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MICROPOLAR FLUID FLOWS WITH DELAY
ON 2D UNBOUNDED DOMAINS∗

Wenlong Sun

Abstract In this paper, we investigate the incompressible micropolar fluid
flows on 2D unbounded domains with external force containing some heredi-
tary characteristics. Since Sobolev embeddings are not compact on unbounded
domains, first, we investigate the existence and uniqueness of the stationary
solution, and further verify its exponential stability under appropriate con-
ditions – essentially the viscosity δ1 := min{ν, ca + cd} is asked to be large
enough. Then, we establish the global well-posedness of the weak solutions
via the Galerkin method combined with the technique of truncation functions
and decomposition of spatial domain.

Keywords Micropolar fluid flow, truncation function, well-posedness, expo-
nential stability.
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1. Introduction

The micropolar fluid model is firstly derived by Eringen [12] in 1966, which is used to
describe the fluids consisting of randomly oriented particles suspended in a viscous
medium. The model can be described by the following equations:

∂u

∂t
− (ν + νr)∆u− 2νrrotω + (u · ∇)u+∇p = f,

∇ · u = 0,

∂ω

∂t
− (ca + cd)∆ω + 4νrω + (u · ∇)ω − (c0 + cd − ca)∇divω − 2νrrotu = f̃ ,

(1.1)

where u = (u1, u2, u3) is the velocity, ω = (ω1, ω2, ω3) is the angular velocity field of
rotation of particles, p represents the pressure, f = (f1, f2, f3) and f̃ = (f̃1, f̃2, f̃3)
stand for the external force and moments, respectively. The positive parameters
ν, νr, c0, ca and cd are the viscosity coefficients. Actually, ν represents the usual
Newtonian viscosity and νr is called the microrotation viscosity. Note that when
the gyration is neglected, the micropolar fluid equations are reduced to the classical
Navier-Stokes equations.

Micropolar fluid model takes an important role in the fields of applied and com-
putational mathematics, there is a wide literature on the mathematical theory of
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micropolar fluid model (1.1). Here we only illustrate some known results. First,
we must mention that Lukaszewicz [15] obtained fruitful results, including the ex-
istence and uniqueness of solutions for the stationary problems and the existence
of weak and strong solutions for the evolutionary problems, as well as the global
existence of solution for the heat-conducting flows and the applications of the mi-
cropolar fluids in lubrication theory and in porous media, etc. Also, there are some
other papers concentrating on the existence and uniqueness of solutions for the mi-
cropolar fluid flows. Galdi and Rionero [13] showed the existence and uniqueness
theorems, known in the theorem of the Navier-Stokes equations, are valid for the in-
compressible micropolar equations too. Yamaguchi [25] established the existence of
global strong solution in 3D bounded domain. Boldrini, Durán and Rojas-Medar [2]
proved the existence and uniqueness of strong solution in a bounded or unbounded
domain Ω ⊆ R3 having a compact C2-boundary. Zhang [28] investigated the global
existence and uniqueness of classical solutions to the 2D micropolar fluid flows with
fix partial dissipation and angular viscosity. Dong and Zhang [11] proved the global
existence and uniqueness of smooth solutions to the 2D micropolar fluid flows with
zero angular viscosity on unbounded domains. At the same time, the long time
behavior of solutions for the micropolar fluid model has been investigated from var-
ious aspects, see, e.g. [7–10,16,17,21,26,29]. However, to our knowledge, there are
very few articles about the micropolar fluid model with time delay. To date, we
have not found in the literature any work that considers the combination of delay
terms and unbounded domains.

In the real world, delay terms appear naturally, for instance as effects in wind
tunnel experiments (see [18]), in the equations describing the motions of the fluids.
The delay situations may also occur, for example, when we want to control the
system via applying a force which considers not only the present state but also
the history state of the system. There are some articles concerning the pullback
asymptotic behavior of solutions to the nonlinear evolution equations with delays
on bounded or unbounded domains, see, e.g. [3–6,14,20,23,24].

In this paper, we consider the situation that the velocity component in the x3-
direction is zero and the axes of rotation of particles are parallel to the x3 axis. That
is, u = (u1, u2, 0), ω = (0, 0, ω3), f = (f1, f2, 0), f̃ = (0, 0, f̃3), g = (g1, g2, 0) and
g̃ = (0, 0, g̃3). Let Ω ⊆ R2 be an open set with boundary Γ that is not necessarily
bounded but satisfies the following Poincaré inequality:

There exists λ1 > 0 such that λ1‖ϕ‖2L2(Ω) 6 ‖∇ϕ‖
2
L2(Ω), ∀ϕ ∈ H

1
0 (Ω). (1.2)

Then, we discuss the following equations of 2D non-autonomous incompressible
micropolar fluid flows:

∂u

∂t
− (ν + νr)∆u− 2νr∇× ω + (u · ∇)u+∇p = f + g(t, ut), in (0, T )× Ω,

∂ω

∂t
− ᾱ∆ω + 4νrω − 2νr∇× u+ (u · ∇)ω = f̃ + g̃(t, ωt), in (0, T )× Ω,

∇ · u = 0, in (0, T )× Ω,

u = 0, ω = 0, on (0, T )× Γ,

(u(0, ·), ω(0, ·)) = (u0(·), ω0(·)),

(u(t, ·), ω(t, ·)) = (φ1(t, ·), φ2(t, ·)), t ∈ (−h, 0), x ∈ Ω,

(1.3)
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where T > 0 is given, ᾱ := ca + cd, x := (x1, x2) ∈ Ω, (u0, ω0) is the initial velocity
filed, g and g̃ stand for the external force containing some hereditary characteristics
ut and ωt, which are defined on [−h, 0] as follows:

ut = ut(·) := u(t+ ·), ωt = ωt(·) := ω(t+ ·), ∀t > 0. (1.4)

In addition, (φ1, φ2) represents the initial datum in the interval of time (−h, 0),
where h is a positive fixed number, and

∇× u :=
∂u2

∂x1
− ∂u1

∂x2
, ∇× ω := (

∂ω3

∂x2
,−∂ω3

∂x1
).

For the sake of convenience, we introduce the following useful operators:
〈Aw, φ〉 := ν̃(∇u,∇Φ) + ᾱ(∇ω,∇φ3), ∀w = (u, ω), ϕ = (Φ, φ3) ∈ V̂ ,

〈B(u,w), φ〉 := ((u · ∇)w, φ), ∀u ∈ V, w = (u, ω) ∈ V̂ , ∀φ ∈ V̂ ,

N(w) := (−2νr∇× ω,−2νr∇× u+ 4νrω), ∀w = (u, ω) ∈ V̂ ,

(1.5)

where ν̃ = (ν+νr) and the notation V̂ will be defined later. Then, we can formulate
the weak version of equations (1.3) as follows:

∂w

∂t
+Aw +B(u,w) +N(w) = F (t, x) +G(t, wt), in (0, T )× Ω,

∇ · u = 0, in (0, T )× Ω,

w = (u, ω) = 0, on (0, T )× Γ,

w(0, x) = w0(x) = (u0(x), ω0(x)), w(t, x) = φ(t, x), t ∈ (−h, 0), x ∈ Ω,

(1.6)

where w := (u, ω), F (t) = F (t, x) := (f, f̃) and G(t, wt) := (g(t, ut), g̃(t, ωt)).
There are two goals in writing this thesis.
The first goal is to prove the existence and uniqueness of the stationary solution

and to verify its exponential stability, exactly, we reveal that when the viscosity
δ1 := min{ν, ca + cd} is large enough, the weak solution of the evolutionary system
(1.6) exponentially approaches the stationary solution as time increasing infinity.
In this part, we need pay enough attention and give careful analysis for each term.
In addition, the delay term will also increase the difficulty of the estimates.

The second goal is to establish the global well-posedness of the weak solution
of system (1.6). Due to the lack of compact embedding in an unbounded domain,
which will result in some obstacles in the process of using the classical Galerkin
method to prove the existence of solutions. To overcome this difficulty, we utilize
the Galerkin method combined with the technique of truncation function and the
decomposition of spatial domain, and classical method to complete our purpose.

It is worth to mentioning that the existence and uniqueness of the weak solutions
for the Navier-Stokes with delay on smooth bounded domains has been established
by Caraballo and Real in [3]. Later, they investigated the asymptotic behaviour
of the weak solutions in [4]. Afterwards, Garrido-Atienza and Maŕın-Rubio in [14]
extended the results of [3] to unbounded domains. Moreover, they studied the
existence and uniqueness of the stationary solution and its stability. We want
to point out that the main idea of this paper originates from paper [14, 20, 27].
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Compared with the Navier-Stokes equations studied in [14], the angular velocity
field ω of the micropolar particles in the micropolar fluid flows leads to a different
nonlinear term B(u,w) and an additional term N(w) in the abstract equation (see
(1.6)). For that reason, more delicate estimates and analysis are required in our
studies.

