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MONOTONICITY OF THE RATIO OF TWO
ABELIAN INTEGRALS FOR A CLASS OF

SYMMETRIC HYPERELLIPTIC
HAMILTONIAN SYSTEMS∗

Rasool Kazemi

Abstract In this paper we study the monotonicity of the ratio of two hyper-
elliptic Abelian integrals I0(h) =

∮
Γh

ydx and I1(h) =
∮

Γh
xydx for which Γh

is a continuous family of periodic orbits of a Newtonian system with Hamilto-
nian function of the form H(x, y) = 1

2
y2 ±Ψ(x), where Ψ is an arbitrary even

function of degree six.
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1. Introduction

Consider a perturbed Hamiltonian system

ẋ = Hy + εp(x, y), ẏ = −Hx + εq(x, y), (1.1)

where p, q and H are polynomials in x, y and ε is a small positive parameter. For
ε = 0, the associated unperturbed system is of the form

ẋ = Hy, ẏ = −Hx. (1.2)

Suppose that the Hamiltonian system (1.2) has a family of periodic orbits Γh with
continuous dependency on parameter h ∈ (h1, h2) defined by H(x, y) = h. Then,
there exists an Abelian integral, called the first-order Melnikov function, of the form

I(h) =

∮
Γh

q(x, y)dx− p(x, y)dy, (1.3)

which has a key role in the study of bifurcation of limit cycles from system (1.1),
since if I(h) is not identically zero, then the number of isolated zeros of I(h) gives
an upper bound for the number of limit cycles of (1.1) (see [1,3]). There is a lot of
new results on this subject, see for instance [7, 8] and references therein.

Now consider the Hamiltonian function H±(x, y) = 1
2y

2 ∓ Ψ(x) where Ψ is an
arbitrary even function of degree six. The corresponding Hamiltonian system is of
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the form

ẋ = y, ẏ = ±Ψ′(x). (1.4)

By Green theorem, one can see that I0(h) =
∮

Γh
ydx 6= 0 for any compact compo-

nent Γh of H±(x, y) = h except the critical points of H±(x, y). So we can define

the ratio of two Abelian integrals as P (h) = I1(h)
I0(h) where I1(h) =

∮
Γh
xydx. By

using the excellent criterion given in [6] and inspiring its application in the original
paper and [9], in this paper we study the monotonicity of P (h) in some open in-
tervals of h for different level sets of H±(x, y) separately. Monotonicity of P (h) is
important due to the fact that if in (1.3), we set q(x, y) = (a+ bx)y and p(x, y) = 0,
then I(h) = aI0(h) + bI1(h) and the monotonicity of P (h) implies that the Abelian
integral I(h) has at most one isolated zero.

This paper is organized as follows. In section 2 we classify all possible states for
system (1.4) and give their corresponding phase portraits. In Section 3, using the
novel criteria given in [6, Theorem 2.1], we investigate the monotonicity of P (h) as
our main results (see Theorems 3.1, 3.2 and 3.3).

2. Classification of system (1.4)

In this section, we will classify all possible states for system (1.4) and determine
all topologically different phase portraits of that states. Since we have assumed Ψ
to be an even polynomial of degree six, Ψ′ is an odd polynomial of degree five and
obviously x = 0 is one of its roots. So there are three cases for Ψ′:

Case I. x = 0 is the only real root of Ψ′. In this case either Ψ′ := Ψ′1 = x5 or by
scaling we may assume Ψ′ := Ψ′2 = x(x2 + α2)(x2 + 1), where α ∈ R. The
system (1.4) will be therefor one of the following Hamiltonian systems

(X±1 ) :

 ẋ = y,

ẏ = ±x5,
(X±2 ) :

 ẋ = y,

ẏ = ±x(x2 + α2)(x2 + 1),

with Hamiltonian functions

H±1 (x, y) =
1

2
y2 ∓ 1

6
x6,

and

H±2 (x, y) =
1

2
y2 ∓ (

1

6
x6 +

1

4
(α2 + 1)x4 +

1

2
α2x2),

respectively. The origin is the only equilibrium point for any of the above
systems. Note that the origin is a nilpotent saddle for (X+

1 ), and (X+
2 ) only

when α = 0 (Fig. 1 (a)) and it is a hyperbolic saddle for (X+
2 ) when α 6= 0

(Fig. 1 (c)). Also the origin is a global nilpotent center for (X−1 ), and (X−2 )
only when α = 0 (Fig. 1 (b)) and it is a global elementary center for (X−2 )
when α 6= 0 (Fig. 1 (d)).

