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MONOTONIC DYNAMICS OF MRNA
DEGRADATION BY TWO PATHWAYS∗

Jianshe Yu1 and Xuejie Liu1,2,†

Abstract mRNA degradation plays an important role in gene regulation.
However, a defect in mRNA decay is expected to result in an increase in mRNA
levels. In this paper, we will first establish a model of mRNA regulation by
two pathways denoted by 5′ → 3′ and 3′ → 5′ for short, where there are
two degradation rates δ1, δ2 on 5′ → 3′ pathway and the degradation rate
on 3′ → 5′ pathway is δ3. The advantage of this model is that it captures
fundamental biochemical reactions in the gene expression process in eukaryotic
cells. Then we obtain several basic principles on the monotonicity of the mean
level of newly accumulated mRNAs. It is proved that (1) the newly mean level
is strictly increasing in p and κ, but is strictly decreasing in γ, where p, κ and
γ are the initial activation frequency, the activation rate, and the inactivation
rate, respectively; (2) the newly mean level is strictly decreasing in both δ2
and δ3, remarkably, is strictly increasing in δ1 when δ2 < δ3 and decreasing
when δ2 > δ3 and; (3) the newly mean level is strictly increasing in time t when
p < κ/(κ+ γ). These conclusions not only provide a better understanding on
gene expression dynamics but also would be helpful to design reasonable gene
expression modules.
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1. Introduction

Gene expression is a complex probabilistic process, which involves numerous com-
ponents and biochemical processes. It includes two important steps. One is the
transcription that the genetic information stored in DNA is converted into the
production of messenger RNA, and the other is the translation that proteins are
generated from mRNAs. Transcription is inherently a biochemical and dynamical
process, which contains the binding of transcription factors to the promoter, the
production and degradation of mRNAs, etc. Especially, mRNA degradation plays a
crucial role in the gene regulation. The balance between mRNA synthesis and decay
is a key aspect in the regulation of gene expression. Variation and randomness in
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these events would bring the dynamic behavior of transcripts even in the hypothet-
ically identical cellular environment. Some results( see, for example, [21,22,29,31])
tell us that randomness in the transcription process comes from random switching
between “gene on” and “gene off ”, which seems like a bulb located between active
and inactive states. Some results obtained in [5, 11, 32] also analysed the dynamic
behavior of transcripts by establishing mathematical models. These elegant stud-
ies based on the simple birth and death model might predict a Poissonian nature
of transcript bursts and the geometrical distribution of proteins. This prediction
was confirmed through the development of real time direct detection techniques in
the 2000s [8, 13]. Moreover, a “three states model” [23, 41, 42] and a “cross-talking
pathway activated transcription model ” [39, 44] were proposed to investigate the
dynamics of the mean levels of mRNAs and proteins. In a recent work [26], the
modulation of first-passage time for burst gene expression was studied.

In almost all experimental studies in gene transcription, after transcription is
completely blocked by the incorporation of rifampicin or other means that inhib-
it the initiation or elongation of RNA polymerases, it has been conventionally
assumed that mRNA degradation follows an exponential decay (see, for exam-
ple, [23,39,41,42,44]). If mRNA is degraded in exponential way, the log scale curve
of the population size would fit a straight line. However, in many experiments in
different organisms it was found that large amounts of the decay patterns are not
exponential. One convincing experiment made on S. cerevisiae (a yeast model or-
ganism) [36] shows that only 11 out of 424 (selected) mRNAs obey an exponential
decay. Similarly in E. coli only 11 out of 103 and in the marine cyanobacteri-
um Prochlorococcus 117 out of 1102 genes resemble an exponential decay [35]. It
is therefore clear that this simple exponential decay kinetic model does not suffi-
ciently describe the experimental situation in detail. Moreover, the assumption of
a single and constant rate contradicts the detailed knowledge of the degradation
process. Hence, a series of modifications are required for degradation so that each
process contributes with its specific decay rate. The assumption of a single rate
implies that either all reaction rates are the same (hence also the concentrations
of all participating enzymes and their time scales of catalytic activity) or one rate
dominates strongly over all other rates (i.e. it is much smaller than all other rates).
Hence, a description with a single constant rate seems inappropriate in light of the
knowledge of the degradation mechanisms. In previous studies, the interpretation
of these mRNA decay experiments relied on a simple theoretical description based
on an exponential decay. However, this does not account for the complexity of the
corresponding mechanisms and, as a consequence, the exponential decay is often
not in agreement with the experimental decay patterns. Reducing the gap between
observed decay patterns and degradation pathway is one of the main challenges
facing scientists. The most difficult issue is the fact that intermediate states of the
degradation pathway are still unknown or difficult to quantify.

