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CAHN-HILLIARD VS SINGULAR
CAHN-HILLIARD EQUATIONS IN
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Abstract An efficient semi-implicit spectral method is implemented to solve
the Cahn-Hilliard equation with a variable mobility in this paper. We com-
pared the kinetics of bulk-diffusion-dominated and interface-diffusion-dominated
coarsening in two-phase systems. As expected, the interface-diffusion-controlled
coarsening evolves much slower. Also we find that the velocity field will be
caused different greatly by using Singular Cahn-Hilliard equation and using
Cahn-Hilliard in the simulation of immiscible binary fluids.
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1. Introduction

The Cahn-Hilliard (CH) equation is originally introduced by Cahn-Hilliard [6] in
1958 to describe the phase separation and coarsening phenomena in glass and
polymer systems. Now it used to model many moving interface problems from
fluid dynamics to materials science through a phase-field approach (see, for in-
stance, [2, 7, 8, 10,20,22,24,25]).

There have been many existing simulations using a CH equation employing a
constant mobility, corresponding to bulk-diffusion-dominated coarsening [4, 9, 17,
18, 20, 23] and the reference therein. Finite element schemes have been studied
with mathematical rigor, see, e.g., [3, 12–15]. Finite difference approaches were
proposed to solve the Cahn-Hilliard equation in [5,16]. In [17], a combined spectral
and large-time stepping method was proposed and studied for the Cahn-Hilliard
equation which can increase the time-step size a few times larger when the the
equation involving a small constant mobility.

However, there have been very few studies of the effect of a variable mobility
on the coarsening kinetics of a two-phase system. Lacasta et al. give the direct
numerical solution of a Cahn- Hilliard equation with a variable mobility, and showed
a significant effect of composition dependence of the mobility on the coarsening
kinetics of a two-phase mixture [1,19]. More recently, Bray et al. derived a growth
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law corresponding to the CH equation with variable mobility, in the Lifshitz-Slyozov
limit where the minority phase occupies a vanishingly small volume fraction [11].

As we known, the singular Cahn-Hilliard equation tends to annihilate dissipation
and mixing outside the interfacial layer, therefore it is more physically relevant to
the interfacial problem. The main purpose of this paper is propose an efficient
semi-implicit spectral method to the singular Cahn-Hilliard equation. In order
to improve the stability, two stability terms are added to the time discretization
scheme. Furthermore, we will compare the numerical simulations of immiscible
binary fluids by the Cahn-hilliard equation with constant mobility and variable
mobility.

This paper is organized as follows. In the next section, we introduce two phase
field model for the mixture of two incompressible fluids with CH and SCH equa-
tion respectively. In Section 3, we present the numerical schemes with respect to
time and space discretization. We present in Section 4 some numerical experi-
ments. It demonstrated that the interface-diffusion-controlled coarsening evolves
much slower than the bulk-diffusion-dominated coarsening evolves, also sometimes
it would caused different evolves. Some concluding remarks are given in the final
section.

2. The mathematical model

Consider the following non-dimensional system modeling a specific type of mixture
of two incompressible fluids with same density (which is taken to be 1) and same
viscosity constants [21]:

∂u

∂t
+ u · ∇u+∇p− νdivD(u) + λ∇ · (∇ϕ⊗∇ϕ) = 0,

∇ · u = 0,
(2.1)

∂ϕ

∂t
+ (u · ∇)ϕ+∇ · (γ(ϕ)∇δE(ϕ)

δϕ
) = 0, (x, t) ∈ Ω× (0, T ), (2.2)

with initial conditions

u(x, 0) = 0, ϕ(x, 0) = ϕ0(x), x ∈ Ω, (2.3)

and periodic boundary conditions.
In the above system, u represents the velocity vector of the fluids, p is the

pressure, ϕ represents the ”phase” of the molecules, ν is the viscosity constant, and
λ corresponds to the surface tension [21]. Ω = (0, L1) × (0, L2), ϕ0 : Ω → R is a
given initial function.

