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Abstract By using fixed point index theory, we investigate a system of non-
linear third-order differential equation. We give some sufficient conditions for
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linear third-order differential equation. As applications, we also present two
examples to demonstrate the main results.
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1. Introduction

There are some areas of applied mathematics and physics involving third-order d-
ifferential equations with different boundary conditions, such as the deflection of
a curved beam having a constant or varying cross section, electromagnetic waves,
three-layer beams, gravity driven flows see [9]. So third-order differential equations
with different boundary conditions have been paid much attention during the past
several decades. Especially, the existence of positive solutions for third-order bound-
ary value problems has been studied widely, see [1–8, 10, 12–28] and the references
therein. Recently, In [15] the authors established an existence result for positive
solutions to the following system of third-order differential equation

−u′′′
(t) = a(t)f(t, v), t ∈ (0, 1),

−v′′′
(t) = b(t)g(t, u), t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = αu′(η),

v(0) = v′(0) = 0, v′(1) = αv′(η).

The method is Krasnoselskii’s fixed point theorem. However, we found that the
authors replaced u(t), v(t) by some integral expressions in the proof of the main
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result. Evidently, this is false. So we need continue to study this kind of system for
nonlinear third-order differential equation. In addition, there are very few works on
a system of nonlinear third-order differential equation in literature. In this paper,
we will use fixed point index theory to study the following system:

−u′′′
(t) = a(t)f(t, u, v), t ∈ (0, 1),

−v′′′
(t) = b(t)g(t, u, v), t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = αu′(η),

v(0) = v′(0) = 0, v′(1) = αv′(η),

(1.1)

where f, g ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞)), 0 < η < 1, 1 < α < 1
η ,

a, b ∈ C([0, 1], [0,+∞)).
Our purpose here is to give the existence of single and multiple positive solutions

to the problem (1.1). By a positive solution of (1.1) we understand a function (u, v)
which is positive on 0 < t < 1 and satisfies the differential equation and boundary
conditions in (1.1).
Assuming that

(H1) a(t), b(t) are continuous and do not vanish identically on any subinterval of
[0, 1];

(H2) f, g : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) are continuous.

2. Preliminary results

In this section we summarize some lemmas which will be used throughout this
paper.

Lemma 2.1 (see [11]). Let X be a Banach space and K be a cone in X. For r > 0,
define Kr = {x ∈ K : ‖x‖ ≤ r}. Assume that T : Kr → K is a compact map such
that Tx 6= x for x ∈ ∂Kr.

(i) If ‖x‖ ≤ ‖Tx‖ for x ∈ ∂Kr, then i(T,Kr,K) = 0;

(ii) If ‖x‖ ≥ ‖Tx‖ for x ∈ ∂Kr, then i(T,Kr,K) = 1, where i denotes the fixed
point index.

From [15], (u, v) ∈ C3([0, 1], [0,+∞))× C3([0, 1], [0,+∞)) is a solution of (1.1)
if and only if (u, v) ∈ C3([0, 1], [0,+∞)) × C3([0, 1], [0,+∞)) is a solution of the
following system: u(t) =

∫ 1

0
G(t, s)a(s)f(s, u(s), v(s))ds,

v(t) =
∫ 1

0
G(t, s)b(s)g(s, u(s), v(s))ds,

(2.1)

where G(t, s) is the Green’s function given by:

G(t, s) =
1

2(1− αη)



(2ts− s2)(1− αη) + t2s(α− 1), s ≤ min{η, t},

t2(1− αη) + t2s(α− 1), t 6 s 6 η,

(2ts− s2)(1− αη) + t2(αη − s), η 6 s 6 t,

t2(1− s), max{η, t} 6 s.

(2.2)
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The Green’s function G(t, s) has the following properties.

Lemma 2.2 (see [12]). If 0 < η < 1 and 1 < α < 1
η . Then for any (t, s) ∈

[0, 1]× [0, 1], 0 6 G(t, s) 6 β(s), where β(s) = 1+α
1−αη s(1− s), s ∈ [0, 1].

Lemma 2.3 (see [12]). If 0 < η < 1 and 1 < α < 1
η . Then for any (t, s) ∈

[ ηα , η]× [0, 1], G(t, s) > kβ(s), where 0 < k = η2

2α2(1+α) min{α − 1, 1} < 1 and β(s)

is given as in Lemma 2.2.