In this paper, a more detailed model of mRNA degradation is presented. Based
on a large number of theoretical results and experimental data [1,3,12,17,24,43], it
is certain that there are two important mRNA degradation pathways in eukaryotic
cells, from 5′ → 3′ by the XRN1 exoribonuclease after 5′−7− methylguanosine cap
being removed and from 3′ → 5′ by the complex exosome. It’s assumed that there
are two consecutive decaying rates on one path but the decaying rate on the other
path is unique. Accordingly, we get some conclusions on the kinetics of the mean
of newly accumulated transcripts. The mean newly accumulated mRNAs increases
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in the initial activation frequency p and the activation rate κ, however, decreases in
the inactivation rate γ. Surprisingly, it doesn’t always decrease in their degradation
rates. With the help of experiments and theoretics, we hope that our findings can
provide a better understanding of the dynamics of mRNA degradation.

2. The model and the master equation

2.1. The two-pathway degradation model

The 5′ − 7−methylguanosine cap and the 3′−poly(A) tail are two key parts of
the integral stability determinants of mRNAs in eukaryotic cells [3, 17]. These t-
wo structures interact with cytoplasmic proteins eIF4E and the poly(A)-binding
protein (PABP), respectively, to protect the transcript from exonucleases and to
enhance translation initiation. To initiate mRNA decay, either one of these two
structures must be compromised or mRNA must be cleaved internally by endonu-
cleolytic attack. Nevertheless, once mRNAs are degraded, one of the two routes
must be taken. Within the commoner degradation pathway, the 5′−cap is removed
by a process known as decapping which takes place in the small cytoplasmic pro-
cessing Body (P-body) [2, 6], involving many intracellular factors and complexes
such as Dcp1, Dcp2 [4], Pat1p, Rap55 [40] and so on. Hence, this process allows the
mRNA body to be degraded in the 5′ → 3′ direction by the XRN1 exoribonuclease.
Before the decapping of mRNA, the poly(A) tail is deadenylated to an oligo(A).
The deadenylation is a crucial step, in making mRNAs susceptible for decapping.
The next pathway is that mRNAs can be degraded from the unprotected 3′ end by
a complex called exosome, which takes advantage of different co-factors.

The two-state model has been a primary mathematical formalism of stochastic
gene transcription [10, 14, 16, 18, 19, 25, 28, 30, 33, 34, 37, 38]. In the model, it is
postulated that a gene transits between active (noted as gene on) and inactive
(noted as gene off) states, with an activation rate κ and an inactivation rate γ,
respectively. When the gene is active, a new mRNA molecule is produced with a
rate ν. The degradation of mRNAs follows a single exponential decay with a rate
δ. The model has been widely used in fitting experimental data from single cell
measurements in bacteria , yeast [7], and mammalian cells [10] to elucidate the
intricate relation between the stochasticity of gene transcription and the regulatory
mechanisms [9, 10,28,34].

We are interested in analyzing a modified version of the classical two-state model
where mRNA is regulated by two different paths, involving two states gene on
and gene off. This model captures fundamental biochemical reaction steps in the
mRNA degradation process of the eukaryotic cells. One pathway is that mRNA
is indirectly degraded from 5′ → 3′ by the XRN1 exoribonuclease after its 5′ −
7−methylguanosine cap is removed, where the decapping rate is δ1, and the death
rate is δ2; the other pathway is that mRNA is directly decayed from 3′ → 5′ by the
complex exosome with the death rate is δ3. See Fig.1 a.

2.2. The master equation

Let the state space of the model be

Ω = {(k,m, n) , k ∈ {0, 1},m, n ∈ IN} .



Monotonic dynamics of mRNA degradation by two pathways 1601

In any state (k,m, n), the first coordinate denotes the status of the gene. We define
k = 0 when the gene is in off-state and k = 1 when the gene is in on-state. Let
M(t) and N(t) be the random processes counting the numbers of mRNA with the
cap (denoted by the capped mRNA) and mRNA without the cap (denoted by the
decapped mRNA), respectively. Set the primary probability

Pi,m, n(t) = Prob {k = i, M(t) = m, N(t) = n} . (2.1)
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Figure 1. a. The model of gene transcription: a gene switches between on-state and off-state, where
the activation rate is κ and the inactivation rate is γ. When the gene is active, a new mRNA molecule is
produced with a rate ν. mRNA degradation is regulated by two different pathways. One is that mRNA
is indirectly degraded from 5′ → 3′ by the XRN1 exoribonuclease after its 5′ − 7−methylguanosine cap
is removed, where the decapping rate is denoted by δ1 and the death rate is denoted by δ2; the other is
that mRNA is directly decayed from 3′ → 5′ by the complex exosome, where the death rate is denoted
by δ3 . b. and c.: The absorbing state transitions of the gene regulation.

