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Abstract In this survey, we collect a few results scatted in the literature
covering advances in systems of periodic delay differential equations including
both modeling and theory. We will present the (almost) most oldest and
(almost) most recent contributions made for this subject.
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1. Introduction

The temporal variation of environment plays an important role in the nonlinear
dynamics of life sciences and engineering systems. For example, the effects of
periodically varying environment on the evolution of epidemiological systems are
significant, as the selective forces on systems in the fluctuating environment differ
from those in a stable and temporally constant environment. The periodicity of
the environment (such as seasonal weather, food supplies, mating habits and re-
production activities) is often reflected by the periodic coefficients of the modeling
dynamical systems. As time lags are also involved in the dynamic feedback of these
systems, systems of delay differential equations with periodic coefficients (or peri-
odic systems of delay differential equations) arise most naturally. Delay differential
equations have been studied for at least 100 years (see, for example, the work by
Schmitt in 1911 [121]) and the study of periodic systems of differential equations
must have an even longer history. It is interesting to note that both periods and
delays provide the most convincing mechanisms for observed nonlinear oscillations
in science and engineering. However, which mechanisms are dominating for specific
oscillation and how delay and periodicity interact to generate complicated behav-
iors remain challenging questions. Answers to these questions, even partially, are
expected to find applications in a wide range of important applications in ecosys-
tem management, avian influenza and vector-borne disease prevention and control
in template environments. One can describe the above problems in the following
mathematical settings.

Let r be a nonnegative constant or infinity. We denote by C the space of
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continuous functions mapping [−r, 0] into Rn with the uniform norm defined by

‖ φ ‖:= sup
θ∈[−r,0]

‖ φ(θ) ‖ for φ ∈ C.

A general form of periodic systems of delay differential equations can be written as

y′(t) = F (t, yt, α), (1.1)

where F is a smooth function in (t, φ, α) ∈ R×C ×Rp for some p ∈ N and satisfies

F (t+ T, φ, α) = F (t, φ, α)

for some T > 0. The solution segment yt ∈ C is defined by

yt(θ) = y(t+ θ),−r ≤ θ ≤ 0 and t ≥ 0.

The solution operator U : R → C defined, for t ∈ R and φ ∈ C, by U(t)φ := yt(φ)
normally does not have a closed form, even for specifically identified periodic solu-
tions (such as globally attractive nontrivial solutions). Thus, some of the theories
(such as Floquet multipliers and bifurcations) developed for autonomous delay d-
ifferential equations which have been extended to periodic systems (theoretically)
can be hardly applied (directly) to provide practically tractable qualitative solutions
even for the simplest scalar delay differential equations with periodic coefficients.
The aim of this survey, therefore, is to revisit some of the old and recent results on
the qualitative theory of periodic systems of delay differential equations, to select
a few prototype models, to collect relevant results and to identify the theory from
the dynamical systems point of view.

In what follows, we try to arrange our presentation by topics and in chronological
order. In Section 2, we present some periodic models with delay that arise from
life sciences, economics and engineering. Section 3 is devoted to the theoretical
results for periodic differential equations with finite, distributed, periodic and state-
dependent delays. Finally, a brief conclusion will be given in Section 4. However,
we must declare clearly that we do not aim for a complete account of the theory
and applications of periodic delay differential systems which will require a much
more substantial effort.

2. Modeling

In this section we describe a few differential equations with delay and periodic coef-
ficients that arise from epidemiology, ecology, season migration, biology, engineering
and economics.

2.1. Epidemiology

Many epidemiological problems can be modeled as periodic systems of nonlinear
differential equations with delay. An example is a seasonal model with immunity
(for diseases which are not lethal and do not confer immunity) developed by Cooke
and Kaplan in 1976 [29]. The resulting model is a periodic scalar delay equation of
the form

I ′(t) = a(t)I(t)(1− I(t))− a(t− τ)I(t− τ)(1− I(t− τ)), (2.1)
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where τ is the length of time an individual is infective, and a(t) is the contact
rate defined as the average number of effective contacts with other individuals per
infective per time period. This equation has been the subject of intense study,
for example, by Nussbaum in 1977 [104], Smith in 1977 [126] and Nussbaum in
1978 [105].