3. Main results

For convenience, we set

f0 = lim
(u,v)→(0+,0+)

f(t, u, v)

u+ v
, f∞ = lim

(u,v)→(+∞,+∞)

f(t, u, v)

u+ v
,

g0 = lim
(u,v)→(0+,0+)

g(t, u, v)

u+ v
, g∞ = lim

(u,v)→(+∞,+∞)

g(t, u, v)

u+ v
,

and

l1 =

∫ 1

0

β(s)a(s)ds, l2 = k2
∫ η

η
α

β(s)a(s)ds,

l3 =

∫ 1

0

β(s)b(s)ds, l4 = k2
∫ η

η
α

β(s)b(s)ds,

τ1 = max{ 3

4l2
,

3

4l4
}, h = max{l1, l3}, l

′
= min{l2, l4}.

The main results of this paper are as follows:

Theorem 3.1. Assume (H1), (H2) and f0 = g0 =∞, f∞ = g∞ = 0 uniformly on
t ∈ [0, 1]. Then the problem (1.1) has at least one positive solution.

Theorem 3.2. Assume that (H1), (H2) hold and the following conditions are sat-
isfied:

(H3) there exist two constants 0 < ρ1 < ρ2 with ρ2 > τ1ρ1 such that

(i) f(t, u, v) > τ1(u+ v), g(t, u, v) > τ1(u+ v), t ∈ [0, 1], 0 6 u, v 6 ρ1;

(ii) f(t, u, v) < 1
2hρ2, g(t, u, v) < 1

2hρ2, t ∈ [0, 1], 0 6 u, v 6 ρ2;

(H4) f∞ = g∞ =∞ uniformly on t ∈ [0, 1].

Then the problem (1.1) has at least two positive solutions (u1, v1) and (u2, v2) such
that 0 < ‖(u1, v1)‖ < ρ2 < ‖(u2, v2)‖.

Theorem 3.3. Assume that (H1), (H2) hold and the following conditions are sat-
isfies

(H5) f0 = g0 = 0, f∞ = g∞ = 0 uniformly on t ∈ [0, 1];

(H6) There exists a constant ρ1 > 0 such that
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f(t, u, v) <
kρ1
2l′

, g(t, u, v) <
kρ1
2l′

,

for t ∈ [0, 1] and u + v ∈ [kρ1, ρ1], where k is given as in Lemma 2.3. Then the
problem (1.1) has at least two positive solutions.

To prove the above theorems, we need seek some fixed points of the relative
nonlinear operators. So we defineA(u, v)(t) =

∫ 1

0
G(t, s)a(s)f(s, u(s), v(s))ds,

B(u, v)(t) =
∫ 1

0
G(t, s)b(s)g(s, u(s), v(s))ds,

and

T (u, v)(t) = (A(u, v), B(u, v))(t).

Then (2.1) is equivalent to the operator equation T (u, v) = (u, v), so (u, v) is a
solution of (1.1) if and only if (u, v) is the fixed point of T . We will work in
the usual Banach space X = C[0, 1] × C[0, 1], with ‖(u, v)‖ = ‖u‖ + ‖v‖, where
‖u‖ = sup

t∈[0,1]
|u(t)|. Let K be the cone defined by

K = {(u, v) ∈ X : u, v > 0, min
t∈[ ηα ,η]

(u(t) + v(t)) > k(‖u‖+ ‖v‖)},

where k is given as in Lemma 2.3.

Lemma 3.1. T : K → K is completely continuous.

Proof. For u, v ∈ K, by Lemma 2.2,

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds 6
∫ 1

0

β(s)a(s)f(s, u(s), v(s))ds.

Hence, ‖A(u, v)‖ 6
∫ 1

0
β(s)a(s)f(s, u(s), v(s))ds. For t ∈ [ ηα , η], by Lemma 2.3,

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds

> k
∫ 1

0

β(s)a(s)f(s, u(s), v(s))ds

> k‖A(u, v)‖.

Similarly, B(u, v)(t) > k‖B(u, v)‖ for u, v ∈ K, t ∈ [ ηα , η]. So we get

A(u, v)(t) +B(u, v)(t) > k(‖A(u, v)‖+ ‖B(u, v)‖), u, v ∈ K, t ∈ [
η

α
, η]

and in consequence,

min
t∈[ ηα ,η]

{A(u, v)(t) +B(u, v)(t)} > k(‖A(u, v)‖+ ‖B(u, v)‖).