The following hypotheses are needed to get the stochastic equation of Pk,m,n(t).
(H1): transitions in gene states, mRNA generation, mRNA decapping and mRNA
degradation are mutually independent random events.
(H2): for an infinitesimal time increment h > 0, the probability that two or more
than two random events occur at one time is a higher order infinitesimal of h,
denoted as o(h).

With the help of Fig.1 a. and b., a detailed calculation for P ′1,m,n(t) is given by
using the total probability formula.

1. The system switches to state (1,m, n) during the time interval (t, t+ h) from
the state (0,m, n) at time t, and no other event is happening at the same
time. This event has a probability κP0,m,n(t)h+ o(h).

2. The exactly one decapped mRNA is dagraded during the time interval (t, t+h)
when the system is in the state (1,m, n + 1) at time t, and no other event
is happening at the same time. This event has a probability C1

n+1(δ2h)(1 −
δ2h)nP1,m,n+1(t) + o(h).

3. The exactly one capped mRNA is turned into decapped mRNA during the
time interval (t, t + h) when the system is in (1,m + 1, n − 1) at time t, and
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no other event is happening at the same time. The probability of the event is
C1
m+1(δ1h)(1− δ1h)mP1,m+1,n−1(t) + o(h).

4. The exactly one capped mRNA is directly degraded during the time interval
(t, t + h) when the system is in (1,m + 1, n) at time t, and no other event is
happening at the same time. The probability of this event is C1

m+1(δ3h)(1−
δ3h)mP1,m+1,n(t) + o(h).

5. The exactly one capped mRNA is produced during the time interval (t, t+h)
when the system is in (1,m− 1, n) at time t, and no other event is happening
at the same time. The probability of the event is (νh)P1,m−1,n(t) + o(h).

6. There are no generation, degradation, transition or decapping during the time
interval (t, t+h) on the state (1,m, n) at time t. This event has a probability
P1,m,n(t)(1− νh)(1− δ2h)n(1− δ3h)m(1− γh)(1− δ1h)m.

7. At least two events among transition, generation, decapping and degradation
during the time interval (t, t+h) are occurring simultaneously. The probability
of this event is o(h).

Adding all the above seven terms gives

P1,m,n(t+ h) = κP0,m,n(t)h+ C1
n+1(δ2h)(1− δ2h)nP1,m,n+1(t) + (νh)P1,m−1,n(t)

+C1
m+1(δ1h)(1− δ1h)mP1,m+1,n−1(t)

+C1
m+1(δ3h)(1− δ3h)mP1,m+1,n(t)

+P1,m,n(t)(1− γh)(1− δ1h)m(1− δ2h)n(1− δ3h)m(1− νh)+o(h).

This yields by taking limit as h→ 0

P ′1,m,n(t) = κP0,m,n(t) + δ2(n+ 1)P1,m,n+1(t) + δ1(m+ 1)P1,m+1,n−1(t)

+δ3(m+ 1)P1,m+1,n(t) + νP1,m−1,n(t)− γP1,m,n(t)− δ2nP1,m,n(t)

−δ1mP1,m,n(t)− δ3mP1,m,n(t)− νP1,m,n(t). (2.2)

Similarly, we can obtain the following equation based on Fig.1.c.,

P ′0,m,n(t) = γP1,m,n(t)+δ2(n+ 1)P0,m,n+1(t)+δ1(m+ 1)P0,m+1,n−1(t)−κP0,m,n(t)

+δ3(m+ 1)P0,m+1,n(t)− δ2nP0,m,n(t)− δ1mP0,m,n(t)− δ3mP0,m,n(t).