Case II. x = 0 is not the only real root of Ψ′ which has exactly five real roots. In
this case with no loss of generality we assume that x = 1 is the largest real
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(a) (b) (c) (d)

Figure 1. Phase portraits of systems (X±1 ) and (X±2 ).

root of Ψ′. So Ψ′ := Ψ′3 = x(x2 − α2)(x2 − 1), where α ∈ [0, 1]. The system
(1.4) is therefore of the form

(X±3 ) :

 ẋ = y,

ẏ = ±x(x2 − α2)(x2 − 1),

with Hamiltonian functions

H±3 (x, y) =
1

2
y2 ∓ (

1

6
x6 − 1

4
(α2 + 1)x4 +

1

2
α2x2).

We first classify the integral curves of Hamiltonian system (X−3 ). For α = 0,
system (X−3 ) has a nilpotent saddle at (0, 0) and two centers at (±1, 0). If
0 < α < 1, then (0, 0) and (±1, 0) are centers and (±α, 0) are hyperbolic
saddles of system (X−3 ). Finally for α = 1, system (X−3 ) has a center at (0, 0)
and two cusps at (±1, 0). The different phase portraits of system (X−3 ) are
shown in Fig. 2.

Figure 2. Phase portraits of system (X−3 ) for various 0 ≤ α ≤ 1.

Now we classify the integral curves of Hamiltonian system (X+
3 ). For α = 0,

system (X+
3 ) has a nilpotent center at (0, 0) and two hyperbolic saddles at

(±1, 0). If 0 < α < 1, then (0, 0) and (±1, 0) are hyperbolic saddles and

(±α, 0) are centers of system (X+
3 ). Note that for 0 < α <

√
3

3 , α =
√

3
3

and
√

3
3 < α < 1, we have H+

3 (0, 0) < H+
3 (±1, 0), H+

3 (0, 0) = H+
3 (±1, 0) and

H+
3 (0, 0) > H+

3 (±1, 0), respectively. Therefore, three saddle points (−1, 0),

(0, 0) and (1, 0) are on the same level curve of H+
3 for α =

√
3

3 . Finally for

α = 1, system (X+
3 ) has a saddle at (0, 0) and two cusps at (±1, 0). The

different phase portraits of system (X+
3 ) are shown in Fig. 3.

Case III. x = 0 is not the only real root of Ψ′ which has exactly three real roots.
By scaling we may assume Ψ′ := Ψ′4 = x(x2 + α2)(x2 − 1) where α ∈ R \ {0}.
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Figure 3. Phase portraits of system (X+
3 ) for various 0 ≤ α ≤ 1.

Therefore system (1.4) is of the form

(X±4 ) :

 ẋ = y,

ẏ = ±x(x2 + α2)(x2 − 1),
α 6= 0,

with Hamiltonian functions

H±4 (x, y) =
1

2
y2 ∓ (

1

6
x6 +

1

4
(α2 − 1)x4 − 1

2
α2x2).

Note that both of the above systems have three equilibrium points at (0, 0)
and (±1, 0). For system (X−4 ), the origin is a hyperbolic saddle and (±1, 0)
are elementary centers (Fig. 4 (a)), but for system (X+

4 ), the origin is an
elementary center and (±1, 0) are hyperbolic saddles (Fig. 4 (b)).

(a) (b)

Figure 4. Phase portraits of systems (X±4 ).