γ(ϕ) is a nonnegative function, when γ(ϕ) = 1, the above Cahn-Hilliard equation
with constant mobility, describing the dynamics controlled by bulk diffusion. When
γ(ϕ) = 1 − ϕ2 (Singular Cahn-Hilliard equation), the bulk diffusion is severely
reduced, which corresponds to the interface-diffusion-controlled dynamics, i.e., the
coarsening process is mainly due to the diffusion along the interface between the
two phases.

Finally, E(ϕ) is the free energy function defined by:

E(ϕ) =

∫
Ω

[
γ1

1

2
|∇ϕ|2 + γ2F (ϕ)

]
dx, (2.4)
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where γ1 and γ2 are parameters parametrizing the strength of the bulk energy and
conformational entropy, respectively. And

F (ϕ) =
(ϕ2 − 1)2

4η2
(2.5)

is the bulk part of the mixing energy with η as the capillary width (width of the
mixing layer).

3. Numerical scheme

In this section, we shall focus on constructing efficient and easy to implement nu-
merical schemes.

3.1. Discretization in time

In what follows, the superscript n denotes the time step level and △t is the time step
size. Now we will present the time discretization of the mathematical model (2.1)-
(2.2) with Cahn-Hilliard equation and Singular Cahn-Hilliard equation respectively.

We impsd a second-order semi-implicit time discretization scheme for (2.1).

4un+1 − 3un + un−1

2∆t
+ 2un · ∇un − un−1 · ∇un−1 +∇pn+1

−νdivD(un+1) + 2λ∇ · (∇ϕn ⊗∇ϕn)− λ∇ · (∇ϕn−1 ⊗∇ϕn−1) = 0,

∇ · un+1 = 0,

And second-order semi-implicit time discretization scheme for (2.2) when γ(ϕ) =
1:

4ϕn+1 − 3ϕn + ϕn−1

2∆t
+ γ1∆

2ϕn+1 − s2γ2∆(ϕn+1 − 2ϕn + ϕn−1)

+2∆
δF (ϕn)

δϕ
−∆

δF (ϕn−1)

δϕ
= 0,

(3.1)

first-order semi-implicit time discretization scheme for (2.2) when γ(ϕ) = 1− ϕ2 :

ϕn+1 − ϕn

∆t
+s1γ1∆

2(ϕn+1−ϕn)−s2γ2∆(ϕn+1−ϕn)+∇·
(
(1−(ϕn)2)∇δE(ϕn)

δϕ

)
= 0,

(3.2)
where s1 and s2 are positive constants. Here, we have added a extra stability term
s2γ2∆(ϕn+1−2ϕn+ϕn−1) which of order O(∆t2∂ttϕ) in (3.1) and two extra stability
terms s1γ1∆

2(ϕn+1 − ϕn) and s2γ2∆(ϕn+1 − ϕn) which both of order O(∆t∂tϕ) in
(3.2).

A complete stability and error analysis for the above scheme is beyond the scope
of this paper whose main purpose is to propose and justify a phase field model
for the mixture of two incompressible fluids. The adding of the stability terms
s2γ2∆(ϕn+1−2ϕn+ϕn−1) and s2γ2∆(ϕn+1−ϕn) have been discussed before [17,20].
Nevertheless, we will give a test to research the sensitive of value s1.
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3.2. Discretization in space

A complete numerical algorithm also requires a discretization strategy in space.
Since Fourier spectral method is one of the most suitable spatial approximation
methods for periodic problems, it will be employed to handle the spatial discretiza-
tion on two-dimensional fluid flows in both drop dynamics as well as mixing dy-
namics of immiscible binary fluids. We use the following Fourier basis functions:

PM =span{1, sinnx, cosnx, n=1, . . . , N} × span{1, sinmy, cosmy,m = 1, . . . ,M},
(3.3)

The spatial discretization is based on a Fourier pesudospectral approximation
with N and M denoting the number of the Fourier mode.