We define

P1(t) =

∞∑
m=0

∞∑
m=0

P1,m,n(t) and P0(t) =

∞∑
m=0

∞∑
m=0

P0,m,n(t). (2.3)

Then P1(t) and P0(t) mean the probabilities that the system is in on-state and
off-state, respectively. From (2.2), we immediately have

P ′1(t) =

∞∑
m,n=0

P ′1,m,n(t) = κ

∞∑
m,n=0

P0,m,n(t) + δ2

∞∑
m,n=0

(n+ 1)P1,m,n+1(t)

+δ1

∞∑
m,n=0

(m+ 1)P1,m+1,n−1(t) + δ3

∞∑
m,n=0

(m+ 1)P1,m+1,n(t)
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−γ
∞∑

m,n=0

P1,m,n(t)− δ2
∞∑

m,n=0

nP1,m,n(t)− δ1
∞∑

m,n=0

mP1,m,n(t)

−δ3
∞∑

m,n=0

mP1,m,n(t)− ν
∞∑

m,n=0

P1,m,n(t) + ν

∞∑
m,n=0

P1,m−1,n(t)

= κP0(t)− γP1(t). (2.4)

Similarly, we can obtain

P ′0(t) = −κP0(t) + γP1(t). (2.5)

Solving (2.4) and (2.5) with the initial condition P1(0) = p ∈ [0, 1], we get

P1(t) = p∗ + (p− p∗)e−(κ+γ) t, p∗ =
κ

κ+ γ
, (2.6)

where p∗ is the stationary probability of the on-state. Clearly, we see that P1(t)
monotonically increases to p∗ if the initial probability p < p∗ and monotonically
decreases to p∗ if p > p∗.

3. The dynamics of transcript

Let P1,m(t) and P0,m(t) be the probabilities that the system is in the on-state and
off-state with m copies of the capped mRNAs at time t, respectively. Let m1(t) and
m0(t) denote the mean number of capped mRNAs under the on-state and off-state,
respectively. Then

m1(t) =

∞∑
m=0

∞∑
n=0

mP1,m,n(t) and m0(t) =

∞∑
m=0

∞∑
n=0

mP0,m,n(t).

From (2.2), we obtain

m′1(t) =

∞∑
m=0

∞∑
n=0

mP ′1,m,n(t) = δ1

∞∑
m,n=0

m(m+ 1)P1,m+1,n−1(t)

+κ

∞∑
m,n=0

mP0,m,n(t) + δ2

∞∑
m,n=0

m(n+ 1)P1,m,n+1(t)− ν
∞∑

m,n=0

mP1,m,n(t)

+δ3

∞∑
m,n=0

m(m+ 1)P1,m+1,n(t) + ν

∞∑
m,n=0

mP1,m−1,n(t)− γ
∞∑

m,n=0

mP1,m,n(t)

−δ2
∞∑

m,n=0

mnP1,m,n(t)− δ1
∞∑

m,n=0

m2P1,m,n(t)− δ3
∞∑

m,n=0

m2P1,m,n(t)

= κm0(t)− (γ + δ1 + δ3)m1(t) + νP1(t). (3.1)

Similarly, we obtain by using (2.3)

m′0(t) = −(κ+ δ1 + δ3)m0(t) + γm1(t). (3.2)

Letm(t) and n(t) be the mean number of capped mRNAs and decapped mRNAs,
respectively. In terms of (3.1) and (3.2), we have

m′(t) = −(δ1 + δ3)m(t) + vP1(t). (3.3)
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To simplify m(t) and n(t), we introduce

δ13κγ = (δ1 + δ3)− (κ+ γ), δ2κγ = δ2 − (κ+ γ),

δ12κγ = (δ1 + δ2)− (κ+ γ), δ2,13 = δ2 − (δ1 + δ3). (3.4)

From (3.3), we can get

m(t) =
p∗ν

δ1 + δ3
+m0e

−(δ1+δ3)t

−[p∗
ν

δ1 + δ3
+ (p− p∗) ν

δ13κγ
]e−(δ1+δ3)t (3.5)

+(p− p∗) ν

δ13κγ
e−(κ+γ)t

where m0 := m(0). Similarly, from (2.2) and (2.3), we get

n′(t) = −δ2n(t) + δ1m(t). (3.6)

From (3.5) and (3.6) , we conclude

n(t) =
p∗ν

δ1 + δ3

δ1
δ2

+ n0e
−δ2t +m0

δ1
δ2,13

[e−(δ1+δ3)t−e−δ2t ]

+[
p∗ν

δ1 + δ3
+ (p− p∗) ν

δ13κγ
]
δ1
δ2,13

[e−δ2t − e−(δ1+δ3)t] (3.7)

−(p− p∗) ν

δ13κγ

δ1
δ2κγ

[e−δ2t − e−(κ+γ)t]− κ

κ+ γ

ν

δ1 + δ3

δ1
δ2
e−δ2t,

where n0 := n(0).
In order to further study the dynamics of the mean level of newly accumulated

mRNAs, we suppose that the production of mRNA is inhibited by the rifampicin.
Under this condition, the model of biochemical reaction (Fig.1) is simplified to the
following model.