Therefore, T : K → K. Note that G(t, s), f(s, u, v), a(s) are continuous, we can
easily check that A : K → C[0, 1] is completely continuous by the Ascoli-Arzela
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theorem. Similarly, B : K → C[0, 1] is completely continuous. So T : K → K is
completely continuous.

Proof of Theorem 3.1. If f0 = g0 =∞, there exists a small number r1 > 0, such
that

f(t, u, v) > τ1(u+ v), g(t, u, v) > τ1(u+ v)

for 0 6 u, v 6 r1. In addition, we know that τ1 satisfies τ1l
′
> 1

2 .
Let Kr1 = {(u, v) ∈ K | ‖(u, v)‖ < r1}. Then for (u, v) ∈ ∂Kr1 and t ∈ [ ηα , η],

by Lemma 2.3,

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds >
∫ 1

0

kβ(s)a(s)f(s, u(s), v(s))ds

>
∫ 1

0

kβ(s)a(s)τ1(u(s) + v(s))ds >
∫ η

η
α

kβ(s)a(s)τ1(u(s) + v(s))ds

>
∫ η

η
α

k2β(s)a(s)τ1(‖u‖+ ‖v‖)ds

= τ1l2(‖u‖+ ‖v‖) = τ1l2‖(u, v)‖ > 1

2
‖(u, v)‖.

Hence,

‖A(u, v)‖ > 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kr1 .

By using the same way,

B(u, v)(t) >
1

2
‖(u, v)‖ for (u, v) ∈ ∂Kr1 .

And thus ‖T (u, v)‖ = ‖A(u, v)‖+‖B(u, v)‖ > ‖(u, v)‖, (u, v) ∈ ∂Kr1 . From Lemma
2.1,

i(T,Kr1 ,K) = 0. (3.1)

If f∞ = g∞ = 0, there is R > r1 such that

f(t, u, v) 6 τ2(u+ v), g(t, u, v) 6 τ2(u+ v)

for u+ v > R, where τ2 satisfies τ2h <
1
2 .

Take r2 >
R
k and let Kr2 = {(u, v) ∈ K | ‖(u, v)‖ < r2}. Then for (u, v) ∈ ∂Kr2 ,

we have min
t∈[ ηα ,η]

(u(t) + v(t)) > k(‖u‖+ ‖v‖) = kr2 > R, and thus

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds 6 τ2

∫ 1

0

β(s)a(s)(u(s) + v(s))ds

6 τ2(‖u‖+ ‖v‖)
∫ 1

0

β(s)a(s)ds = τ2l1‖(u, v)‖

6 τ2h‖(u, v)‖ < 1

2
‖(u, v)‖.
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It is also easily to prove that

B(u, v)(t) <
1

2
‖(u, v)‖ for (u, v) ∈ ∂Kr2 .

So ‖T (u, v)‖ = ‖A(u, v)‖+‖B(u, v)‖ < ‖(u, v)‖ for (u, v) ∈ ∂Kr2 . By using Lemma
2.1, we obtain

i(T,Kr2 ,K) = 1. (3.2)

Note that r1 < r2, and from the additivity of the fixed point index and (3.1), (3.2),
we have

i(T,Kr2\Kr1 ,K) = i(T,Kr2 ,K)− i(T,Kr1 ,K) = 1.

Therefore, T has a fixed point (u, v) in Kr2\Kr1 . Evidently, (u, v) is a positive
solution for problem (1.1) with r1 < ‖(u, v)‖ < r2. �

Proof of Theorem 3.2. Let Kρ1 = {(u, v) ∈ K | ‖(u, v)‖ < ρ1}. Then for
(u, v) ∈ ∂Kρ1 , and t ∈ [ ηα , η], from Lemma 2.3 and (H3), We have

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds

>
∫ 1

0

kβ(s)a(s)f(s, u(s), v(s))ds

>
∫ 1

0

kβ(s)a(s)τ1(u(s) + v(s))ds

>
∫ η

η
α

kβ(s)a(s)τ1(u(s) + v(s))ds

> k2τ1

∫ η

η
α

β(s)a(s)‖u+ v‖ds

= k2τ1‖u+ v‖
∫ η

η
α

β(s)a(s)ds

= τ1l2‖u+ v‖ > 3

4
‖u+ v‖ > 1

2
‖u+ v‖.