Throughout this paper, we denote the usual Lebesgue space and Sobolev space
(see [1]) by Lp(Ω) and Wm,p(Ω) endowed with norms ‖·‖p and ‖·‖m,p, respectively.

‖ϕ‖p := (

∫
Ω

|ϕ|pdx)1/p and ‖ϕ‖m,p := (
∑
|β|6m

∫
Ω

|Dβϕ|pdx)1/p.

Especially, we denote Hm(Ω) := Wm,2(Ω) and H1
0 (Ω) the closure of {ϕ ∈ C∞0 (Ω)}

with respect to H1(Ω) norm.

V := V(Ω) := {ϕ ∈ C∞0 (Ω)× C∞0 (Ω)|ϕ = (ϕ1, ϕ2),∇ · ϕ = 0} ,

V̂ := V̂(Ω) := V × C∞0 (Ω),

H := H(Ω) := closure of V inL2(Ω)× L2(Ω), with norm ‖ · ‖H and dual spaceH∗,

V := V (Ω) := closure of V inH1(Ω)×H1(Ω), with norm ‖ · ‖V and dual spaceV ∗,

Ĥ := Ĥ(Ω) := closure of V̂ in (L2(Ω))3, with norm ‖ · ‖Ĥ and dual space Ĥ∗,

V̂ := V̂ (Ω) := closure of V̂ in (H1(Ω))3, with norm ‖ · ‖V̂ and dual space V̂ ∗,

where ‖ · ‖H , ‖ · ‖V , ‖ · ‖Ĥ and ‖ · ‖V̂ are defined by

‖(u, v)‖H := (‖u‖22 + ‖v‖22)1/2, ‖(u, v)‖V := (‖u‖2H1 + ‖v‖2H1)1/2,

‖(u, v, w)‖Ĥ := (‖(u, v)‖2H + ‖w‖22)1/2, ‖(u, v, w)‖V̂ := (‖(u, v)‖2V + ‖w‖2H1)1/2.

(·, ·)− the inner product in L2(Ω), H or Ĥ, 〈·, ·〉− the dual pairing between V and

V ∗ or between V̂ and V̂ ∗. Throughout this article, we simplify the notations ‖ · ‖2,
‖ · ‖H and ‖ · ‖Ĥ by the same notation ‖ · ‖ if there is no confusion. Furthermore,
we denote

Lp(I;X) := space of strongly measurable functions on the closed interval I,

with values in the Banach space X, endowed with norm

‖ϕ‖Lp(I;X) := (

∫
I

‖ϕ‖pXdt)1/p, for 1 6 p <∞,

C(I;X) := space of continuous functions on the interval I, with values in the

Banach space X, endowed with the usual norm,

↪→↪→ − the compact embedding between spaces.

The rest of this paper is organized as follows. In section 2, we first make some
preliminaries. Then, we concentrate on establishing the existence and uniqueness of
the stationary, and further verifying its exponential stability, that is, under suitable
conditions, the weak solution, the existence of which could be ensured by section 3,
exponentially approaches the stationary solutions as time goes to +∞. In section
3, we show the global well-posedness of the weak solutions.
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2. Stability of stationary solutions

We divide this section into two subsections. In the first subsection, we make some
necessary preliminaries. In the other subsection, we prove the stability of the sta-
tionary solutions.

2.1. Preliminaries

To begin with, let us give some useful properties and estimates about the operators
defined in (1.5). That is,

Lemma 2.1.

(1) The operator A is linear continuous both from V̂ to V̂ ∗ and from D(A) to Ĥ,

and so is for the operator N(·) from V̂ to Ĥ, where D(A) := V̂ ∩ (H2(Ω))3.

(2) The operator B(·, ·) is continuous from V ×V̂ to V̂ ∗. Moreover, for any u ∈ V
and w ∈ V̂ , there holds

〈B(u, ψ), ϕ〉 = −〈B(u, ϕ), ψ〉, ∀u ∈ V, ∀ψ ∈ V̂ , ∀ϕ ∈ V̂ . (2.1)

Proof. (1) The continuity of the operators A and N(·) can be deduced directly
from their definition. The linearity of the operator A is evident. So we only need
check the linearity of the operator N(·). Indeed, for any φ = (Φ, φ3) ∈ V̂ with

Φ = (φ1, φ2) and ψ = (Ψ, ψ3) ∈ V̂ with Ψ = (ψ1, ψ2), we have

N(φ)−N(ψ)

=
(
− 2νr(∇× φ3 −∇× ψ3),−2νr(∇× Φ−∇×Ψ) + 4νr(φ3 − ψ3)

)
=
(
− 2νr(

∂φ3

∂x2
− ∂ψ3

∂x2
,−∂φ3

∂x1
+
∂ψ3

∂x1
),

− 2νr(
∂φ2

∂x1
− ∂φ1

∂x2
− ∂ψ2

∂x1
+
∂ψ1

∂x2
) + 4νr(φ3 − ψ3)

)
=
(
− 2νr(

∂(φ3 − ψ3)

∂x2
,−∂(φ3 − ψ3)

∂x1
),

− 2νr(
∂(φ2 − ψ2)

∂x1
− ∂(φ1 − ψ1)

∂x2
) + 4νr(φ3 − ψ3)

)
=
(
− 2νr∇⊥(φ3 − ψ3),−2νr∇× (Φ−Ψ) + 4νr(φ3 − ψ3)

)
= N(φ− ψ).

(2) The continuity of the operator B(·, ·) can be also obtained from its definition.

Next, we verify (2.1). In fact, for any u ∈ V,w ∈ V̂ , we have

〈B(u,w), w〉 = ((u · ∇)w,w)

=

∫
Ω

(u1
∂

∂x1
+u2

∂

∂x2
+u3

∂

∂x3
)(w1, w2, w3)(w1, w2, w3)dx=

3∑
j=1

3∑
i=1

∫
Ω

ui
∂wj
∂xi

wjdx

=

3∑
j=1

3∑
i=1

1

2

∫
Ω

ui
∂w2

j

∂xi
dx =

1

2

3∑
j=1

3∑
i=1

(uiw
2
j |∂Ω −

∫
Ω

w2
jDiuidx)

=− 1

2

3∑
j=1

3∑
i=1

∫
Ω

w2
jDiuidx = −1

2

3∑
j=1

∫
Ω

w2
j (∇ · u)dx = 0. (2.2)
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Hence, (2.1) is valid as a consequence of (2.2). The proof is complete.
We further have

Lemma 2.2 (see [16,19,26]).

(1) There are two positive constants c1 and c2 such that

c1〈Aw,w〉 6 ‖w‖2V̂ 6 c2〈Aw,w〉, ∀w ∈ V̂ . (2.3)

(2) There exists some positive constant λ0 which depends only on Ω, such that for

any (u, ψ, ϕ) ∈ V × V̂ × V̂ there holds

|〈B(u, ψ), ϕ〉| 6

λ0‖u‖
1
2 ‖∇u‖ 1

2 ‖ϕ‖ 1
2 ‖∇ϕ‖ 1

2 ‖∇ψ‖,

λ0‖u‖
1
2 ‖∇u‖ 1

2 ‖ψ‖ 1
2 ‖∇ψ‖ 1

2 ‖∇ϕ‖.
(2.4)

(3) There exists a positive constant c(νr) such that

‖N(ψ)‖ 6 c(νr)‖ψ‖V̂ , ∀ψ ∈ V̂ . (2.5)

In addition,

δ1‖ψ‖2V̂ 6 〈Aψ,ψ〉+ 〈N(ψ), ψ〉, ∀ψ ∈ V̂ , (2.6)

where δ1 := min{ν, ᾱ}.

Next, we recall a key lemma from [14] as follows.

Lemma 2.3. Let I be a bounded open set of Rd, and X, E are two Banach spaces
with X ↪→↪→ E. Consider 1 6 r < q 6∞. Suppose F ⊂ Lr(I;E) satisfies

(i) ∀ω ⊂⊂ I, sup
f∈F
‖Πhf − f‖Lr(ω;E) → 0 as h→ 0,

where Πhf is the translation function: (Πhf)(t) = f(t+ h),

(ii) F is bounded in Lq(I;E) ∩ L1(I;X).