3. Monotonicity of P (h) for H±i (x, y) = h

In the following we study the monotonicity of P (h) where Γh is a compact compo-
nent of H±i (x, y) = h surrounding a unique center of system X±i for i = 1, · · · , 4.
We begin our study by noticing that:

Remark 3.1. If (0, 0) is a center of (1.4), then the closed orbit Γh of system (1.4)
surrounding the origin is symmetric, and the orientation of Γh is clockwise. Thus
I0(h) =

∮
Γh
y dx < 0 and I1(h) =

∮
Γh
xy dx ≡ 0, which imply P (h) ≡ 0 for h > 0.

It should be noted that systems (X+
1 ) and (X+

2 ) don’t have any center. Also the
only center of systems (X−1 ) and (X−2 ) is (0, 0) and by Remark 3.1, it is a trivial
case. Now we consider the monotonicity of P (h), when Γh is a continuous family
of ovals surrounding one of the centers (±1, 0) of system (X−3 ). Our result is as
follows.

Theorem 3.1. Let 0 ≤ α < 1 and suppose that Γh is a continuous family of ovals
surrounding one of two centers (±1, 0) of system (X−3 ). Then the function P (h) is
monotone for h ∈ (0, 1

12α
4(3− α2)).
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Proof. Due to the symmetry property of system (X−3 ), we only need to state the
proof for Γh being a continuous family of ovals surrounding (1, 0). Note that for
0 ≤ α < 1, the Hamiltonian function

H−3 (x, y) =
1

2
y2 +

1

6
x6 − 1

4
(α2 + 1)x4 +

1

2
α2x2 =

1

2
y2 + Ψ3(x),

has a local minimum at (1, 0) and a continuous family of ovals Γh surrounding
the center (1, 0). The period annulus Γh is bounded by a homoclinic loop con-
necting the saddle point (α, 0) (nilpotent saddle (0,0) when α = 0). The pro-
jection of this period annulus on the x-axis is the interval (α, 1

2

√
2(3− α2)) and

Ψ3(α) = Ψ3( 1
2

√
2(3− α2)) = 1

12α
4(3 − α2). Since Ψ′3(x)(x − 1) > 0 for every

x ∈ (α, 1
2

√
2(3− α2)), the maps

Ψ3 : (α, 1)→ (
1

4
(α2 − 1

3
),

1

12
α4(3− α2))

and

Ψ3 : (1,
1

2

√
2(3− α2))→ (

1

4
(α2 − 1

3
),

1

12
α4(3− α2))

are strictly monotone and they have analytic inverse functions, respectively denoted
by µ(h) and ν(h). Thus Ψ3(µ(h)) = Ψ3(ν(h)) and α < µ(h) < 1 < ν(h) <
1
2

√
2(3− α2) for every h ∈ ( 1

4 (α2 − 1
3 ), 1

12α
4(3− α2)). Let

U(h) = µ(h) + ν(h), s(h) =
µ(h) + ν(h)

2
and r(h) =

ν(h)− µ(h)

2
.

So U(h) is an analytic function on ( 1
4 (α2− 1

3 ), 1
12α

4(3−α2)). The equality Ψ3(µ(h)) =
Ψ3(ν(h)) implies that∫ µ(h)

1

x(x2 − α2)(x2 − 1)dx =

∫ ν(h)

1

x(x2 − α2)(x2 − 1)dx.

Applying two change of variables in the above integrals (x 7→ 1 − x in the left
integral and x 7→ 1 + x in the right one), we obtain∫ 1−µ(h)

0

x(x−1)(x−2)((x−1)2−α2)dx =

∫ ν(h)−1

0

x(x+1)(x+2)((x+1)2−α2)dx.