4. Numerical results and discussions

Below, we present several numerical experiments using this code. In all computa-
tions, we have fixed the physical parameters to be

η = 0.02, λ = 0.1, ν = 0.1, γ1 = 0.1, γ2 = 0.1,

and the computational parameters to be

s1 = 0.5, s2 = 2, N = 256,∆t = 0.0001.

We use a phase variable ϕ to label each fluid Fig.1:

ϕ =

1, in fluid 1;

−1, in fluid 2.
(4.1)

Figure 1. Phase variable ϕ.

Example 4.1. We start with two kissing bubbles(fluid 1). It is observed that the
two bubbles coalesces into one big bubble as time evolves from Fig.2 and Fig.3
which the CH and SCH is used respectively. This is the combination of the surface
tension effect and the elastic effect from the phase equation.
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Figure 2. Contour plots of two kissing droplets at selected time slots, where the CH model is used.
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Figure 3. Contour plots of two kissing droplets at selected time slots, where the SCH model is used.

Let ρ to be the ratio of length in short axis and length in major axis. Fig.4 and
Fig.5 display the velocity vector field, pressure image and phase contour at selected
ρ slots, where the CH and SCH model is used respectively. It observed that the
velocity vector field of this two model both lead to vortexes around the bubble, but
the SCH model caused more stronger vortexes because of longer time evolved. Also
we find that SCH model would take longer time to evolve the same formation of
the bubble as the CH model. For example, it should take time 0.7 correspond to
ρ = 0.41 when SCH model is used as the 0.02 when CH model is used.
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(b) t=0.02,ρ=0.41
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(c) t=0.08,ρ=0.59
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(d) t=0.15,ρ=0.77
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(e) t=0.3,ρ=0.96

Figure 4. Velocity vector field, pressure image and phase contour, where the CH model is used.
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(b) t=0.7,ρ=0.41
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(d) t=5.85,ρ=0.77
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(e) t=13.5,ρ=0.96

Figure 5. Velocity vector field, pressure image and phase contour, where the SCH model is used.

To compare the evolution speed of this two models, we plot the ρ versus t in
Fig.6 between [0, 10] and Fig.7 between [0, 1] using the CH and SCH model, also
with different s1 in SCH model. It takes about 0.4 (Fig.7) to finish the complete
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evolution with CH model, but more than 10 with SCH model (Fig.6). The SCH
model coarsening evolves much slower than CH model. Fig.7 also illustrates that
the time discrete scheme is not very sensitive with s1 (which usually belong to (0, 2])
in this example.
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Figure 6. The process ρ versus t between [0
10] using the CH and SCH with different s1.
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Figure 7. The process ρ versus t between [0
1] using the CH and SCH with different s1.

Example 4.2. Secondly, we simulate two droplets of fluid 1 of radius ratio 2 : 1
immersed in fluid 2 at selected time slots using the CH and SCH respectively. Notice
that the small bubble is absorbed by the big bubble in both Fig.8 and Fig.9. This
phenomenon, i.e., the mass in the smaller droplet is transported into the larger
one is purely due to the Cahn-Hilliard equation, since the curvature of the bubbles
serves as the chemical potential in the dynamics of the phase function.
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Figure 8. Contour plots of two droplets with initial radius ratio 2 : 1 at selected time slots, where the
CH model is used.
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Figure 9. Contour plots of two droplets with initial radius ratio 2 : 1 at selected time slots, where the
SCH model is used.