Then F is precompact in Lr(I;E).

Finally, we end this subsection with the definition of weak solution of (1.6).

Definition 2.1. For each T > 0, function w is called a weak solution of (1.6) if,

w = (u, ω) ∈ C0([0, T ]; Ĥ) ∩ L2(−h, T ; V̂ ) is such that for any t ∈ (0, T ) and any

ϕ ∈ V̂ ,
d

dt
(w(t), ϕ) + 〈Aw,ϕ〉+ 〈B(u,w), ϕ〉+ 〈N(w), ϕ〉 = 〈F (t, x), ϕ〉+ (G(t, wt), ϕ),

w(0) = w0, w(t) = φ(t), t ∈ (−h, 0)

holds in the distribution sense of D′(0, T ).

2.2. Stability of stationary solutions

In this subsection, we prove the existence and uniqueness of stationary solutions to
the micropolar fluid flows provided the viscosity is large enough, when the delay
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term has a special form. Furthermore, in a little stronger conditions, we verify its
exponential stability.

From now on, we suppose that ρ(·) ∈ C1([0, T ]), ρ(t) > 0 for all t ∈ [0, T ], h =
max
t∈[0,T ]

ρ(t) > 0 and ρ∗ = max
t∈[0,T ]

ρ′(t) < 1, and the external force F is independent of

time, the delay term G(t, wt) = Ĝ(w(t− ρ(t))) with Ĝ : Ĥ 7→ Ĥ satisfies(i) Ĝ(0) = 0,

(ii) there exists L0 > 0 such that ‖Ĝ(w)− Ĝ(v)‖ 6 L0‖w − v‖, ∀w, v ∈ Ĥ.
(2.7)

In the following, we concentrate on establishing the existence and uniqueness of
the stationary of (1.6). That is, to find a function w∗ = (u∗, ω∗) ∈ V̂ such that

〈Aw∗, v〉+ 〈B(u∗, w∗), v〉+ 〈N(w∗), v〉 = 〈F, v〉+ (Ĝ(w∗), v), for all v ∈ V̂ . (2.8)

Theorem 2.1. Suppose that Ĝ satisfies (2.7) and δ1 > λ−1
1 L0. Then, for any

F ∈ V̂ ∗,

(1) there exists at least one solution to (2.8),

(2) under the extra condition: λ
1
2
1 (δ1 − λ−1

1 L0)2 > λ0‖F‖V̂ ∗ , there corresponds at
most one solution to (2.8).

Where the constant λ0 comes from (2.4).

Proof. (1) Existence of stationary solutions. Firstly, we take an orthonormal

basis {vj}∞j=1 ⊂ V̂ of Ĥ such that the span{v1, v2, · · · , vn, · · · } is dense in V̂ . Denote

V̂m := span{v1, v2, · · · , vm} and consider the following problem:To find wm ∈ V̂m such that, for a fixed qm = (qm(1), q
m
(2), q

m
(3)) = (pm, qm(3)) ∈ V̂m,

σ(wm, vm) = 〈F, vm〉+ (Ĝ(qm), vm), ∀ vm ∈ V̂m,
(2.9)

where σ(wm, vm) := 〈Awm, vm〉+ 〈B(pm, wm), vm〉+ 〈N(wm), vm〉. On one hand,

it is not difficult to check that, for a fixed qm = (pm, qm(3)) ∈ V̂m, the function σ(·, ·)
is bilinear, continuous and coercive in V̂m × V̂m. On the other hand, the function
vm 7→ 〈F, vm〉+(G(qm), vm) is obviously linear and continuous. Therefore, by Lax-

Milgram theorem, for each fixed qm = (pm, qm(3)) ∈ V̂m, there exists a unique solution

to problem (2.9), which we denote wm. Then, consider the map Em(·) : V̂m 7→ V̂m,
which is defined by

Em(qm) = Em((pm, qm(3))) = (um, ωm) = wm.

Next, we are devoted to proving that, for each m, there exists at least one fixed
point of the mapping Em(·). This implies that there exists a wm ∈ V̂m satisfying

〈Awm, vm〉+ 〈B(um, wm), vm〉+ 〈N(wm), vm〉

= 〈F, vm〉+ (Ĝ(wm), vm), ∀ vm ∈ V̂m. (2.10)

In order to proceed, taking vm = wm in (2.9), and using (1.2), (2.2), (2.6) and (2.7),
we deduce

δ1‖wm‖2V̂ 6〈F,wm〉+ (Ĝ(qm), wm) 6 ‖F‖V̂ ∗‖wm‖V̂ + ‖Ĝ(qm)‖‖wm‖
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6‖F‖V̂ ∗‖wm‖V̂ + λ−1
1 L0‖qm‖V̂ ‖w

m‖V̂ ,

which implies
δ1‖wm‖V̂ 6 ‖F‖V̂ ∗ + λ−1

1 L0‖qm‖V̂ . (2.11)

Since δ1 > λ−1
1 L0, we can take k > 0 such that k(δ1 − λ−1

1 L0) > ‖F‖V̂ ∗ , then,

δ1‖wm‖V̂ 6 k(δ1 − λ−1
1 L0) + λ−1

1 L0‖qm‖V̂ . (2.12)

Now, define Km = {q ∈ V̂m
∣∣ ‖q‖V̂ 6 k}, which is a convex compact set of V̂ .

Then, it follows from (2.12) that Em(·) maps Km to Km. In the following, we
are going to apply the Brouwer fixed point theorem to Em(·)

∣∣
Km

. For this end,
it only remains to show that Em is continuous. Indeed, take qmi ∈ Km, i = 1, 2,
and denote wmi = (umi , ω

m
i ) = Em(qmi ) = Em((pmi , qi

m
(3))) the respective solutions

of (2.9). Then, it holds that

〈A(wm1 − wm2 ), vm〉+ 〈B(pm1 , w
m
1 )−B(pm2 , w

m
2 ), vm〉+ 〈N(wm1 − wm2 ), vm〉

=(Ĝ(qm1 )− Ĝ(qm2 ), vm), ∀ vm ∈ V̂m.

Particularly, choose vm = wm1 − wm2 , with the aid of (1.2), (2.2), (2.4), (2.6) and
(2.7), the above inequality gives

δ1‖wm1 − wm2 ‖2V̂
6〈B(pm2 , w

m
2 )−B(pm1 , w

m
1 ), wm1 − wm2 〉+ (Ĝ(qm1 )− Ĝ(qm2 ), wm1 − wm2 )

6〈B(pm2 − pm1 , wm2 ), wm1 − wm2 〉+ ‖Ĝ(qm1 )− Ĝ(qm2 )‖‖wm1 − wm2 ‖

6λ0‖pm2 − pm1 ‖
1
2 ‖pm2 − pm1 ‖

1
2

V̂
‖wm2 ‖V̂ ‖w

m
2 − wm1 ‖

1
2 ‖wm2 − wm1 ‖

1
2

V̂

+ L0‖qm1 − qm2 ‖‖wm1 − wm2 ‖

6λ
− 1

2
1 λ0‖pm1 − pm2 ‖V̂ ‖w

m
2 ‖V̂ ‖w

m
1 − wm2 ‖V̂ + λ−1

1 L0‖qm1 − qm2 ‖V̂ ‖w
m
1 − wm2 ‖V̂

6(λ
− 1

2
1 λ0k + λ−1

1 L0)‖qm1 − qm2 ‖V̂ ‖w
m
1 − wm2 ‖V̂ , (2.13)

where we also used Hölder inequality and the facts qmi = (pmi , qi
m
(3)), w

m
i = Em(qmi ) ∈

Km. The inequality (2.13) implies Em is continuous. At this stage, we can conclude

that, for each m ∈ N, there exists a wm = (um, ωm) ∈ V̂m satisfying (2.10).
Finally, we will pass to the limit in (2.10) to obtain the existence of solutions of

(2.8). Similar to (2.11), taking vm = wm in (2.10), we obtain

δ1‖wm‖V̂ 6 ‖F‖V̂ ∗ + λ−1
1 L0‖wm‖V̂ ,

that is,

‖wm‖V̂ 6
1

δ1 − λ−1
1 L0

‖F‖V̂ ∗ . (2.14)

So, we may extract a subsequence (denoting by the same symbol) {wm} such that

wm ⇀ w weakly in V̂ . (2.15)

Moreover, for any regular bounded set Q ⊂ Ω, we have the same uniform bounds
of wm

∣∣
Q, which means, using the compact injection, that

wm
∣∣
Q → w

∣∣
Q strongly in (L2(Q))3. (2.16)
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Based on the above argument, for a fixed vj ∈ {vj}∞j=1, denote by Qj the support of
vj (which is compact) and take Q ⊂ Ω a bounded open set with smooth boundary

containing Qj , then we not only have the weak convergence wm ⇀ w in V̂ (Qj) but
the strong convergence wm → w in (L2(Qj))3. Furthermore, it holds that

|(Ĝ(wm), vj)− (Ĝ(w), vj)| 6‖Ĝ(wm)− Ĝ(w)‖(L2(Qj))3‖vj‖
6L0‖wm − w‖(L2(Qj))3‖vj‖ → 0, as m→∞.