Since the integrand of the right integral is greater than the integrand of the left one,
we deduce ν(h)−1 < 1−µ(h), so s(h) < 1. Now for any h ∈ ( 1

4 (α2− 1
3 ), 1

12α
4(3−α2))

define
g(t) = Ψ3(s(h) + t)−Ψ3(s(h)− t), t ∈ (0, r(h)). (3.1)

From (3.1), it is obvious that g(t) is a polynomial of degree 5. Furthermore, t = 0
and t = ±r(h) are three roots of g(t). Direct computation shows that for t ∈
(0, r(h))

g(t) = 2s(h)t[t4 + (
10

3
s(h)2 − α2 − 1)t2 + (s(h)2 − α2)(s(h)2 − 1)]. (3.2)

Since (s(h)2 − α2)(s(h)2 − 1) < 0 we deduce that g(t) dose not have any other real
root. This implies that g(t) < 0 for all t ∈ (0, r(h)). Now we can prove that U(h)
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is monotone for h ∈ ( 1
4 (α2 − 1

3 ), 1
12α

4(3 − α2)). By way of contradiction suppose
that there exist h1 and h2 such that 1

4 (α2 − 1
3 ) < h1 < h2 < 1

2α
4(3 − α2) and

U(h1) = U(h2) which implies that s(h1) = s(h2). It is clear that

0 < r(h1) =
ν(h1)− µ(h1)

2
<
ν(h2)− µ(h2)

2
= r(h2).

Setting h = h2 in g(t) leads to

g(t) = Ψ3(s(h2) + t)−Ψ3(s(h2)− t) < 0, t ∈ (0, r(h2)). (3.3)

Since 0 < r(h1) < r(h2), calculating g(t) in (3.3) at t = r(h1) yields

g(r(h1)) = Ψ3(s(h2) + r(h1))−Ψ3(s(h2)− r(h1))

= Ψ3(s(h1) + r(h1))−Ψ3(s(h1)− r(h1))

= Ψ3(ν(h1))−Ψ3(µ(h1)) = h1 − h1 = 0.

This contradicts g(t) < 0 for all t ∈ (0, r(h2)). So U(h) is monotone in ( 1
4 (α2 −

1
3 ), 1

2α
4(3−α2)) and by Theorem 2.1 in [6], P (h) is monotone in ( 1

4 (α2− 1
3 ), 1

2α
4(3−

α2)).
Now we study the monotonicity of P (h) when Γh is a compact component of

H+
3 (x, y) = h surrounding a unique center of system (X+

3 ). Note that if α = 0,
then (0, 0) is a center, and as already mentioned in Remark 3.1, P (h) is always
zero for h ∈ (0, 1

12 ). Also for α = 1, the system (X+
3 ) dose not have any center.

So we consider the monotonicity of P (h), when Γh is a continuous family of ovals
surrounding one of two centers (±α, 0) of system (X+

3 ) for 0 < α < 1. Our result
is as follows.

Theorem 3.2. Let 0 < α < 1 and suppose that Γh is a continuous family of ovals
surrounding one of two centers (±α, 0) of system (X+

3 ). Then

(i) if 0 < α <
√

3
3 , then P (h) is monotone in ( 1

12α
4(α2 − 3), 0);

(ii) if α =
√

3
3 , then P (h) is monotone in (− 2

81 , 0);

(iii) if
√

3
3 < α <

√
3
7 , then P (h) is not monotone in ( 1

12α
4(α2 − 3), 1

12 (3α2 − 1));

(iv) if
√

3
7 ≤ α < 1, then P (h) is monotone in ( 1

12α
4(α2 − 3), 1

12 (3α2 − 1)).

Proof. By symmetry property of system (X+
3 ), we only state the proof in the

case where Γh is a continuous family of ovals surrounding (α, 0). Also we use the
notation µ(h), ν(h), U(h), s(h) and r(h) as defined in the proof of Theorem 3.1.

(i) By Theorem 2.1 in [6], it suffices to prove U ′(h) < 0 for h ∈ (hα, 0), where
hα = 1

12α
4(α3 − 3). First we prove that U ′(hα) < 0. For this purpose, since

−Ψ3(ν(h)) = h,

√
h− hα = (ν(h)− α)

√
α2(1− α2)− 1

3
α(7α2 − 3)(ν(h)− α) +O((ν(h)− α)2).