Perfect mRNA

2
d

Damaged mRNA

3
d

1
d

Figure 2. The model of gene degradation: when the generation of mRNA is terminated, mRNAs
degradation is regulated by two different pathways. One is that the mRNA is indirectly degraded from
5′ → 3′ by the XRN1 exoribonuclease after its 5′ − 7−methylguanosine cap is removed, where the
decapping rate is denoted by δ1 and the death rate is denoted by δ2. The other pathway is that mRNA
directly decayes from 3′ → 5′ by the complex exosome where the death rate is denoted by δ3.

Let x1(t) and x2(t) denote the mean numbers of capped mRNA and decapped
mRNA at time t under the condition that mRNA formation is inhabited, respec-
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tively. Then by the biochemical reaction principle [27], we have{
x′1(t) = −(δ1 + δ3)x1(t)

x′2(t) = δ1x1(t)− δ2x2(t).
(3.8)

It follows that

x1(t) + x2(t) = m0e
−(δ1+δ3)t + n0e

−δ2t +m0
δ1
δ2,13

[e−(δ1+δ3)t − e−δ2t]. (3.9)

When mRNA molecules are regulated by two different pathways, we find that
the logarithm of the average copy numbers are either concave up or concave down.
That is, mRNA is degraded in non-exponential way.

Over a period of time [0, t], let x(t, p) denote the mean number of newly accu-
mulated mRNA, where p is the initial activation frequency. Then we have

x(t, p) = [m(t) + n(t)]− [x1(t) + x2(t)].

In terms of (3.5), (3.7) and (3.9), we have

x(t, p) = p∗ν
δ1 + δ2

δ2(δ1 + δ3)
+

(p− p∗)δ12γκν

δ13κγδ2κγ
e−(γ+κ)t (3.10)

− (δ2 − δ3)[p(δ1 + δ3)− κ]ν

(δ1 + δ3)δ2,13δ13κγ
e−(δ1+δ3)t +

δ1(pδ2 − κ)ν

δ2δ2κγδ2,13
e−δ2t.

The following theorem provides some monotonic dynamical behaviors on the
mean level of newly accumulated mRNAs. For the convenience, we rewrite x(t, p)
by x(t).

Theorem 3.1. The following two conclusions hold.
(i) x(t) increases in p, the initial activation frequency.
(ii) x(t) increases in t when p < p∗.

Remark. When p ≥ p∗, the monotonicity of x(t) would be much more compli-
cated. This will be discussed in our future works.
Proof. (i) Taking partial derivative in (3.10) with respect to p gives

∂x(t)

∂p
=

δ12κγν

δ13κγδ2κγ
e−(γ+κ)t − (δ2 − δ3)ν

δ2,13δ13κγ
e−(δ1+δ3)t +

δ1ν

δ2κγδ2,13
e−δ2t. (3.11)

Let r(t) = x(t)− (p− p∗)∂x(t)/∂p. Then we obtain

r(t) = p∗ν
δ1 + δ2

δ2(δ1 + δ3)
− p∗ν (δ2 − δ3)

(δ1 + δ3)δ2,13
e−(δ1+δ3)t + p∗ν

δ1
δ2δ2,13

e−δ2t. (3.12)

It is easy to see that r(0) = 0 and x(0) = x(0, p) = 0. Thus we get ∂x(0)/∂p = 0.
This means that the sum of all coefficients of the above exponential functions in
(3.11) is equal to zero, and hence

∂x(t)

∂p
=

δ2 − δ3
[(δ1 + δ3)− δ2]δ13κγ

(
e−(δ1+δ3)t − e−(κ+γ) t

)
+
δ1
(
e−δ2t − e−(κ+γ) t

)
[δ2 − (δ1 + δ3)]δ2κγ

=
1

(δ1 + δ3)− δ2

(
(δ2 − δ3)

e−(δ1+δ3) t − e−(κ+γ) t

(δ1 + δ3)− (κ+ γ)
− δ1

e−δ2 t − e−(κ+γ) t

δ2 − (κ+ γ)

)
.
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Define

f1(x) =
e−x − 1

x
.