At last, combining with (2.15), we may pass to the limit with respect to m for every
term in (2.10) to obtain

〈Aw, vj〉+ 〈B(u,w), vj〉+ 〈N(w), vj〉 = 〈F, vj〉+ (Ĝ(w), vj). (2.17)

Since span{v1, v2, · · · , vn, · · · } is dense in V̂ , we conclude that there exists at least
one function w∗ := w satisfies (2.8).

(2) Uniqueness of the stationary solution. Now, we prove uniqueness of solution

to (2.8) under the extra condition λ
1
2
1 (δ1 − λ−1

1 L0)2 > λ0‖F‖V̂ ∗ .
Suppose there are two solutions w1, w2 to (2.8). Taking the difference, it holds

that

〈Aw1 −Aw2, v〉+ 〈B(u1, w1)−B(u2, w2), v〉+ 〈N(w1)−N(w2), v〉

= (Ĝ(w1)− Ĝ(w2), v), ∀ v ∈ V̂ .

In particular, taking v = w1 − w2, similar to (2.13), we have

δ1‖w1 − w2‖2V̂ 6λ
− 1

2
1 λ0‖u1 − u2‖V̂ ‖w2‖V̂ ‖w1 − w2‖V̂ + λ−1

1 L0‖w1 − w2‖2V̂

6
λ
− 1

2
1 λ0

δ1 − λ−1
1 L0

‖F‖V̂ ∗‖w1 − w2‖2V̂ +
L0

λ1
‖w1 − w2‖2V̂ ,

where, in the second inequality, we have used (2.14) and the fact ‖u1 − u2‖V̂ 6
‖w1 − w2‖V̂ . It follows from the above inequality that[

(δ1 − λ−1
1 L0)2 − λ−

1
2

1 λ0‖F‖V̂ ∗

]
‖w1 − w2‖2V̂ 6 0.

Hence, the uniqueness follows as long as λ
1
2
1 (δ1 − λ−1

1 L0)2 > λ0‖F‖V̂ ∗ . This com-
pletes the proof.

Next, under a little stronger condition than that in Theorem 2.1, which ensures
the existence and uniqueness of the stationary solution w∗ of (2.8), we prove that
the weak solution of the evolutionary problem (1.6) exponentially approaches w∗ as
time increases to infinity. That is, the following theorem.

Theorem 2.2. Assume that F ∈ V̂ ∗, Ĝ satisfies (2.7) and the delay term G(t, wt)

in (1.6) is given by G(t, wt) = Ĝ(w(t− ρ(t))). Suppose also that

δ1λ1 > L0 and δ1λ1 >
L0√

1− ρ∗
+
λ

1
2
1 λ0‖F‖V̂ ∗

δ1 − λ−1
1 L0

. (2.18)

Then, for all w0 ∈ Ĥ and φ ∈ L2(−h, 0; V̂ ), the solution w(t) of (1.6) with F (t) ≡ F
exponentially approaches the solution w∗ of (2.8) as t goes to +∞. To be exact,
there exists two positive constants r1 and r2 such that

‖w(t)− w∗‖2 6 r1e
−r2t

(
‖w0 − w∗‖2 + ‖φ− w∗‖L2(−h,0;V̂ )

)
, ∀ t > 0. (2.19)
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Proof. Set w̄(t) = w(t)− w∗, and observe that

d

dt
(w̄(t), v) + 〈Aw̄(t), v〉+ 〈B(u(t), w(t)), v〉 − 〈B(u∗, w∗), v〉+ 〈N(w̄(t)), v〉

=(Ĝ(w(t− ρ(t))), v)− (Ĝ(w∗), v) for all v ∈ V̂ .

In particular, it holds that

1

2

d

dt
‖w̄(t)‖2 + 〈Aw̄(t), w̄(t)〉+ 〈N(w̄(t)), w̄(t)〉

=(Ĝ(w(t− ρ(t))), w̄(t))− (Ĝ(w∗), w̄(t))− 〈B(u(t), w(t)), w̄(t)〉+ 〈B(u∗, w∗), w̄(t)〉.
(2.20)

From (1.2), (2.2) and (2.4), we see that

| − 〈B(u(t), w(t)), w̄(t)〉+ 〈B(u∗, w∗), w̄(t)〉| = |〈B(u(t)− u∗, w̄(t)), w∗〉|

6λ0‖u(t)− u∗‖ 1
2 ‖u(t)− u∗‖

1
2

V̂
‖w̄(t)‖V̂ ‖w

∗‖ 1
2 ‖w∗‖

1
2

V̂

6λ
− 1

2
1 λ0‖w̄(t)‖2

V̂
‖w∗‖V̂ . (2.21)

In addition, it follows from (1.2) and (2.7) that

(Ĝ(w(t− ρ(t))), w̄(t))− (Ĝ(w∗), w̄(t)) 6 ‖Ĝ(w(t− ρ(t)))− Ĝ(w∗)‖‖w̄(t)‖
6L0‖w(t− ρ(t))− w∗‖‖w̄(t)‖ 6 λ−1

1 L0‖w̄(t− ρ(t))‖V̂ ‖w̄(t)‖V̂ . (2.22)

Taking (2.6), (2.20)-(2.22) and the estimate ‖w∗‖V̂ 6
‖F‖V̂ ∗

δ1−λ−1
1 L0

(which can be

deduced from (2.14)) into account, we have

d

dt
‖w̄(t)‖2 + 2δ1‖w̄(t)‖2

V̂
6 2λ−1

1 L0‖w̄(t− ρ(t))‖V̂ ‖w̄(t)‖V̂ +
2λ
− 1

2
1 λ0‖F‖V̂ ∗

δ1 − λ−1
1 L0

‖w̄(t)‖2
V̂

6 (
δL0

λ1
+

2λ
− 1

2
1 λ0‖F‖V̂ ∗

δ1 − λ−1
1 L0

)‖w̄(t)‖2
V̂

+
L0

δλ1
‖w̄(t− ρ(t))‖2

V̂
,

where δ is a positive constant specified later. Obviously, the above inequality yields

d

dt
(er2t‖w̄(t)‖2)

6r2e
r2t‖w̄(t)‖2 − 2δ1e

r2t‖w̄(t)‖2
V̂

+ er2t
(δL0

λ1
+

2λ
− 1

2
1 λ0‖F‖V̂ ∗

δ1 − λ−1
1 L0

)
‖w̄(t)‖2

V̂

+
L0

δλ1
er2t‖w̄(t− ρ(t))‖2

V̂

6λ−1
1 er2t

(
r2 − 2δ1λ1 + δL0 +

2λ
1
2
1 λ0‖F‖V̂ ∗

δ1 − λ−1
1 L0

)
‖w̄(t)‖2

V̂
+

L0

δλ1
er2t‖w̄(t− ρ(t))‖2

V̂
,

where r2 is a positive constant which will be specified later. Consequently, for any
t ∈ [0, T ],

er2t‖w̄(t)‖2 6‖w̄(0)‖+ λ−1
1

(
r2 − 2δ1λ1 + δL0 +

2λ
1
2
1 λ0‖F‖V̂ ∗

δ1 − λ−1
1 L0

) ∫ t

0

er2θ‖w̄(θ)‖2
V̂

dθ
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+
L0

δλ1

∫ t

0

er2θ‖w̄(θ − ρ(θ))‖2
V̂

dθ. (2.23)

Now, we give a further estimate for (2.23). Set η(t) := t−ρ(t), then η(t) is a strictly
increasing function. Since ρ(t) ∈ [0, h], we may conclude that η−1(s) 6 s + h.
Observe that∫ t

0

er2θ‖w̄(θ − ρ(θ))‖2
V̂

dθ

=

∫ t−ρ(t)

−ρ(0)

er2η
−1(s)‖w̄(s)‖2

V̂
· 1

1− ρ′(η−1(s))
ds 6

er2h

1− ρ∗

∫ t

−h
er2s‖w̄(s)‖2

V̂
ds.