Define the ρ to be the ratio of the radius of the small droplet and the big
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droplet. Velocity vector field, pressure image and phase contour at selected ρ slots
corresponded to the CH and SCH model are presented in Fig.10 and Fig.11. Notice
that the velocity vector field in Fig.10 do not have changed greatly at the end
of evolution, but it causes some vertexes in Fig.11 which has much more longer
time evolved. From Fig.12, we can conclude that the mass dissipation and volume-
reduction in the smaller droplet with SCH model is much weaker than the CH model
in the numerical experiment. It seems the time discrete scheme has little sensitive
with s1 but noticeable. Generally, we would like to chose s1 equal to 0.5.
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(c) t=0.03,ρ=0.28
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(d) t=0.04,ρ=0.08
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(e) t=0.05,ρ=0

Figure 10. Velocity vector field, pressure image and phase contour, where the CH model is used.
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(b) t=1.06,ρ=0.43
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(c) t=2.42,ρ=0.28
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(d) t=2.91,ρ=0.08
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(e) t=2.92,ρ=0

Figure 11. Velocity vector field, pressure image and phase contour, where the SCH model is used.
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Figure 12. The process ρ versus t between [0, 0.16] using the CH and SCH with different s1.

Example 4.3. In this example, we chose the physical parameter γ1 = γ2 = 1 in
the SCH model, and γ1 = γ2 = 0.1 in the CH model. And we add a term ∇c(x) to
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the advection term of equation (2.2) as following:

∂ϕ

∂t
+∇ · (u− c(x))ϕ) +∇ · (γ(ϕ)∇δE(ϕ)

δϕ
) = 0, (x, t) ∈ Ω× (0, T ). (4.2)

Firstly, we chose

∇c(x) =
(
2× (tanh

|x− π| − 0.5

0.05
+ 1), 0

)
. (4.3)

We plot the contour of one droplets at selected time slots in Fig.13 and Fig.15,
where the CH and SCH model is used. One observes that the shape of bubble does
not have change greatly except it shrinks as time delaying and move to the left
when using CH model, by switching to the SCH, except the shrinking and moving a
little, the shape of bubble have been changed and looks like crescent in the middle
progress. Then presented in Fig.14 and Fig.16 the velocity vector field, pressure
image and phase contour.
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Figure 13. Contour plots of one droplets at selected time slots, where the CH model is used.
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(e) t=2.0

Figure 14. Velocity vector field, pressure image and phase contour, where the CH model is used.
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Figure 15. Contour plots of one droplets at selected time slots, where the SCH model is used.

Secondly, we chose

∇c(x) =
(
2× (tanh

|x− π| − 0.2

0.05
+ 1), 0

)
. (4.4)

Fig.17 and Fig.19 indicate contour of the droplet at selected time slots, where the
CH and SCH model is used respectively, we find that the shape the droplet is
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(c) t=3.2
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(d) t=4.8
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(e) t=6.4

Figure 16. Velocity vector field, pressure image and phase contour, where the SCH model is used.

changed using SCH model much more than CH model. Then presented in Fig.14
and Fig.16 the velocity vector field, pressure image and phase contour. Velocity
vector field, pressure image and phase contour was plotted in Fig.18 and Fig.20 .
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Figure 17. Contour plots of one droplet at selected time slots, where the CH model is used.
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(b) t=0.4
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(c) t=0.6
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(d) t=0.8
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(e) t=1.0

Figure 18. Velocity vector field, pressure image and phase contour, where the CH model is used.
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Figure 19. Contour plots of one droplets at selected time slots, where the SCH model is used.
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Figure 20. Velocity vector field, pressure image and phase contour, where the SCH model is used.
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These simulation show that the SCH models clearly render much smaller nu-
merical dissipation and give better resolution in the immiscible droplet simulation
than the CH model.

5. Conclusion

In this paper, we compare the use of the Cahn-hilliard equation ( of a constant
mobility) for the phase variable with that of the singular or modified Cahn-Hilliard
equation (of a variable mobility) in the context of physical derivation of the trans-
port equation and numerical simulations of immiscible binary fluids. It was shown
that the last model is more efficient and accurate, thus allowing us to work on
large systems and for long times. In future, we would use the SCH equations in
multi-phase flow simulations for immiscible fluids since this model certainly provide
better numerical resolution and physical fidelity to the interface problem.
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