It’s easy to see that f1(x) is negative and increases for x 6= 0. For the case where
δ1 + δ3 > δ2, we have

f1([δ1 + δ3 − (κ+ γ)]t) > f1([δ2 − (κ+ γ)]t),

i.e.,
e−[(δ1+δ3)−(κ+γ) ]t − 1

(δ1 + δ3)− (κ+ γ)
>

e−[δ2−(κ+γ)] t − 1

δ2 − (κ+ γ)
,

which yields
e−(δ1+δ3) t − e−(κ+γ) t

(δ1 + δ3)− (κ+ γ)
>

e−δ2 t − e−(κ+γ) t

δ2 − (κ+ γ)

and hence

(δ2 − δ3)
e−(δ1+δ3) t − e−(κ+γ) t

(δ1 + δ3)− (κ+ γ)
> δ1

e−δ2 t − e−(κ+γ) t

δ2 − (κ+ γ)
.

This shows ∂x(t)/∂p > 0 for the case where δ1 + δ3 > δ2. Similarly, we can
prove that ∂x(t)/∂p > 0 for the case where δ1 + δ3 < δ2. This tells us that x(t)
increases in p. Hence, the proof of (i) is completed.

(ii) We divide the proof into four steps.
Step 1. We are going to show that the function ∂x(t)/∂p has at least one

critical point. Since lim
t→+∞

∂x(t)/∂p = 0 and ∂x(0)/∂p = 0, it is easy to see that

this conclusion holds according to the mean value theorem. Denote one of the
critical points by t0 ∈ (0,∞).

Step 2. We prove that the function ∂x(t)/∂p has at most two critical points.
To this end, assume for contradiction that ∂x(t)/∂p has three critical points. Then
from (3.11), we have

∂2x(t)

∂t∂p
= −δ12κγ(γ + κ)ν

δ13κγδ2κγ
e−(γ+κ)t +

(δ2 − δ3)(δ1 + δ3)ν

δ2,13δ13κγ
e−(δ1+δ3)t − δ1δ2ν

δ2κγδ2,13
e−δ2t.

Hence the following equation

δ12κγ(γ + κ)ν

δ13κγδ2κγ
− (δ2 − δ3)(δ1 + δ3)ν

δ2,13δ13κγ
e−δ13γκ t +

δ1δ2ν

δ2κγδ2,13
e−δ2γκ t = 0 (3.13)

has three roots. Naturally, the next equation

(δ2 − δ3)(δ1 + δ3)e−δ13γκ t + δ1δ2e
−[δ2−(γ+κ)] t = 0 (3.14)

has at least two roots. This is impossible and hence ∂x(t)/∂p has at most two
critical points.

Step 3. We prove that ∂x(t)/∂p has a unique extremum. In fact, by a simple
computation, we have

∂2

∂t2

(
∂x(t)

∂p

)
=
δ12κγ(γ + κ)2ν

δ13κγδ2κγ
e−(γ+κ)t − (δ2 − δ3)(δ1 + δ3)2ν

δ2,13δ13κγ
e−(δ1+δ3)t

− δ1δ
2
2ν

δ2κγδ2,13
e−δ2t. (3.15)
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Define

f2(t) = −δ2,13[(δ2 − δ3)(δ1 + δ3)− δ1δ2e−δ2,13t].

Then in terms of (3.13), (3.15), and the monotonicity of function f2(x), we find

∂3x(t0)

∂t2∂p
=
∂3x(t0)

∂t2∂p
+ (κ+ γ)

∂2x(t0)

∂t∂p

= −δ2,13[(δ2 − δ3)(δ1 + δ3)− δ1δ2e−δ2,13t0 ]e−(δ1+δ3) t0 < 0, (3.16)

which means that ∂2x(t)/∂t∂p is strictly decreasing for t ∈ (0,∞). Since ∂2x(t0)/∂t∂p
= 0, we find that ∂2x(t)/∂t∂p > 0 for t ∈ (0, t0) and ∂2x(t)/∂t∂p < 0 for t ∈ (t0,∞).
This shows that ∂x(t)/∂p > 0 takes its maximum at t0. Thus ∂x(t)/∂p has a unique
extremum.