So when 0 < h− hα � 1, one has

ν(h)− α =
1√

α2(1− α2)

√
h− hα +

7α2 − 3

6α3(1− α2)2
(h− hα) +O((h− hα)

3
2 ).
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Also the equality −Ψ3(µ(h)) = h and similar computations show that

µ(h)− α = − 1√
α2(1− α2)

√
h− hα +

7α2 − 3

6α3(1− α2)2
(h− hα) +O((h− hα)

3
2 ).

Therefore,

U(h) = µ(h) + ν(h) = 2α+
7α2 − 3

3α3(1− α2)2
(h− hα) +O((h− hα)

3
2 ),

and

U ′(hα) = lim
h→h+

α

(µ′(h) + ν′(h)) =
7α2 − 3

3α3(1− α2)2
< 0.

Now we show that U ′(0)<0. For this, we note that −Ψ3(µ(h))=h and −Ψ3(ν(h))=
h. Therefore, −µ′(h)Ψ′3(µ(h)) = 1 and −ν′(h)Ψ′3(ν(h)) = 1. So

lim
h→0−

U ′(h) = lim
h→0−

(µ′(h) + ν′(h))

= − lim
h→0−

(
1

Ψ3(µ(h))
+

1

Ψ3(ν(h))
)

= − lim
h→0−

(
1

µ(h)(µ(h)2 − α2)(µ(h)2 − 1)
+

1

ν(h)(ν(h)2−α2)(ν(h)2 − 1)
)

= −∞,

since as h→ 0−, one has µ(h)→ 0+ and ν(h)→ x̄−, where

x̄ =
1

2

√
3(α2 + 1)−

√
3(1− 3α2)(3− α2),

is the intersection point of double homoclinic loop with the positive x-axis and
α < x̄ < 1.

Finally we show that U ′(h) < 0 for h ∈ (hα, 0). By way of contradiction, if U ′(h)
has zeros in h ∈ (hα, 0), then it has at least two zeros, since U ′(h) has the same sign
at the end points of (hα, 0). By taking U(0) = x̄ < 2α = U(hα) into account, one
deduces that for some U0, U(h) = U0 has at least three distinct solution, namely

h1 < h2 < h3. If we set τ(h) := µ(h)ν(h), then clearly τ(h) = U2(h)
4 − r2(h).

By taking U(h1) = U(h2) = U(h3) and 0 < r(h1) < r(h2) < r(h3) into account
we deduce that τ(h1), τ(h2) and τ(h3) are pairwise distinct. Also the relations
U(h) = µ(h) + ν(h) and τ(h) = µ(h)ν(h) imply that

µ(h) =
U(h)−

√
U2(h)− 4τ(h)

2
, ν(h) =

U(h) +
√
U2(h)− 4τ(h)

2
.

By substituting in Ψ3(µ(h)) = Ψ3(ν(h)) we get

6 τ2(h) +
(
−8U2(h) + 6α2 + 6

)
τ(h) + 2U4(h)− 3α2U2(h)− 3U2(h) + 6α2 = 0.

(3.4)
If we take U(h) = U0, then τ(h1), τ(h2) and τ(h3) should be satisfied in the equation
(3.4). But the equation (3.4) is of degree two and has at most two zeros and this is
a contradiction. So U ′(h) < 0 for h ∈ (hα, 0).
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(ii) We set α =
√

3
3 in system (X+

3 ) and move the center (
√

3
3 , 0) to the origin by

change of variables x = X +
√

3
3 and y = Y . Accordingly system (X+

3 ) transforms
to

Ẋ = Y,

Ẏ = X(X +

√
3

3
)(X +

2
√

3

3
)(X +

√
3

3
+ 1)(X +

√
3

3
− 1),

with Hamiltonian function H1(X,Y ) = 1
2Y

2 +A(X), where

A(x) = −1

6
x6 −

√
3

3
x5 − 1

2
x4 +

2
√

3

27
x3 +

2

9
x2.