Substituting the above inequality into (2.23), we obtain

er2t‖w̄(t)‖2

6‖w̄(0)‖2 +
L0e

r2h

δλ1(1− ρ∗)

∫ t

−h
er2s‖w̄(s)‖2

V̂
ds

+ λ−1
1

(
r2 − 2δ1λ1 + δL0 +

2λ
1
2
1 λ0‖F‖V̂ ∗

δ1 − λ−1
1 L0

) ∫ t

0

er2θ‖w̄(θ)‖2
V̂

dθ

6‖w̄(0)‖2 +
L0e

r2h

δλ1(1− ρ∗)

∫ 0

−h
‖w̄(s)‖2

V̂
ds

+ λ−1
1

( L0e
r2h

δ(1− ρ∗)
+ r2 − 2δ1λ1 + δL0 +

2λ
1
2
1 λ0‖F‖V̂ ∗

δ1 − λ−1
1 L0

) ∫ t

0

er2θ‖w̄(θ)‖2
V̂

dθ.

Thanks to (2.18), choosing an appropriate δ such that L0

δ(1−ρ∗) + δL0 = 2L0√
1−ρ∗

, then

there exists r2 > 0 small enough such that

L0

δ(1− ρ∗)
er2h + r2 − 2δ1λ1 + δL0 +

2λ
1
2
1 λ0‖F‖V̂ ∗

δ1 − λ−1
1 L0

6 0.

Consequently, we deduce that

‖w̄(t)‖2 6 e−r2t‖w̄(0)‖2 +
L0e

r2h

δλ1(1− ρ∗)
e−r2t

∫ 0

−h
‖w̄(s)‖2

V̂
ds.

Therefore, (2.19) is satisfied with r1 = max{1, L0e
r2h

δλ1(1−ρ∗)}. This completes the proof.

3. Global well-posedness of the weak solutions

In this section, we concentrate on proving the global existence, uniqueness and
stability of the weak solution to system (1.6).

In order to establish the global well-posedness of the weak solutions, the following
assumption is required.

(A) Assume that G : [0, T ]× L2(−h, 0; Ĥ) 7→ (L2(Ω))3 satisfies:

(i) For any ξ ∈ L2(−h, 0; Ĥ), the mapping [0, T ] 3 t 7→ G(t, ξ) ∈ (L2(Ω))3 is
measurable.
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(ii) G(·, 0) = (0, 0, 0).

(iii) There exists a constant LG > 0 such that for any t ∈ [0, T ] and any ξ, η ∈
L2(−h, 0; Ĥ),

‖G(t, ξ)−G(t, η)‖ 6 LG‖ξ − η‖L2(−h,0;Ĥ).

(iv) There exists CG ∈ (0, δ1) such that, for any t ∈ [0, T ] and any w, v ∈
L2(−h, T ; Ĥ),∫ t

0

‖G(θ, wθ)−G(θ, vθ)‖2dθ 6 C2
G

∫ t

−h
‖w(θ)− v(θ)‖2dθ.

Moreover, for any t ∈ [0, T ], there exists a γ ∈ (0, 2δ1 − 2CG) such that∫ t

0

eγθ‖G(θ, wθ)‖2dθ 6 C2
G

∫ t

−h
eγθ‖w(θ)‖2dθ, ∀w ∈ L2(−h, T ; Ĥ).

(v) If wm converges to w weakly in L2(−h, T ; V̂ ), weakly star in L∞(0, T ; Ĥ) and
strongly in L2(−h, T ; (L2(Q))3) for a bounded open set Q ⊂ Ω with smooth

boundary, then G(·, wm· ) converges weakly to G(·, w·) in L2(0, T ; Ĥ(Q)).

Now, we show the existence of the weak solutions in the following theorem.

Theorem 3.1 (Existence). Assume that F (t, x) ∈ L2(0, T ; V̂ ∗) and G(t, wt) satis-

fies (A), then, for any given initial data w0 ∈ Ĥ, φ ∈ L2(−h, 0; V̂ ), there corresponds
at least one weak solution to system (1.6).

Proof. We will divide the proof into three steps.

Step One: Local existence and uniqueness of the Galerkin approximate solutions.
Consider an orthonormal basis {vj}∞j=1 ⊂ V̂ of Ĥ such that

span {v1, v2, · · · , vn, · · · } is dense in V̂ .

Denote V̂m :=span{v1, v2, · · · , vm} and consider the projector

Pmw :=

m∑
j=1

(w, vj)vj , w ∈ Ĥ or V̂ .

For each T > 0, define wm(t) :=
m∑
j=1

βm,j(t)vj , where the coefficients βm,j(t) are

desired to satisfy the following Cauchy problem of ordinary differential equations:
d

dt
(wm(t), vj) + 〈Awm(t), vj〉+ 〈B(um(t), wm(t)), vj〉+ 〈N(wm(t)), vj〉

= 〈F (t, x), vj〉+ (G(t, wmt ), vj), 1 6 j 6 m, t ∈ [0, T ],

wm(0) = Pmw
0, wm(t) = Pmφ(t), t ∈ (−h, 0).

(3.1)

Based on Theorem 2.1 in [14], the existence and uniqueness of the Galerkin approx-
imate solution follows.

Step Two: A priori estimates of the Galerkin approximate solutions.
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We now deduce a priori estimates to obtain the global existence of the Galerkin
approximate solutions. Multiplying (3.1)1 by βm,j(t), summing up for j from 1 to
m and using (2.2) and (2.6), we have

1

2

d

dt
‖wm(t)‖2 + δ1‖wm(t)‖2

V̂

6
1

2

d

dt
‖wm(t)‖2 + 〈Awm, wm〉+ 〈N(wm(t)), wm(t)〉+ 〈B(um(t), wm(t)), wm(t)〉

=〈F (t), wm(t)〉+ (G(t, wmt ), wm(t)). (3.2)

Multiplying (3.2) by eγt, we obtain

d

dt
(eγt‖wm(t)‖2)− γeγt‖w(t)‖2 + 2δ1e

γt‖wm(t)‖2
V̂

6 2eγt〈F (t), wm(t)〉+ 2eγt(G(t, wmt ), wm(t)).

Let 0 6 θ 6 t 6 T . Replacing the time variable t with θ in the above inequality,
then integrating it for θ over [0, t] gives

eγt‖wm(t)‖2 + (2δ1 − γ)

∫ t

0

eγθ‖w(θ)‖2
V̂

dθ

6‖wm(0)‖2 + 2

∫ t

0

eγθ〈F (θ), wm(θ)〉dθ + 2

∫ t

0

eγθ(G(θ, wmθ ), wm(θ))dθ. (3.3)

By Young’s inequality and assumption (A), we see that

2

∫ t

0

eγθ(G(θ, wmθ ), wm(θ))dθ 6 2

∫ t

0

eγθ‖G(θ, wmθ )‖‖wm(θ)‖dθ

62
( ∫ t

0

eγθ‖G(θ, wmθ )‖2dθ
) 1

2
( ∫ t

0

eγθ‖wm(θ)‖2dθ
) 1

2

6CG

∫ 0

−h
eγθ‖wm(θ)‖2dθ + 2CG

∫ t

0

eγθ‖wm(θ)‖2dθ, (3.4)

and

2

∫ t

0

eγθ〈F (θ), wm(θ)〉dθ 6 2

∫ t

0

eγθ‖F (θ)‖V̂ ∗‖wm(θ)‖V̂ dθ

6α−1

∫ t

0

eγθ‖F (θ)‖2
V̂ ∗dθ + α

∫ t

0

eγθ‖wm(θ)‖2
V̂

dθ, (3.5)

where α ∈ (0, 2δ1 − γ − 2CG). Substituting (3.4) and (3.5) into (3.3), we have

eγt‖wm(t)‖2 + β

∫ t

0

eγθ‖w(θ)‖2
V̂

dθ

6‖wm(0)‖2 + CG‖Pmφ‖2L2(−h,0;Ĥ)
+ α−1

∫ t

0

eγθ‖F (θ)‖2
V̂ ∗dθ,

where β := 2δ1 − γ − 2CG − α > 0. It is obtained easily from the above inequality
that there exist two constants k1 and k2 (depending on w0, φ, δ1, F,G, h, T , but not
on m nor t∗ 6 T ) such that

sup
t∈[0,t∗]

‖wm(t)‖2 6 k1,

∫ t∗

0

‖wm(θ)‖2
V̂

dθ 6 k2. (3.6)
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Moreover, observe that wm = Pmφ in (−h, 0) converges to φ in L2(−h, 0; V̂ ). Thus,
we can take t∗ = T and obtain that

{wm} is bounded in L2(−h, T ; V̂ ) ∩ L∞(0, T ; Ĥ), (3.7)

which together with the local existence obtained in step one gives to the global
existence of the Galerkin approximate solution for all time t ∈ [0, T ].