Step 4. We show that x(t) is strictly increasing for the case where p < p∗. In
fact, from (3.12), we have

r′(t) =
p∗ν

[δ2 − (δ1 + δ3)]
[(δ2 − δ3) e−(δ1+δ3) t − δ1 e−δ2 t]. (3.17)

Now we prove that r′(t) > 0 for t ∈ (0,∞). If δ1 + δ3 < δ2, we have

e−(δ1+δ3) > e−δ2 t > 0 and δ2 − δ3 > δ1,

which imply
(δ2 − δ3)e−(δ1+δ3) > δ1e

−δ2 t > 0

and hence

r′(t) =
p∗ν

[δ2 − (δ1 + δ3)]
[(δ2 − δ3) e−(δ1+δ3) t − δ1 e−δ2 t] > 0.

The proof for the case where δ1 + δ3 > δ2 is exactly similar and will be omitted
here. In summary, we have shown that r′(t) > 0 for all t ∈ (0,∞).

From (3.13) and (3.15), we have

r′(t)− p∗ ∂
2x(t)

∂t∂p

= (κ+ γ)[−δ12κγ(γ + κ)ν

δ13κγδ2κγ
e−(γ+κ)t +

(δ2 − δ3)(δ1 + δ3)ν

δ2,13δ13κγ
e−(δ1+δ3)t − δ1δ2ν

δ2κγδ2,13
e−δ2t]

= (κ+ γ)
∂x(t)

∂p
. (3.18)

Since p < p∗, we find from (3.18) that, for t ∈ (0, t0),

∂x(t)

∂t
= r′(t) + (p− p∗)∂

2x(t)

∂t∂p
≥ r′(t)− p∗ ∂

2x(t)

∂t∂p
= (κ+ γ)

∂x(t)

∂p
> 0

and for t ∈ (t0,∞),

∂x(t)

∂t
= r′(t) + (p− p∗)∂

2x(t, p)

∂t∂p
≥ r′(t) > 0.

Therefore, Conclusion (ii) is true. The proof is completed.
The following result provides some monotonic dynamics of x(t) in parameters

κ, γ, δ1, δ2 and δ3 .
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Theorem 3.2. The following two conclusions hold.
(i) x(t) increases in κ, decreases in γ, δ2 and δ3.
(ii) x(t) increases in δ1 when δ2 < δ3 and decreases in δ1 when δ2 > δ3.

Proof. (i) In order to verify the monotonicity of x(t) in κ, γ, δ2, δ3 and δ1 , we
need to take its partial derivative with respect to each parameter. From (2.6), we
have

∂P1(t)

∂κ
=

γ

(κ+ γ)2

(
1− e−(κ+γ) t

)
− (p− p∗)te−(κ+γ) t

≥ γ

(κ+ γ)2

(
1− e−(κ+γ) t

)
− (1− p∗)te−(κ+γ) t

=
γ

(κ+ γ)2

[
1− (1 + (κ+ γ)t)e−(κ+γ) t

]
> 0.

Since [1 + (κ + γ)t] exp(−(κ + γ) t) is strictly decreasing for t > 0, we see by (3.3)
that

∂2m(t)

∂κ∂t
+ (δ1 + δ3)

∂m(t)

∂κ
= ν

∂P1(t)

∂κ
> 0

and hence
∂

∂t

(
e(δ1+δ3)t ∂m(t)

∂κ

)
> 0.

Since ∂m(0)/∂κ = 0. It follows that ∂m(t)/∂κ > 0 for all t > 0, and so m(t) is
strictly increasing in κ. By using the same method, we can show by (3.6) that n(t)
is also strictly increasing in κ. Consequently, m(t) + n(t) is strictly increasing in κ.
Since x1(t) + x2(t) is independent of κ, it verifies the monotonicity of x(t) in κ.

Similarly, we have from (2.6) that

∂P1(t)

∂γ
= − κ

(κ+ γ)2

(
1− e−(κ+γ) t

)
− (p− p∗)te−(κ+γ) t

≤ − κ

(κ+ γ)2

(
1− e−(κ+γ) t

)
+ p∗te−(κ+γ) t

= − κ

(κ+ γ)2

[
1− (1 + (κ+ γ)t)e−(κ+γ) t

]
< 0.

By repeating the same argument above in the discussion of the partial derivative
with respect to κ, we can show that x(t) is strictly decreasing in γ.

Since m(t) is independent of δ2, we see that ∂2m(t)/∂δ2∂t = 0 for all t > 0.
Let y(t) = m(t) + n(t). Then from (3.3) and (3.6), we obtain

y′(t) = −δ2y(t) + (δ2 − δ3)m(t) + νP1(t).