ThenH1(0, 0) = 0, H1(−
√

3
3 , 0) = H1(1−

√
3

3 , 0) = 2
81 and the ovals Γh ofH+

3 (x, y) =
h with h ∈ (− 2

81 , 0) will be mapped to ovals γl of H1(X,Y ) = l with l ∈ (0, 2
81 ). So

I0(h) =

∮
Γh

ydx =

∮
γl

Y dX = J10(l),

I1(h) =

∮
Γh

xydx =

∮
γl

(X +

√
3

3
)Y dX

=

∮
γl

XY dX +

√
3

3

∮
γl

Y dX := J11(l) +

√
3

3
J10(l).

Thus, P (h) = I1(h)
I0(h) =

√
3

3 + J11(l)
J10(l) =

√
3

3 +Q1(l). Note that for l ∈ (0, 2
81 ), the period

annulus γl is bounded by a heteroclinic loop connecting two hyperbolic saddles

(−
√

3
3 , 0) and (1 −

√
3

3 , 0). Projection of this period annulus on the x-axis is the

interval I = (−
√

3
3 , 1 −

√
3

3 ) and xA′(x) > 0 for evry x ∈ I \ {0}. So there exists

an analytic involution z : (0, 1 −
√

3
3 ) → (−

√
3

3 , 0) such that A(x) = A(z(x)). We
recall that z is named an involution if zoz = Id, but z 6= Id. By a straightforward
calculation and using relations A(x) = A(z(x)) and z(0) = 0 we deduce that z(x)

is implicitly defined by g(x, z) =
√

3(x+ z) + x2 + xz + z2 and z′(x) = −
√

3+2 x+z√
3+2 z+x

.

Monotonicity of P (h) on (− 2
81 , 0) is equivalent to monotonicity of Q1(l) on

(0, 2
81 ) and this is equivalent to that {J10, J11} be an extended complete Chebyshev

system on (0, 2
81 ), i.e. any nontrivial linear combination aJ10(h) + bJ11(h) has at

most one zero on (0, 2
81 ). By Theorem B of [2], the latter is equivalent to {`0, `1}

being an extended complete Chebyshev system on (0, 1−
√

3
3 ), where `i(x) = xi

A′(x)−
(z(x))i

A′(z(x)) , i = 0, 1. For this purpose we must prove two Wronskians W [`0](x) and

W [`0, `1](x) is non-vanishing on (0, 1−
√

3
3 ). It is obvious that

W [`0](x) = `0(x) =
729(x− z(x))k0(x, z(x))

A′(x)A′(z(x))
,

where

k0(x, z) = 9(x4 + z4 + xz(x2 + zx+ z2)) + 15
√

3(x3 + z3 + xz(x+ z))

+ 18(x2 + zx+ z2)− 2
√

3(x+ z)− 4,
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and (x, z) satisfies q(x, z) = 0 for −
√

3
3 < z < 0 < x < 1 −

√
3

3 . We eliminate z
between q(x, z) = 0 and k0(x, z) = 0 by using Maple 17 and calculate the resultant
of q(x, z) and k0(x, z) with respect to z. Hence

Res(q, k0, z) = 97(x+

√
3

3
)2(x+

√
3

3
−1)2(x+

√
3

3
+1)2 6= 0, for x ∈ (0, 1−

√
3

3
).

Therefore, q(x, z) and k0(x, z) have no common roots and so W [`0](x) 6= 0 on

(0, 1−
√

3
3 ).