Step Three: Existence of the global weak solutions.
We will prove that the limit function of the Galerkin approximate solutions

is a weak solution of (1.6). Using the diagonal procedure, we deduce from (3.7)
that there exists a subsequence (which is still denoted by) {wm}, an element w ∈
L∞(0, T ; Ĥ) ∩ L2(0, T ; V̂ ) such that{

wm ⇀∗ w weakly star in L∞(0, T ; Ĥ) as m→∞,
wm ⇀ w weakly in L2(0, T ; V̂ ) as m→∞.

(3.8)

Based on the above argument, we claim that, for any bounded open set Q ⊂ Ω,
there exists a subsequence (depending on Q which we relabel) satisfying

wm(t)→ w(t) strongly in L2(0, T ; Ĥ(Q)) as m→∞. (3.9)

For the sake of clarity, we give the proof of (3.9) in the back of the present theorem.
Now, fix an element vj and let ϕ ∈ C1([0, T ]) with ϕ(T ) = 0. Then, it follows

from (3.1) that

−
∫ T

0

(wm(t), vjϕ
′(t))dt+

∫ T

0

〈Awm(t), vjϕ(t)〉dt

+

∫ T

0

〈B(um(t), wm(t)), vjϕ(t)〉dt+

∫ T

0

〈N(wm(t)), vjϕ(t)〉dt

=(wm(0), vj)ϕ(0) +

∫ T

0

〈F (t), vjϕ(t)〉dt+

∫ T

0

(G(t, wmt ), vjϕ(t))dt. (3.10)

In the following, we are committed to passing to the limit in (3.10) to obtain a
weak solution. Choose a subsequence (denoted again by wm) by using diagonal
procedure that satisfies (3.9) for a sequence of regular bounded open sets Qj ⊂ Ω

containing all supports of functions vj of the basis. Observe that for every v ∈ V̂ ,

by the density, there exists a sequence {vj} ⊂ V̂ such that vj → v in V̂ as j →∞.
Namely, for any ε > 0, there exists a nε > 0 such that

‖vj − v‖V̂ < ε for all j > nε. (3.11)

Thus, from (3.8), (3.9) and assumption (A), it is not difficult to see that for the
above ε, there exists a mε > nε such that, for all m > mε,∣∣ ∫ T

0

(G(t, wmt ), vnεϕ(t))dt−
∫ T

0

(G(t, wt), vϕ(t))dt
∣∣

=
∣∣ ∫ T

0

∫
Ω

(G(t, wmt )−G(t, wt)) · vnεϕ(t)dxdt+

∫ T

0

∫
Ω

G(t, wt) · (vnε − v)ϕ(t)dxdt
∣∣

=
∣∣ ∫ T

0

∫
Qnε

(G(t, wmt )−G(t, wt)) · vnεϕ(t)dxdt+

∫ T

0

∫
Ω

G(t, wt) · (vnε − v)ϕdxdt
∣∣
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6‖G(t, wmt )−G(t, wt)‖L2(0,T ;Ĥ(Qnε ))‖ϕ(t)‖L2(0,T )‖vnε‖

+ ‖vnε − v‖
∫ T

0

‖(G(t, wt)‖ · |ϕ(t)|dt

6C1ε.

Similarly, it holds that

∣∣ ∫ T

0

(wm(t), vnεϕ
′(t))dt−

∫ T

0

(w(t), vϕ′(t))dt
∣∣ 6C2ε,

∣∣ ∫ T

0

〈F (t), vnεϕ(t)〉dt−
∫ T

0

〈F (t), vϕ(t)〉dt
∣∣ 6C3ε

and ∣∣(wm(0), vnε)ϕ(0)− (w(0), v)ϕ(0)
∣∣ 6 C4ε.

In addition, by (1.5), (2.4), (2.5), (3.7)-(3.9), (3.11) and Lemma 2.1, we have

∣∣ ∫ T

0

〈Awm(t), vnεϕ(t)〉dt−
∫ T

0

〈Aw(t), vϕ(t)〉dt
∣∣

6max{ν + νr, ᾱ}
(∣∣ ∫ T

0

∫
Ω

∇(wm − w) · ∇(vnε · ϕ(t))dxdt
∣∣

+

∫ T

0

‖∇w(t)‖‖∇(vnε − v)‖|ϕ(t)|dt
)

6max{ν + νr, ᾱ}
(∣∣ ∫ T

0

∫
Ω

∇(wm − w) · ∇(vnε · ϕ(t))dxdt
∣∣

+ ‖vnε − v‖V̂
∫ T

0

‖∇w(t)‖|ϕ(t)|dt
)
6 C5ε,

∣∣ ∫ T

0

〈B(um, wm), vnεϕ(t)〉dt−
∫ T

0

〈B(u,w), vϕ(t)〉dt
∣∣

=
∣∣ ∫ T

0

(
〈B(um − u,wm), vnεϕ(t)〉+ 〈B(u,wm − w), vnεϕ(t)〉

+ 〈B(u,w), (vnε − v)ϕ(t)〉
)
dt
∣∣

6λ0 sup
t∈[0,T ]

|ϕ(t)|
{∫ T

0

‖um − u‖
1
2

H(Qnε )‖∇(um − u)‖ 1
2 ‖wm‖ 1

2 ‖∇wm‖ 1
2 dt ‖∇vnε‖

+

∫ T

0

‖u‖ 1
2 ‖∇u‖ 1

2 ‖wm − w‖
1
2

Ĥ(Qnε )
‖∇(wm − w)‖ 1

2 dt ‖∇vnε‖

+

∫ T

0

‖u‖ 1
2 ‖∇u‖ 1

2 ‖w‖ 1
2 ‖∇w‖ 1

2 dt ‖vnε − v‖V̂
}

6λ0 sup
t∈[0,T ]

|ϕ(t)|

·
{
‖um − u‖

1
4

L2(0,T ;H(Qnε ))‖u
m − u‖

1
4

L2(0,T ;V )‖w
m‖

1
4

L2(0,T ;Ĥ)
‖wm‖

1
4

L2(0,T ;V̂ )
‖vnε‖V̂

+ ‖u‖
1
4

L2(0,T ;H)‖u‖
1
4

L2(0,T ;V )‖w
m − w‖

1
4

L2(0,T ;Ĥ(Qnε ))
‖wm − w‖

1
4

L2(0,T ;V̂ (Qnε ))
‖vnε‖V̂
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+ ‖u‖
1
4

L2(0,T ;H)‖u‖
1
4

L2(0,T ;V )‖w‖
1
4

L2(0,T ;Ĥ)
‖w‖

1
4

L2(0,T ;V̂ )
‖vnε − v‖V̂

}
6 C6ε

and

∣∣ ∫ T

0

〈N(wm(t)), vnεϕ(t)〉dt−
∫ T

0

〈N(w(t)), vϕ(t)〉dt
∣∣

=
∣∣ ∫ T

0

∫
Ω

N(wm(t)− w(t)) · vnεϕ(t)dxdt+

∫ T

0

∫
Ω

N(w(t)) · (vnε − v)ϕ(t)dxdt
∣∣

6
∣∣ ∫ T

0

∫
Qnε

(−2νr∇× (ωm − ω),−2νr∇× (um − u) + 4νr(ω
m − ω)) · vnεdxϕ(t)dt

∣∣
+ ‖vnε − v‖

∫ T

0

‖N(w(t))‖ · |ϕ(t)|dt

64νr

∫ T

0

‖wm(t)−w(t)‖Ĥ(Qnε )‖vnε‖V̂ (Qnε )|ϕ(t)|dt+c(νr)‖vnε−v‖
∫ T

0

‖w(t)‖V̂ |ϕ(t)|dt

64νr‖wm(t)− w(t)‖L2(0,T ;Ĥ(Qε))‖vnε‖V̂ (Qnε )‖ϕ(t)‖L2(0,T )

+ c(νr)‖vnε − v‖‖w(t)‖L2(0,T ;V̂ )‖ϕ(t)‖L2(0,T )

6C7ε,

where Ci, i = 1, 2, 3, 4, 5, 6, 7 are positive constants. According to the above seven
inequalities and the arbitrariness of ε, we can pass to the limit in (3.10) and obtain

−
∫ T

0

(w(t), vϕ′(t))dt+

∫ T

0

〈Aw(t), vϕ(t)〉dt

+

∫ T

0

〈B(u,w), vϕ(t)〉dt+

∫ T

0

〈N(w(t)), vϕ(t)〉dt

=(w0, v)ϕ(0) +

∫ T

0

〈F (t), vϕ(t)dt+

∫ T

0

(G(t, wt), vϕ(t))dt, ∀ v ∈ V̂ . (3.12)

Since (w(t), vj)ϕ(t) ∈ H1(0, T ), we also can obtain an analogous expression to (3.12)

with (w(0), v) instead of (w0, v). This implies (w(0)−w0, v) = 0 for all v ∈ V̂ , hence
w(0) = w0. It makes sense at time t = 0. Writing (3.12) for ϕ ∈ D(0, T ), w satisfies
(1.6) in the distribution sense. This completes the proof.

