφ)(0) = (a− e−λkT )−1(1− λ)

∫ T

0

e−λk(T−s)f(s, φ(s))ds

and

(Rλφ)(T ) = (1− λ)
(
e−λkT (a− e−λkT )−1 + 1

) ∫ T

0

e−λk(T−s)f(s, φ(s))ds

= a(a− e−λkT )−1(1− λ)

∫ T

0

e−λk(T−s)f(s, φ(s))ds

= a(Rλφ)(0).

Furthermore

(Rλφ)(t+ T ) = e−λk(t+T )(a− e−λkT )−1(1− λ)

∫ T

0

e−λk(T−s)f(s, φ(s))ds

+ (1− λ)

∫ t+T

0

e−λk(t+T−s)f(s, φ(s))ds

= e−λkte−λkT (a− e−λkT )−1(1− λ)

∫ T

0

e−λk(T−s)f(s, φ(s))ds

+ (1− λ)e−λkt
∫ T

0

e−λk(T−s)f(s, φ(s))ds
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+ (1− λ)

∫ t+T

T

e−λk(t+T−s)f(s, φ(s))ds

= e−λkt(e−λkT (a− e−λkT )−1 + 1)(1− λ)

∫ T

0

e−λk(T−s)f(s, φ(s))ds

+ (1− λ)

∫ t

0

e−λk(t−s)f(s+ T, φ(s+ T ))ds

= e−λkta(a− e−λkT )−1(1− λ)

∫ T

0

e−λk(T−s)f(s, φ(s))ds

+ (1− λ)a

∫ t

0

e−λk(t−s)f(s, φ(s))ds

= a(Rλφ)(t).

Furthermore, we claim that there admits a positive constant M > 0 such that

‖Rλ[α, β]]‖ ≤M.

If not, there exists a sequence {φn}∞n=1 ⊆ [α, β] such that

‖Rλφn‖ → ∞, n→∞.

On the one hand, set

φn =
Rλφn
‖Rλφn‖

=
ϕn
‖ϕn‖

,

where ϕn is the (T, a)-affine-periodic solution to

x
′

= −λkx+ (1− λ)f (t, φn(t)) .

Then φn is the (T, a)-affine-periodic solution of

x
′

= −λkx+
1

‖ϕn‖
(1− λ)f(t, φn(t)).

On the other hand, there exist a subsequence {φnj
}∞j=1 ⊆ {φn}∞n=1 and φ0 ∈ C(T,a)

such that
φnj
→ φ0, j →∞.

Thus φ0 is the (T, a)-affine-periodic solution to

x
′

= −λkx. (3.4)

However, equation (3.4) has one and only one (T, a)-affine-periodic solution 0, i.e.,
φ0 ≡ 0, which is a contradiction to ‖φ0‖ = 1.

Finally, we prove that

0 /∈ Hλ(∂(α, β)), ∀λ ∈ [0, 1],

where
Hλ = I −Rλ

is completely continuous by Arzela-Ascoli lemma, and

(α, β) = {x ∈ Ca,T : α(t) < x(t) < β(t), ∀t ∈ [0, T ]}
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is a nonempty open set in Ca,T .

Since x ≡ 0 ∈ (α, β) is the desired dissipative-(T, a)-affine-periodic solution
when λ = 1, then it follows the complete continuity of Hλ that there exists Λ→ 1−

such that

0 /∈ Hλ(∂(α, β)), ∀λ ∈ [Λ, 1].

Thus we only need to illustrate

0 /∈ Hλ(∂(α, β)), ∀λ ∈ [0,Λ].

If not, then there exists φ ∈ ∂(α, β) such that

(Hλφ)(t) = 0,

that is, φ satisfies equation

φ̇ = −λkφ+ (1− λ)f(t, φ).

Set

δ = α− φ or β − φ

then there exists t0 ∈ [0, T ] such that δ reaches its maximal value or minimal value
0, i.e.,

α(t0) = φ(t0) or β(t0) = φ(t0).