Hence,

‖A(u, v)‖ > 1

2
‖u+ v‖ =

1

2
‖(u, v)‖ for (u, v) ∈ ∂Kρ1 .

Similarly, we can prove that

‖B(u, v)‖ > 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kρ1 .

Therefore, ‖T (u, v)‖ = ‖A(u, v)‖ + ‖B(u, v)‖ > ‖(u, v)‖ for (u, v) ∈ ∂Kρ1 . By
Lemma 2.1, we obtain

i(T,Kρ1 ,K) = 0. (3.3)
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Next, Let Kρ2 = {(u, v) ∈ K| | ‖(u, v)‖ < ρ2}. Then for (u, v) ∈ ∂Kρ2 , form
Lemma 2.2

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds

<

∫ 1

0

β(s)a(s)
1

2h
ρ2ds

=
1

2h
ρ2

∫ 1

0

β(s)a(s)ds

6
1

2
ρ2 =

1

2
‖(u, v)‖.

Hence,

‖A(u, v)‖ < 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kρ2 .

By the similar way, we can prove

‖B(u, v)‖ < 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kρ2 .

And thus ‖T (u, v)‖ = ‖A(u, v)‖ + ‖B(u, v)‖ < ‖(u, v)‖, for (u, v) ∈ ∂Kρ2 . Using
Lemma 2.1, we get

i(T,Kρ2 ,K) = 1. (3.4)

From (H4), f∞ = g∞ =∞, there exists R > ρ2 such that

f(t, u, v) > τ2(u+ v), g(t, u, v) > τ2(u+ v)

for u+ v > R, where τ2 satisfies τ2l
′
> 1

2 .

Take ρ3 > R
k and Let Kρ3 = {(u, v) ∈ K| | ‖(u, v)‖ < ρ3}. Then for (u, v) ∈

∂Kρ3 , we get min
t∈[ ηα ,η]

(u(t) + v(t)) > k(‖u‖+ ‖v‖) = kρ3 > R, and thus

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds >
∫ 1

0

kβ(s)a(s)f(s, u(s), v(s))ds

>
∫ η

η
α

kβ(s)a(s)f(s, u(s), v(s))ds >
∫ η

η
α

kβ(s)a(s)τ2(u(s) + v(s))ds

>
∫ η

η
α

k2β(s)a(s)τ2‖u+ v‖ds = τ2k
2

∫ η

η
α

a(s)β(s)ds(‖u‖+ ‖v‖)

= τ2l2‖(u, v)‖ > 1

2
‖(u, v)‖.

Hence,

‖A(u, v)‖ > 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kρ3 .

Using the same proof, we get

‖B(u, v)‖ > 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kρ3 .
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Further, we have ‖T (u, v)‖ = ‖A(u, v)‖ + ‖B(u, v)‖ > ‖(u, v)‖ for (u, v) ∈ ∂Kρ3 .
From Lemma 2.1, we obtain

i(T,Kρ3 ,K) = 0. (3.5)

Because ρ1 < ρ2 < ρ3, from (3.3)-(3.5) and the additivity of the fixed point index,
we have

i(T,Kρ3\Kρ2 ,K) = i(T,Kρ3 ,K)− i(T,Kρ2 ,K) = −1,

i(T,Kρ2\Kρ1 ,K) = i(T,Kρ2 ,K)− i(T,Kρ1 ,K) = 1.

Therefore, we can conclude that T has two points (u1, v1) and (u2, v2) with (u1, v1) ∈
Kρ2\Kρ1 , (u2, v2) ∈ Kρ3\Kρ2 . That is, these are the positive solutions for the prob-
lem (1.1) which satisfy 0 < ‖(u1, v1)‖ < ρ2 < ‖(u2, v2)‖. �

Proof of Theorem 3.3. Firstly, since f0 = g0 = 0, there exists r1 ∈ (0, ρ)
such that

f(t, u, v) 6 τ
′

1(u+ v), g(t, u, v) 6 τ
′

1(u+ v)

for 0 < u, v 6 r1, where τ
′

1 satisfies τ
′

1h <
1
2 .