Proof of (3.9). For this purpose, we will check the situation fits to Lemma 2.3
with r = 2, q = +∞, I = (0, T ).

(1) if Q ⊂⊂ Ω, then there exists a finite covering of balls, denoted by Q̃ ⊂ Ω,
which is bounded and open, such that X = (H1(Q̃))3 ↪→↪→ E = (L2(Q̃))3.

(2) For a general Q ⊂ Ω the above comment may be not true since Q and Ω
can share part of their boundaries. The compact injection from H1 may not hold
for lack of regularity on the boundary Γ, but it does in H1

0 . Therefore, we consider
a truncation argument.

Taking a function χ(·) ∈ C1(R2), χ(x) ∈ [0, 1],∀x ∈ R2 such that

χ(x) =

1, |x| 6 1,

0, |x| > 4.
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Let l > 0 be large enough such that Q ⊂ B(0, l) and denote

Q̃ := Ω ∩B(0, 2l), wm,l(x) := wm(x)χ(
|x|2

l2
).

Then X = (H1
0 (Q̃))3 ↪→↪→ E = (L2(Q̃))3. We conserve the original functions

wm(·) on Ω∩B(0, l) and, for clarity, continue the proof directly with wm(·) instead
of wm,l(·).

Obviously, the condition (ii) in Lemma 2.3 follows from (3.7). In the following,
we concentrate on verifying the condition (i). In fact, we will prove that, for the
whole domain Ω,

sup
m∈N
‖Πhw

m − wm‖L2(0,T−h;(L2(Ω))3) → 0 as h→ 0. (3.13)

Consider h > 0 arbitrarily small. From (3.1), we see that, for (t, t+ h) ⊂ (0, T ),

(wm(t+ h)− wm(t), vj) +

∫ t+h

t

〈Awm(θ), vj〉dθ +

∫ t+h

t

〈B(um(θ), wm(θ)), vj〉dθ

+

∫ t+h

t

〈N(wm(θ)), vj〉dθ

=

∫ t+h

t

〈F (θ), vj〉dθ +

∫ t+h

t

(G(θ, wmθ ), vj)dθ.

Multiplying the above inequality by βm,j(t + h) − βm,j(t) and summing in j, we
obtain

‖wm(t+ h)− wm(t)‖2

=−
∫ t+h

t

〈Awm(θ), wm(t+ h)− wm(t)〉dθ

−
∫ t+h

t

〈B(um(θ), wm(θ)), wm(t+ h)− wm(t)〉dθ

−
∫ t+h

t

〈N(wm(θ)), wm(t+ h)− wm(t)〉dθ +

∫ t+h

t

〈F (θ), wm(t+ h)− wm(t)〉dθ

+

∫ t+h

t

(G(θ, wmθ ), wm(t+ h)− wm(t))dθ. (3.14)

In the following, we estimate the terms on the right-half side of (3.14) one by one.
First, according to the definitions of the operators in (1.5), Lemma 2.1, Lemma 2.2,
and using Hölder inequality, we have

−
∫ t+h

t

〈Awm(θ), wm(t+ h)− wm(t)〉dθ

6c−1
1 ‖wm(t+ h)− wm(t)‖V̂

∫ t+h

t

‖wm(θ)‖V̂ dθ, (3.15)

−
∫ t+h

t

〈B(um(θ), wm(θ)), wm(t+ h)− wm(t)〉dθ

6λ0‖wm(t+ h)− wm(t)‖V̂
∫ t+h

t

‖um(θ)‖ 1
2 ‖∇um(θ)‖ 1

2 ‖wm(θ)‖ 1
2 ‖∇wm(θ)‖ 1

2 dθ
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6λ0‖wm(t+ h)− wm(t)‖V̂
∫ t+h

t

‖wm(θ)‖‖wm(θ)‖V̂ dθ, (3.16)

and

−
∫ t+h

t

〈N(wm(θ)), wm(t+ h)− wm(t)〉dθ

6‖wm(t+ h)− wm(t)‖
∫ t+h

t

‖N(wm(θ))‖dθ

6c(νr)‖wm(t+ h)− wm(t)‖V̂
∫ t+h

t

‖wm(θ)‖V̂ dθ. (3.17)

Next, it is easy to know from Schwartz’s inequality that∫ t+h

t

〈F (θ), wm(t+ h)− wm(t)〉dθ 6 ‖wm(t+ h)− wm(t)‖V̂
∫ t+h

t

‖F (θ)‖V̂ ∗dθ.

(3.18)
Finally, using (1.2) and Schwartz’s inequality, we obtain∫ t+h

t

(G(θ, wmθ ), wm(t+ h)− wm(t))dθ

6‖wm(t+ h)− wm(t)‖
∫ t+h

t

‖G(θ, wmθ )‖dθ

6λ
− 1

2
1 ‖wm(t+ h)− wm(t)‖V̂

∫ t+h

t

‖G(θ, wmθ )‖dθ. (3.19)

Now, substituting (3.15)-(3.19) into (3.14) and integrating the resultant inequality
from 0 to T − h, we have

‖Πhw
m(t)− wm(t)‖2L2(0,T−h;(L2(Ω))3) =

∫ T−h

0

∫
Ω

|Πhw
m(t)− wm(t)|2dxdt

6
∫ T−h

0

‖wm(t+ h)− wm(t)‖V̂
∫ t+h

t

Hm(θ)dθdt,

where

Hm := (c−1
1 +c(νr))‖wm(θ)‖V̂ +λ0‖wm(θ)‖‖wm(θ)‖V̂ +‖F (θ)‖V̂ ∗ +λ

− 1
2

1 ‖G(θ, wmθ )‖.

Set

θ̄ =


0, if θ 6 0,

θ, if 0 < θ 6 T − h,
T − h, if θ > T − h.

Then, since 0 6 θ̄ − θ − h 6 h, with the aid of (3.6) and the Fubini theorem, we
obtain ∫ T−h

0

‖wm(t+ h)− wm(t)‖V̂
∫ t+h

t

Hm(θ)dθdt

6
∫ T

0

Hm(θ)

∫ θ̄

θ−h
‖wm(t+ h)− wm(t)‖V̂ dtdθ
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6
∫ T

0

Hm(θ)
( ∫ θ̄

θ−h
‖wm(t+ h)− wm(t)‖2

V̂
dt
) 1

2
( ∫ θ̄

θ−h
dt
) 1

2 dθ

6
∫ T

0

Hm(θ) · 2h 1
2

( ∫ T−h

0

‖wm‖2
V̂

dt
) 1

2 dθ 6 2(hk2)
1
2

∫ T

0

Hm(θ)dθ. (3.20)

From (3.7) and the assumption (A), it is not difficult to conclude that
∫ T

0
Hm(θ)dθ

is bounded. Therefore, (3.13) is valid, that is, the condition (i) in Lemma 2.3 holds.
Consequently, with the help of Lemma 2.3, (3.9) follows.

Remark 3.1. On the assumption (A)(v). When condition (A)(v) is satisfied in all
“good” Q ⊂ Ω (actually, it is enough for all Qj ⊃ supp(vj)), then the convergence

holds in L2(0, T ; Ĥ). Indeed, consider ϕ ∈ Ĥ. We check that lim
m→∞

(G(·, w(m)
· ), ϕ) =

(G(·, w·), ϕ). Take a sequence ϕn ∈ V̂ such that ϕn → ϕ in Ĥ, and fix ε > 0.
Consider nε such that ‖G(·, wm· )‖‖ϕn − ϕ‖ 6 ε

2 and ‖G(·, w·)‖‖ϕn − ϕ‖ 6 ε
2 for all

n > nε. Observe that (G(·, wm· )−G(·, w·), ϕnε)→ 0, so it is possible to choose mε

to conclude that the claim is true.