Also

W [`0, `1](x) = det

 `0(x) `1(x)

`′0(x) `′1(x)

 = − 531441(x− z(x))3k1(x, z(x))

A′(x)A′(z(x))(2z(x) + x+
√

3)
,

where

k1(x, z) = 24 + 6597
√

3x4z + 48
√

3x2z + 6750
√

3x4z3 + 2133
√

3xz6

+ 6597
√

3xz4 + 4536
√

3x2z5 + 11736
√

3x3z2 + 2133
√

3x6z

+ 4536
√

3x5z2 + 11736
√

3x2z3 + 6750
√

3x3z4 + 48
√

3xz2

+ 621
√

3z7 + 2007
√

3z5 − 44
√

3z − 156
√

3z3 + 621
√

3x7

− 156
√

3x3 − 44
√

3x+ 2007
√

3x5 + 5904x3z + 8694x2z2

+ 5904xz3 + 23652x3z3 + 18873x2z4 + 9423xz5 − 756xz

+ 2106x3z5 + 1215x2z6 + 567xz7 + 9423x5z + 18873x4z2

+ 567x7z + 1215x6z2 + 2106x5z3 + 2430x4z4 + 162x8

+ 1728 z4 + 2808x6 − 516 z2 + 2808 z6 − 516x2 + 162 z8 + 1728x4.

By computing the resultant of q(x, z) and 2z + x+
√

3 with respect to z we have

Res(q, 2z + x+
√

3, z) = (3x−
√

3)(x+
√

3) 6= 0, for x ∈ (0, 1−
√

3

3
).

So W [`0, `1](x) is well defined for −
√

3
3 < z < 0 < x < 1−

√
3

3 . Also

Res(q, k1, z) = 37(x+

√
3

3
)4(x+

√
3

3
−1)4(x+

√
3

3
+1)4(3x4+4

√
3x3−2x2−4

√
3x+6).

By applying Sturm’s Theorem to 3x4 + 4
√

3x3−2x2−4
√

3x+ 6, we find that it is

non-zero on (0, 1−
√

3
3 ) and this implies that Res(q, k1, z) 6= 0 for all x ∈ (0, 1−

√
3

3 ).
Thus, k1(x, z) and q(x, z) have no common roots and therefore W [`0, `1](x) 6= 0 for

all x ∈ (0, 1−
√

3
3 ).

(iii) For
√

3
3 < α <

√
3
7 , we compute the asymptotic expansion of I0(h) and

I1(h) at the end points of ( 1
12α

4(α2 − 3), 1
12 (3α2 − 1)) i.e. near the center (α, 0)

and the homoclinic loop connecting saddle point (1, 0), respectively. By applying
change of variables x = X + α and y = Y , the center (α, 0) is moved to the origin.
Thus system (X+

3 ) will be transform to

Ẋ = Y,

Ẏ = X(X + α)(X + 2α)(X + α+ 1)(X + α− 1),
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with the Hamiltonian function

H2(X,Y ) =
1

2
Y 2 + α2(1− α2)X2 − α(7α2 − 3)

3
X3 +

(1− 9α2)

4
X4 − αX5 − 1

6
X6.

Then H2(0, 0) = 0, H2(1 − α, 0) = 1
12 (1 − α2)3 and the ovals Γh of H+

3 (x, y) = h
with h ∈ ( 1

12α
4(α2 − 3), 1

12 (3α2 − 1)) can be mapped to ovals γl of H2(X,Y ) = l
with l ∈ (0, 1

12 (1− α2)3). So

I0(h) =

∮
Γh

ydx =

∮
γl

Y dX = J20(l),

I1(h) =

∮
Γh

xydx =

∮
γl

(X + α)Y dX =

∮
γl

XY dX + α

∮
γl

Y dX = J21(l) + αJ20(l).

Thus P (h) = I1(h)
I0(h) = α+ J21(l)

J20(l) = α+Q2(l) and P ′(h) = Q′2(l) in the corresponding

intervals of h and l. Now we compute asymptotic expansion of J20(l) and J21(l) for
0 < l� 1. For this purpose we apply a change of variable in a small neighborhood
of the origin as follows:

x = X(α2(1− α2)− 1

3
α(7α2 − 3)X +

1

4
(1− 9α2)X2 − αX3 − 1

6
X4)

1
2 , y = Y.

The inverse of the above transformation is X = F (x) and Y = y where

F (x) =
1

α
√

1− α2
x+

7α2 − 3

6α3(α2 − 1)2
x2 +O(x3).