It follows that
∂2y(t)

∂δ2∂t
= −δ2

∂y(t)

∂δ2
− y(t) +m(t),

which implies
∂

∂t

(
eδ2t

∂y(t)

∂δ2

)
= −eδ2tn(t) < 0

and therefore ∂y(t)/∂δ2 < 0 for all t > 0. Note that our calculation here does
not use any initial conditions on m(0) and n(0). Hence ∂x(t)/∂δ2 < 0 holds when
m(0) = n(0) = 0, for which x(t) = y(t) and x(t) is strictly decreasing in δ2.
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Now, in terms of (3.3), we have

∂2m(t)

∂δ3∂t
= −m(t)− (δ1 + δ3)

∂m(t)

∂δ3

which means
∂

∂t

(
e(δ1+δ3)t ∂m(t)

∂δ3

)
= −m(t)e(δ1+δ3)t < 0

and hence ∂m(t)/∂δ3 < 0 for all t > 0.
Similarly, from (3.6), we have

∂2n(t)

∂δ3∂t
+ δ2

∂n(t)

∂δ3
= δ1

∂m(t)

∂δ3
.

It yields
∂

∂t

(
eδ2t

∂n(t)

∂δ3

)
= δ1e

δ2t
∂m(t)

∂δ3
< 0

and hence ∂n(t)/∂δ3 < 0 for all t > 0. It follows that ∂y(t)/∂δ3 < 0 for all t > 0.
Note that any initial values m(0) and n(0) has not been involved in our calculation
above. Hence ∂x(t)/∂δ3 < 0 holds and, x(t) is strictly decreasing in δ3.

Next, by (3.3), we have

∂2m(t)

∂δ1∂t
= −m(t)− (δ1 + δ3)

∂m(t)

∂δ1
,

which implies
∂

∂t

(
e(δ1+δ3)t ∂m(t)

∂δ1

)
= −m(t)e(δ1+δ3)t < 0

and hence ∂m(t)/∂δ1 < 0 for all t > 0. By (3.3) and (3.6), we obtain

y′(t) = −δ2y(t) + (δ2 − δ3)m(t) + νP1(t).

It follows that
∂2y(t)

∂δ1∂t
= −δ2

∂y(t)

∂δ1
+ (δ2 − δ3)

∂m(t)

∂δ1
+ 0

and we get
∂

∂t

(
eδ2t

∂y(t)

∂δ1

)
= (δ2 − δ3)eδ2t

∂m(t)

∂δ1
.

Again note that not any initial values m(0) and n(0) has been used in the above
calculation. It follows that ∂y(t)/∂δ1 > (<)0 holds when δ2 < (>)δ3. Therefore,
x(t) is strictly increasing in δ1 when δ2 < δ3 and strictly decreasing in δ1 when
δ2 > δ3. The proof is finished.

4. conclusion and discussion

Gene transcription is inherently a random and dynamical process. The stochasticity
of transcription produces complicated dynamics on the mean number of transcripts.
Usually, the intermediate states of the mRNA degradation are unknown or difficult
to qualify. In this paper, we establish an mRNA degradation model with two
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pathways, coupling with the process of two states transitions, to examine how the
signal parameters contribute to the transcripts. This model is different from other
existed ones. The stationary mean of transcripts in the model is less than that in
the two-state model with two consecutive decaying steps in one degradation path,
which implies that more than one degradation path can accelerate the degradation of
mRNA. Moreover, it is more than that of the two-state model with one degradation
path and one decaying rate δ3 in [42] under the condition δ2 > δ3 and vice versa.
When the mRNA mortality rates in two paths are the same, the number of newly
accumulated transcripts is independent of the decapping rate δ1. We also get some
conclusions on the kinetics of the mean of newly accumulated transcripts. The
mean of newly accumulated mRNAs increases in the activation rate κ, however,
decreases in the inactivation rate γ. It is surprising find that it increases in δ1
when δ2 < δ3 and decreases in δ1 when δ2 > δ3. The mean of newly accumulated
transcripts increases in the initial activation frequency p and decreases in time t
when p < κ/(κ+γ). The heterogeneity of transcript distribution has typically been
quantified by noise, the variance normalized by the square of the mean. The noise
has been thought to arise from random switching between “gene on” and “gene off
” states. But what underlies the random transition among these states remains
largely unknown. It is our next job to make use of the model in this paper to
examine how the pathways contribute to the gene transcription noise.
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