Let Kr1 = {(u, v) ∈ K | ‖(u, v)‖ < r1}. Then for any (u, v) ∈ ∂Kr1 , by using
the same calculation in the proof of Theorem 3.2, we have

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds

6
∫ 1

0

β(s)a(s)f(s, u(s), v(s))ds

6 τ1

∫ 1

0

β(s)a(s)(u(s) + v(s))ds

6 τ1

∫ 1

0

β(s)a(s)‖u+ v‖ds

= τ1l1‖(u, v)‖

6 τ1h‖(u, v)‖ < 1

2
‖(u, v)‖,

and thus

‖A(u, v)‖ < 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kr1 .

Similarly, we can get

‖B(u, v)‖ < 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kr1 .

Further, ‖T (u, v)‖ = ‖A(u, v)‖+ ‖B(u, v)‖ < ‖(u, v)‖ for (u, v) ∈ ∂Kr1 . Therefore,
by Lemma 2.1,

i(T,Kr1 ,K) = 1. (3.6)
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Secondly, in view of f∞ = g∞ = 0, there exists R > ρ1, such that

f(t, u, v) 6 τ2(u+ v), g(t, u, v) 6 τ2(u+ v)

for (u+ v) > R, where τ2 > 0 with τ2h <
1
4 .

We divide the proof into two cases: f is bounded and f is unbounded.
Case (i), suppose f is bounded, which implies that there exists M1 > 0 such that
f(t, u, v) 6M1 for all u, v ∈ [0,+∞).

Now choose r2 > max{2hM1, R}, so that for (u, v) ∈ K with ‖(u, v)‖ = r2, we
have

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds

6M1

∫ 1

0

β(s)a(s)ds

= l1M1 6M1h <
r2
2

=
1

2
‖(u, v)‖.

Case (ii), suppose f is unbounded. Then because f : [0,∞) × [0,∞) → (0,∞) are
continuous, we know that there is r2 > max{ρ1, Rk } such that f(t, u, v) 6 f(t, r2, r2)
for 0 < u, v 6 r2. Then for (u, v) ∈ K with ‖(u, v)‖ = r2, we have

A(u, v)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds

6
∫ 1

0

β(s)a(s)f(t, r2, r2)ds

6
∫ 1

0

β(s)a(s)τ2(r2 + r2)ds

= τ2l12r2 = 2τ2l1‖(u, v)‖

6 2τ2h‖(u, v)‖ < 1

2
‖(u, v)‖.

Hence, in either case, we may always set Kr2 = {(u, v) ∈ K : ‖(u, v)‖ < r2}, such
that

‖A(u, v)‖ < 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kr2 .

Similarly, we can prove

‖B(u, v)‖ < 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kr2 .

Consequently, ‖T (u, v)‖ = ‖A(u, v)‖ + ‖B(u, v)‖ < ‖(u, v)‖ for (u, v) ∈ ∂Kr2 .
Therefore, by Lemma 2.1 implies that

i(T,Kr2 ,K) = 1. (3.7)

Finally, let Kρ1 = {(u, v) ∈ K : ‖(u, v)‖ < ρ1}. Since (u, v) ∈ ∂Kρ1 ⊂ K,
min
t∈[ ηα ,η]

(u(t) + v(t)) > k(‖u‖ + ‖v‖) = kρ1. Hence, for any (u, v) ∈ ∂Kρ1, by

(H6) we have

A(u, v)(t) >
∫ η

η
α

G(t, s)a(s)f(s, u(s), v(s))ds
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> k
∫ η

η
α

β(s)a(s)f(s, u(s), v(s))ds

>
kρ1
2l′

∫ η

η
α

ka(s)β(s)ds

=
l2ρ1

2l′
=

l2
2l′
‖(u, v)‖ > 1

2
‖(u, v)‖.

So we can get

‖A(u, v)‖ > 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kρ1 .

Similarly, we can prove

‖B(u, v)‖ > 1

2
‖(u, v)‖ for (u, v) ∈ ∂Kρ1 .

So we can get

‖T (u, v)‖ = ‖A(u, v)‖+ ‖B(u, v)‖ > ‖(u, v)‖ for (u, v) ∈ ∂Kρ1 .

Hence, Lemma 2.1 shows that

i(T,Kρ1 ,K) = 0. (3.8)

Note that r1 < ρ1 < r2, from (3.6)-(3.8) we have

i(T,Kρ1\Kr1 ,K) = i(T,Kρ1 ,K)− i(T,Kr1 ,K) = −1,

and

i(T,Kr2\Kρ2 ,K) = i(T,Kr2 ,K)− i(T,Kρ1 ,K) = 1.