Modeling the recurrent outbreaks of measles, chickenpox and mumps in cities,
London and Yorke in 1973 [91] obtained a system of periodic differential equations
with two delays, where the first delay represents the time from exposure to infec-
tivity and the second delay represents the duration of infectivity. The period here
represents the seasonal variation which is caused by the close contacts made by chil-
dren, particularly during the coldest months, when school is in session. To describe
their model, we denote by E(t) the number of individuals exposed to the virus, S(t)
the number of susceptibles and I(t) the number of infectives at time t. Let β(t) be
the contact rate which reflects the social behavior of the individuals of the considered
community and the ease with which the disease is transmitted. The contact rate is
supposed to be periodic since it may vary greatly during a year due to such seasonal
factors as the weather and the fact that children are in school only during certain
months. Since London and Yorke were interested in diseases that can be acquired
only once, the rate of change of susceptibles is given by dS/dt = γ − β(t)S(t)I(t).
It is also assumed that all individuals exposed at time t will become infectious after
time T1 and remain infectious only for a time interval of length T2. Thus, the rate
of change of infectives is given by dI/dt = E(t − T1) − E(t − T1 − T2). Therefore,
the periodic model with delay is given by

S′(t) = γ − β(t)S(t)I(t),

E′(t) = β(t)S(t)I(t),

I ′(t) = E(t− T1)− E(t− T1 − T2).

(2.2)

Another similar example of models was presented in 1985 by Dietz and Schenzle
[36]. Their model described the fluctuations in childhood diseases induced by the
cycle of the school year with interruption of the infections chain during vacations
and the inclusion of new susceptible individuals at the beginning of each school
year, which gave rise to a periodic system with delay. Based on the assumptions of
the model of London and Yorke [91], an epidemiological model with vaccination was
developed by Zhang et al. in 2010 [150] as follows: Let S(t), I(t), R(t) and V (t)
denote the numbers of susceptible, infective, recovered, and vaccinated individuals,
respectively, at time t. The time-dependent parameters are denoted by: A(t) the
recruitment rate of the population (into the susceptible class), µ(t) the natural death
rate, α(t) the disease-induced death rate, p(t) the fraction of vaccinated susceptible
and β(t) is the transmission coefficient of the disease. Let τ be the immunity period

provided by the vaccine. Then the term p(t− τ)e−
∫ t
t−τ µ(x)dxS(t− τ) represents the

individuals vaccinated at time t− τ . Therefore, the model of Zhang et al. is given
by 

S′(t) = A(t)− µ(t)S(t)− β(t)S(t)I(t)− p(t)S(t)

+ p(t− τ)e−
∫ t
t−τ µ(x)dxS(t− τ),

I ′(t) = β(t)S(t)I(t)− (µ(t) + α(t) + γ(t))I(t),

R′(t) = γ(t))I(t)− µ(t)R(t),

V ′(t) = p(t)S(t)− µ(t)V (t)− p(t− τ)e−
∫ t
t−τ µ(x)dxS(t− τ).

(2.3)
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The period and the delay then represent the cycle of the school year and the average
length of the immune period, respectively.

In 2009, Lou and Zhao [94] considered a periodic SIS epidemic model with
maturation delay

S′(t) = B(t− τ,N(t− τ))N(t− τ)e−
∫ t
t−τ d1(s)ds − d(t)S(t)

− β(t)S(t)I(t)

N(t)
+ γ(t)I(t),

I ′(t) =
β(t)S(t)I(t)

N(t)
− (d(t) + d2(t) + γ(t))I(t),

where B(t,N) and d(t), respectively, are the time-dependent birth and death rates
of the population at the adult state, d1(t) is the death rate of the population at
the juvenile stage, and τ > 0 is the maturation delay. Under the assumption
that all parameters are T -periodic in t for some T > 0, they established sufficient
conditions for the single population growth equation to admit a globally attractive
positive periodic solution. Furthermore, they obtained the threshold dynamics for
the system above in terms of the basic reproduction number denoted by R0 and
defined as the number of secondary infections produced by a single infective in a
totally susceptible population.

In 2010, Lou and Zhao [95] presented a malaria transmission model with periodic
birth rate and age structure for the vector population, which is governed by a peri-
odic and time-delayed system of seven differential equations. They first introduced
the basic reproduction ratio R0 for this model and then proved that there exists at
least one positive periodic state and the disease persists when R0 > 1. It was also
shown that the disease will die out if R0 < 1, provided that the invasion intensity
is not strong. They further used these analytic results to study the malaria trans-
mission cases in KwaZulu-Natal Province, South Africa. Some sensitivity analysis
of R0 was performed, and in particular, the potential impact of climate change on
seasonal transmission and populations at risk of the disease was analyzed.