In the following, we investigate the uniqueness of the weak solution.

Theorem 3.2 (Uniqueness). Under the conditions of Theorem 3.1, for any T > 0

and initial data w0 ∈ Ĥ, φ ∈ L2(−h, 0; V̂ ), there corresponds at most one weak
solution to system (1.6).

Proof. Let w(1) = (u(1), ω(1)) and w(2) = (u(2), ω(2)) be two solutions of (1.6) in
the interval [−h, T ] with the same initial data. Denote w = (u, ω) = w(1) − w(2),
then w satisfies

∂w

∂t
+Aw +B(u(1), w(1))−B(u(2), w(2)) +N(w)

=G(t, w
(1)
t )−G(t, w

(2)
t ), t ∈ [0, T ]. (3.21)

Testing (3.21) by w(t), we have

1

2

d

dt
‖w(t)‖2+〈Aw(t), w(t)〉+〈B(u(1), w(1))−B(u(2), w(2)), w(t)〉+〈N(w(t)), w(t)〉

=(G(t, w
(1)
t )−G(t, w

(2)
t ), w(t)), t ∈ [0, T ]. (3.22)

By (2.2), (2.4), Young’s inequality and the facts

‖u(t)‖ 6 ‖w(t)‖ and ‖∇u(t)‖ 6 ‖∇w(t)‖,

we deduce that

|〈B(u(1), w(1))−B(u(2), w(2)), w(t)〉|

6λ0‖u(t)‖ 1
2 ‖∇u‖ 1

2 ‖w(t)‖ 1
2 ‖∇w(t)‖ 1

2 ‖∇w(1)(t)‖

6λ0‖w(t)‖‖w(t)‖V̂ ‖w
(1)(t)‖V̂ 6

λ2
0

4δ1
‖w(1)(t)‖2

V̂
‖w(t)‖2 + δ1‖w(t)‖2

V̂
. (3.23)

In addition, it is easy to see that

(G(t, w
(1)
t )−G(t, w

(2)
t ), w(t)) 6 ‖G(t, w

(1)
t )−G(t, w

(2)
t )‖‖w(t)‖
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6a1‖w(t)‖2 + a2‖G(t, w
(1)
t )−G(t, w

(2)
t )‖2, (3.24)

where the positive constants a1 and a2 satisfy a1a2 > 1
4 . Taking (2.6) and (3.22)-

(3.24) into account, we have

d

dt
‖w(t)‖2 + 2δ1‖w(t)‖2

V̂
6
λ2

0

2δ1
‖w(1)(t)‖2

V̂
‖w(t)‖2 + 2δ1‖w(t)‖2

V̂
+ 2a1‖w(t)‖2

+ 2a2‖G(t, w
(1)
t )−G(t, w

(2)
t )‖2. (3.25)

Integrating the above inequality over [0, t], we obtain from assumption (A) that

‖w(t)‖2 6
λ2

0

2δ1

∫ t

0

‖w(1)(θ)‖2
V̂
‖w(θ)‖2dθ + 2a1

∫ t

0

‖w(θ)‖2dθ

+ 2a2

∫ t

0

‖G(θ, w
(1)
θ )−G(θ, w

(2)
θ )‖2dθ

6
∫ t

0

( λ2
0

2δ1
‖w(1)(θ)‖2

V̂
+ 2a1 + 2a2C

2
G

)
‖w(θ)‖2dθ. (3.26)

Using the Gronwall inequality to (3.26) yields

‖w(t)‖ = 0, ∀ t ∈ [0, T ].

This completes the proof.
Finally, we verify the stability of the weak solutions with respect to the initial

data.

Theorem 3.3 (Stability). Assume that the conditions of Theorem 3.1 hold, and
let w(i)(·) with i = 1, 2 be two solutions of (1.6) in the interval [-h,T] with initial

data w(i)(0) = w0(i)
and w(i)(s, x) = φ(i), s ∈ (−h, 0), respectively. Then

‖w(1)(t)− w(2)(t)‖2 6
(
‖w0(1) − w0(2)‖2 + 2a2C

2
G‖φ(1) − φ(2)‖2

L2(−h,0;Ĥ)

)
× exp

{∫ t

0

(
λ2

0

δ1
‖w(1)(θ)‖2

V̂
+ 2a1 + 2a2C

2
G)dθ

}
,

(3.27)∫ t

0

‖w(1)(θ)− w(2)(θ)‖2
V̂

dθ 6δ−1
1 ‖w0(1) − w0(2)‖2 +

δ1
2a2

C2
G‖φ(1) − φ(2)‖2

L2(−h,0;Ĥ)

×
[
1 +

∫ t

0

(
λ2

0

δ1
‖w(1)(θ)‖2

V̂
+ 2a1 + 2a2C

2
G)

× exp
{∫ θ

0

(
λ2

0

δ1
‖w(1)(s)‖2

V̂
+ 2a1 + 2a2C

2
G)ds

}
dθ
]
,

(3.28)

where the positive constants a1 and a2 satisfy a1a2 > 1
4 .

Proof. Set u(·) = u(1)(·) − u(2)(·), ω(·) = ω(1)(·) − ω(2)(·), w(·) = (u(·), ω(·)) =
w(1)(·)− w(2)(·), then w(t) is a solution of the following system:
∂w(t)

∂t
+Aw+B(u(1), w(1))−B(u(2), w(2))+N(w)=G(t, w

(1)
t )−G(t, w

(2)
t ),

w(0) = w(1)(0)− w(2)(0), w(t) = φ(1) − φ(2), t ∈ (−h, 0).
(3.29)
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Testing (3.29)1 by w(t), it holds that

1

2

d

dt
‖w(t)‖2 + 〈Aw(t), w(t)〉+ 〈N(w(t)), w(t)〉

=(G(t, w
(1)
t )−G(t, w

(2)
t ), w(t))− 〈B(u(1)(t), w(1)(t)) +B(u(2)(t), w(2)(t)), w(t)〉.

(3.30)

Similar to (3.25), we can deduce from (3.30) that

d

dt
‖w(t)‖2 + δ1‖w(t)‖2

V̂
6
λ2

0

δ1
‖w(1)(t)‖2

V̂
‖w(t)‖2 + 2a1‖w(t)‖2

+ 2a2‖G(t, w
(1)
t )−G(t, w

(2)
t )‖2,

where a1, a2 comes from (3.25). Integrating the above inequality over [0, t] and
using assumption (A), we obtain

‖w(t)‖2+δ1

∫ t

0

‖w(θ)‖2
V̂

dθ 6 ‖w(0)‖2+
λ2

0

δ1

∫ t

0

‖w(1)(θ)‖2
V̂
‖w(θ)‖2dθ+2a1

∫ t

0

‖w(θ)‖2dθ

+ 2a2

∫ t

0

‖G(θ, w
(1)
θ )−G(θ, w

(2)
θ )‖2dθ

6 ‖w0‖2 +

∫ t

0

(λ2
0

δ1
‖w(1)(θ)‖2

V̂
+ 2a1 + 2a2C

2
G

)
‖w(θ)‖2dθ

+ 2a2C
2
G

∫ 0

−h
‖φ(1) − φ(2)‖2dθ. (3.31)

Hence,

‖w(t)‖2 6 ‖w0‖2 + 2a2C
2
G‖φ(1) − φ(2)‖2

L2(−h,0;Ĥ)

+

∫ t

0

(λ2
0

δ1
‖w(1)(θ)‖2

V̂
+ 2a1 + 2a2C

2
G

)
‖w(θ)‖2dθ.

Using the Gronwall’s inequality to the above inequality yields (3.27). Furthermore,
(3.28) follows from (3.27) and (3.31). This completes the proof.

Remark 3.2. The existence and uniqueness of the stationary solution of (2.8) and
the existence of the weak solutions to system (1.6) can be obtained in the same way
in 3D unbounded domains. The key is the nonlinear term B(u,w), the estimates
(which can be deduced by Hölder and Gagliardo-Nirenberg inequality) for this term
is different in the cases fo 2D and 3D domains. For more detail, one can refer
to [22, §2, §3 and §10].

Remark 3.3. Existence, uniqueness and stability of the solution have been estab-
lished under different conditions – essentially the viscosity δ1 := min{ν, ᾱ} is asked
to be large enough. We also want to point out that there still much work to be
done concerning the micropolar fluid flows with delay on unbounded domains. For
example, we could study the attractors, further, investigate the regularity, bound-
edness and tempered behavior of the pullback attractors. These issues will be the
topics of some other papers.
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