With this transformation the ovals γl have the form x2 + y2 = l with 0 < l � 1.
Therefore

J20(l) =

∮
γl

Y dX = −l
∫ 2π

0

sin2(θ)F ′(
√
l cos(θ))dθ = − π

α
√

1− α2
l +O(l2),

J21(l) =

∮
γl

XY dX = −l
∫ 2π

0

sin2(θ)F (
√
l cos(θ))F ′(

√
l cos(θ))dθ

=
π
√

1− α2(7α2 − 3)

8α4(α2 − 1)3
l2 +O(l3).

A straightforward calculation shows that

P ′(
α4(α2 − 3)

12
) = lim

l→0+
Q′2(l) =

7α2 − 3

8α3(α2 − 1)2
< 0 for

√
3

3
< α <

√
3

7
. (3.5)

For the asymptotic expansion of I0(h) and I1(h), we must move (1, 0) to the origin.
By applying change of variables x = 1 −X and y = −Y , system (X+

3 ) transforms
to

Ẋ = Y,

Ẏ = −X(X − 1)(X − 2)(X − α− 1)(X + α− 1),

with the Hamiltonian function

H3(X,Y ) =
1

2
Y 2 − 1

6
X6 +X5 − 1

4
(9− α2)X4 +

1

3
(7− 3α2)X3 + (α2 − 1)X2.
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Then H3(0, 0) = 0, H2(α, 0) = 1
12α

2(α2 + 4α − 3)(α − 2)2 and the ovals Γh of

H+
3 (x, y) = h with h ∈ ( 1

12α
4(α2 − 3), 1

12 (3α2 − 1)) can be mapped to ovals γl of
H3(X,Y ) = l with l ∈ ( 1

12α
2(α2 + 4α− 3)(α− 2)2, 0). So

I0(h) =

∮
Γh

ydx =

∮
γl

Y dX = J30(l),

I1(h) =

∮
Γh

xydx =

∮
γl

(1−X)Y dX =

∮
γl

Y dX −
∮
γl

XY dX = J30(l)− J31(l).

Thus P (h) = I1(h)
I0(h) = 1 − J31(l)

J30(l) = 1 − Q3(l) and so P ′(h) = −Q′3(l) in the corre-

sponding intervals of h and l. Now using Corollary 2 of [4], we obtain the following
asymptotic expansion of J30(l) and J31(l) for 0 < −l� 1:

J30(l) =

∮
γl

Y dX =

∮
γ0

Y dX − 1√
2(1− α2)

h ln |h|+O(h),

I31(h) =

∮
γl

XY dX =

∮
γ0

XY dX +O(h).

Therefore

P ′(
1

12
(3α2 − 1)) = − lim

l→0−

d

dl

(
J1(l)

J0(l)

)

= − lim
l→0−

1√
2(1−α2)

ln |h|
∮
γ0
XY dX

(
∮
γ0
Y dX)2

=∞ > 0. (3.6)

By (3.5) and (3.6) it follows that if
√

3
3 < α <

√
3
7 then P ′(h) changes sign in the

interval ( 1
12α

4(α2 − 3), 1
12 (3α2 − 1)) and so P (h) is not monotone.

(iv) The proof of this case is similar to that of Theorem 3.1 and we omit it for
the brevity’s sake.

Now it is the time to consider two last cases, i.e. systems (X±4 ). Note that system
(X+

4 ) has only a center at the origin and by Remark 3.1, P (h) ≡ 0. However system
(X−4 ) has two centers at (±1, 0). So we consider the monotonicity of P (h) when Γh
is a period annulus surrounding one of the centers (±1, 0) of system (X−4 ) in the
following theorem.

Theorem 3.3. Suppose that Γh is a continuous family of ovals surrounding one
of two centers (±1, 0) of system X−4 . Then the function P (h) is monotone for
h ∈ (− 1

12 (1 + 3α2), 0).

The proof of this theorem is similar to that of Theorem 3.1 and we omit it for
the sake of brevity.
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