Without loss of generality, we only discuss the left case, and the right case is anal-
ogous. Furthermore

(i) If t0 ∈ (0, T ), then δ
′
(t0) = 0. However,

α
′
(t0) = (α− δ)

′
(t0)

= φ
′
(t0)

= −λkφ(t0) + (1− λ)f(t0, φ(t0))

= −λkα(t0) + (1− λ)f(t0, α(t0))

> −λkα(t0) + (1− λ)α
′
(t0)

≥ α
′
(t0),

a contradiction.

(ii) If t0 ∈ {0} ⇐⇒ δ(0) = 0⇐⇒ δ(T ) = 0⇐⇒ t0 ∈ {T}, then

α
′
(0) ≤ φ

′
(0), α

′
(T ) ≥ φ

′
(T ).

Notice that

aα
′
(0) = α

′
(T ) ≥ φ

′
(T ) = aφ

′
(0).

Thus

α
′
(0) = φ

′
(0).
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However

α
′
(0) = (α− δ)

′
(0)

= φ
′
(0)

= −λkφ(0) + (1− λ)f(0, φ(0))

= −λkα(0) + (1− λ)f(0, α(0))

> −λkα(0) + (1− λ)α
′
(0)

≥ α
′
(0),

this leads to a contradiction.

Since x ≡ 0 is the unique a-affine T -periodic solution and R1 is linear, then

degLS(H1, (α, β), 0) 6= 0.

Using the homotopy invariance of Leray-Schauder degree, we have

degLS(H0, (α, β), 0) = degLS(H1, (α, β), 0) 6= 0,

which indicates that there exists a fixed point φ∗ ∈ (α, β) to R, i.e., φ∗ is the desired
a-affine T -periodic solution. This completes the proof of Theorem 2.2.

Remark 3.1. The proof of Theorem 2.3 is similar to one of Theorem 2.2, and we
derive a contradiction at points t = 0 and t = 2T in Theorem 2.3 rather than at
points t = 0 and t = T in Theorem 2.2.

4. Applications

In this section, we give some examples to illustrate Theorem 2.2.

Example 4.1. Consider the ODE

x
′

= −2x+ e−t. (4.1)

Set
f(t, x) = −2x+ e−t, −e−t = α(t) < 0 < β(t) = 2e−t, a = e−T .

Obviously,

f(t+ T, x) = −2x+ e−(t+T ) = e−T
(
−2(eTx) + e−t

)
= af(t, a−1x),

α(t+ T ) = −e−(t+T ) = e−T
(
−e−t

)
= aα(t),

β(t+ T ) = 2e−(t+T ) = e−T (2e−t) = aβ(t),

α
′
(t) = e−t < 3e−t = f(t, α(t)), β

′
(t) = −2e−t > −3e−t = f(t, β(t)).

By Theorem 2.2, equation (4.1) has a dissipative-(T, e−T )-affine-periodic solution
in the order interval (−e−t, 2e−t).

Example 4.2. Consider the ODE

x
′

= −2x+ e−t sin t. (4.2)



Dissipative-affine-periodic solutions 1635

Set
f(t, x) = −2x+ e−t sin t, a = e−2π,

and
−(1 + ε)e−t = α(t) < 0 < β(t) = (1 + ε)e−t, ε > 0.

Obviously,

f(t+ 2π) = −2x+ e−(t+2π) sin(t+ 2π) = e−2π(−2e2πx+ e−t sin t) = af(t, a−1x),

α(t+ 2π) = −(1 + ε)e−(t+2π) = e−2π
(
−(1 + ε)e−t

)
= aα(t),

β(t+ 2π) = (1 + ε)e−(t+2π) = e−2π((1 + ε)e−t) = aβ(t),

α
′
(t) = (1 + ε)e−t < (2 + 2ε+ sin t)e−t = f(t, α(t)),

β
′
(t) = −(1 + ε)e−t > (−2− 2ε+ sin t)e−t = f(t, β(t)).

By Theorem 2.2, equation (4.2) has a dissipative-(2π, e−2π)-affine-periodic solution
in the order interval (−(1 + ε)e−t, (1 + ε)e−t).
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