This shows that T has two fixed points, and consequently, the problem (1.1) has
two positive solutions. This completes the proof. �

4. Examples

Example 4.1. Consider the following third-order differential system:

−u′′′
(t) = (1 + 2t3 + 3t3)

√
u(t) + v(t), t ∈ (0, 1),

−v′′′
(t) = (2 + t5 + t6) 3

√
u(t) + v(t), t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = 2u′( 1
4 ),

v(0) = v′(0) = 0, v′(1) = 2v′( 1
4 ).

(4.1)

In this example, a(t) = 1 + 2t3 + 3t3, b(t) = 2 + t5 + t6, α = 2, η = 1
4 . In addition,

f(t, u, v) =
√
u+ v, g(t, u, v) = 3

√
u+ v. Evidently, (H1), (H2) hold and

f0 = lim
(u,v)→(0+,0+)

f(t, u, v)

u+ v
= lim

(u,v)→(0+,0+)

1√
u+ v

= +∞,
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f∞ = lim
(u,v)→(+∞,+∞)

f(t, u, v)

u+ v
= lim

(u,v)→(+∞,+∞)

1

(u+ v)
2
3

= 0,

g0 = lim
(u,v)→(0+,0+)

g(t, u, v)

u+ v
= lim

(u,v)→(0+,0+)

1

(u+ v)
2
3

= +∞,

g∞ = lim
(u,v)→(+∞,+∞)

g(t, u, v)

u+ v
= lim

(u,v)→(+∞,+∞)

1

(u+ v)
2
3

= 0.

Hence, the conditions of Theorem 3.1 are satisfied. So the problem (4.1) has at
least one positive solution.

Example 4.2. Consider the following third-order differential system:

−u′′′
(t) = t2f(t, u, v), t ∈ (0, 1),

−v′′′
(t) = tg(t, u, v), t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = 3
2u
′( 1

2 ),

v(0) = v′(0) = 0, v′(1) = 3
2v
′( 1

2 ),

(4.2)

where

f(t, u, v) =


8.6× 104(u+ v), 0 6 u, v 6 1

3 ,

86
15 × 104, 13 6 u, v 6 105,

43
3 × 10−7(u+ v)2, u, v > 105,

g(t, u, v) =


8.6× 104(u+ v), 0 6 u, v 6 1

3 ,

86
15 × 104, 13 6 u, v 6 105,

43
6 × 10−10(u+ v)3, u, v > 105.

In this example, a(t) = t2, b(t) = t, α = 3
2 , η = 1

2 . Evidently, (H1), (H2) holds and

k =
1

90
, β(s) = 10(s− s2), l1 =

∫ 1

0

10(s− s2)s2ds =
1

2
,

l2 = (
1

90
)2

∫ 1
2

1
3

10(s3 − s4)ds =
1

810
× 553

77760
,

l3 =

∫ 1

0

10(s− s2)sds =
5

6
, l4 = (

1

90
)2

∫ 1
2

1
3

10(s2 − s3)ds =
1

810
× 87

5184
,

τ1 =
47239200

553
≈ 8.54× 104, h =

5

6
, l

′
=

553

62985600
≈ 8.78× 10−6.

Take ρ1 = 1
3 , ρ2 = 105. Then ρ1 < ρ2 and

(i) when 0 6 u, v 6 ρ1, f(t, u, v) = 8.6× 104(u+ v) > τ1(u+ v);
(ii) when 0 6 u, v 6 ρ2,

f(t, u, v) 6
86

15
× 104 =

1

2
× 172

15× 10
× 105 <

1

2
× 6

5
ρ2 =

1

2h
ρ2;
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(iii)

f∞= lim
(u,v)→(+∞,+∞)

43
6 ×10−10(u+ v)3

u+v
= lim

(u,v)→(+∞,+∞)

43

6
× 10−10(u+v)2 =+∞.

By using the same way, we can prove that g(t, u, v) has the same properties. So the
conditions of Theorem 3.2 are satisfied. Therefore, the problem (4.2) has at least
two positive solutions (u1, v1) and (u2, v2) with 0 < ‖(u1, v1)‖ < 105 < ‖(u2, v2)‖.
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