During the last two decades, the definition and computing methods of the ba-
sic reproduction number R0 for structured populations have been widely developed
mainly in the context of epidemic models, and R0 has become a most important
key concept in mathematical epidemiology. Originally it quantifies the threshold
condition of population growth in a constant environment, so it cannot be applied
to formulate the threshold principle for populations in time-heterogeneous envi-
ronments, which are described by non-autonomous dynamical systems. Since the
1990s, several authors (Heesterbeek and Roberts [63,64], Bacaër and Guernaoui [7],
Bacaër and Ouifki [8], Bacaër [4], Wang and Zhao [144], Thieme [136], Bacaër and
Ait Dads [5,6], Inaba [68,69], Zhao [155]) proposed some ideas to extend the defini-
tion of R0 to the case of periodic environment. In particular, the definition of R0 in
periodic environments by Bacaër and Guernaoui in 2006 [7] was the first most im-
portant, because as was shown by Bacaër and Ait Dads in 2011 [5] and in 2012 [6],
their definition of periodic R0 can be interpreted as the asymptotic ratio of the size
of successive generations of newborns. In 2007, Bacaër and Ouifki [8] obtained a
closed approximate formula for the basic reproduction number R0 of equation (2.1)
when a(t) = a0(1 + ε cosωt) and ε is small. This formula showed that the periodic
factor increased or decreased R0, depending on the choice of parameter values. Us-
ing the generation evolution operator, Inaba in 2012 [68] showed that the definition
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given by Diekmann et al. [34] and by Bacaër and Guernaoui [7] completely allows
the generational interpretation and the spectral radius of the generation evolution
operator coincides with the spectral radius of the next generation operator, so it
gives the basic reproduction number and the new definition is an extension of the
definition by Diekmann et al. [34] and by Bacaër and Guernaoui [7]. Recently, the
classical threshold theory for R0 and the Malthusian parameter in constant envi-
ronments was extended to the case of periodic environments without loosing its
essential features. In fact, Inaba [69] proposed another approach to establish the
sign relation for R0 and the Malthusian parameter λ0 in a periodic environment by
focusing on the existence of exponential solutions. In what follows, we summarize
an important result by Inaba [69]. Let us introduce I(t, τ, a) as the density of in-
fected population at time t and infection-age τ whose chronological age at infection
is a. Let S(t, a) be the age density of susceptibles at time t and age a, and R(t, τ, a)
be the density of recovered individuals at time t, duration (the time elapsed since
recovery) τ and age at recovery a. Then the age-duration-dependent homogeneous
SIR epidemic system is formulated as follows:

(
∂

∂t
+

∂

∂a

)
S(t, a) = − (µ(a) + κ(t, a))S(t, a),(

∂

∂t
+

∂

∂τ

)
I(t, τ, a) = − (µ(a+ τ) + γ(t, a)) I(t, τ, a),(

∂

∂t
+

∂

∂τ

)
R(t, τ, a) = − (µ(a+ τ))R(t, τ, a),

S(t.0) = B; I(t, 0, a) = κ(t, a)S(t, a); R(t, 0, a) =

∫ a

0

γ(τ, a− τ)I(t, τ, a− τ)dτ,

where B is the number of susceptible newborns per unit time, µ(a) is the force of
mortality, γ(t, a) is the rate of recovery at infection-age τ and the age at infection
a, and κ is the force of infection. Inaba assumed that the force of infection is given
by

κ(t, a) =

∫ ∞
0

m(t, a, σ)

∫ σ

0

f(τ)I(t, τ, σ − τ)dτdσ,

where m(t, a, σ) is θ−periodic with respect to t and can be interpreted as the proba-
bility that a susceptible individual with age a encounters with an infected individuals
with age σ at time t, and the function f(τ) is the probability of successful transmis-
sion of infective agents from infective individuals with infection-age τ . Assuming
that m, γ, f and µ are bounded nonnegative measurable functions for t ∈ R+ and
a, σ, τ ∈ R+,we state the following proposition

Proposition 2.1. There exists a positive dominant exponential solution of the fol-
lowing linearized equation at the disease-free steady state:

DJ(t, τ, a) = − (µ(a+ τ) + γ(τ, a)) J(t, τ, a)

J(t, 0, a) = So(a)

∫ ∞
0

m(t, a, σ)

∫ σ

0

f(x)ψ(t, x, σ − x)dxdσ,

whose exponent gives the Malthusian parameter λ0 of the population such that

sign(λ0) = sign(R0 − 1).
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Finally, it should be stressed that since delay equations in population dynamics
can usually be considered as particular cases of age-structured systems of partial
differential equations, the definition of the basic reproduction number R0 for peri-
odic versions of the latter introduced by Bacaër and Guernaoui [7] and Inaba [69]
can be applied as well to the case of delay models (See also the work by Wu et
al. in 2015 [146]). Furthermore, the result in Bacaër and Guernaoui [7] considered
a periodic epidemic model with a Γ-distributed delay as application. However, its
application is much more difficult and not straightforward for some cases. Recently,
Zhao in 2015 [155] established the theory of basic reproduction ratio R0 for peri-
odic and time-delayed population models with compartmental structure as follows.
Consider a linear periodic functional differential system:

u′(t) = F (t)ut − V (t)u(t), (2.4)

where F (t) : C → Rm is a positive function given by

F (t)φ =

∫ 0

−τ
d[η(t, θ)]φ(θ), ∀t > 0, φ ∈ C

and V is a matrix such that −V is cooperative. Let Φ(t, s), t > s, be the evolution
matrice of the linear equation

u′(t) = −V (t)u(t).

Let v(t), w-periodic in t, be the initial distribution of infectious individuals. Then
the basic reproduction ratio associated to system (2.4) is defined by

R0 = r(L),

where

[Lv] (t) =

∫ ∞
0

Φ(t, t− s)F (t− s)v(t− s+ .)ds,∀t ∈ R, v ∈ Cw,

r(L) is the spectral radius of L and Cw is the set of continuous w−periodic functions.
Furthermore, the author proved that R0 is a threshold value for the stability of the
zero solution for periodic system (2.4). This theory is the most recent and gives the
most important result for the definition of R0 in periodic systems with delay.

2.2. Ecology

In 1972, Fretwell [49] claimed that “environmental variation is often an important
aspect in the dynamical nature of populations with most populations experiencing
at least seasonal fluctuations in their ‘resource’ or ‘food’ availability, and thus in
the carrying capacity of their environment”. In 1976, Nisbet and Gurney [103]
considered a periodic delay logistic equation of the form

N ′(t) = r(t)N(t)

(
1− N(t− τ)

K(t)

)
,

where N(t) is the population at time t, r is a sinusoidal growth rate of the species
in an unlimited environment, and K is a sinusoidal carrying capacity of the habitat.
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They carried out a numerical study of the influence of the periodicity in r and K
on the intrinsic oscillations of the equation such as those caused by the time delay.
In 1978, Rosen [113] noted the existence of a relation between the period of the
periodic carrying capacity and the delay of the logistic equation. Basing on the
quote by Fretwell [49], Gopalsamy et al. [51] proposed in 1990 the following time
delayed w-periodic equation

N ′(t) = r(t)N(t)
K(t)−N(t−mw)

K(t) + c(t)r(t)N(t−mw)
,

which describes the dynamics in a “food-limited” population system. Here, N and
r are, respectively, the number and the growth rate of Daphina population, K is
the mass of saturation and w is the time delay which incorporates the population
fluctuations.

In 1992, Freedman and Wu [48] considered several single-species models with
time delays where both the coefficients and the delays are periodic functions. These
models are based on laboratory observation of the population growth of rotifers and
are of the following general form

x′(t) = x(t) (−D(t, x(t) +B(t, xt)) , (2.5)

where D(t, x) is a periodic function in t which represents the death rate and B(t, φ),
φ ∈ C is a periodic function which represents the birth rate. This model represents
the case where there is a delay in the per capita birth rate, whereas the death rate
is instantaneous. A particular case of the general model developed by Freedman
and Wu [48] was considered in 2008 by Berezansky and Idels [15] in order to model
the Fox production harvesting. Their model is given by

N ′(t) = N(t)

(
r(t) lnθ

K(t)

N(t− τ(t))
− F (t)

)
,

where r(t) is an intrinsic factor, F (t) is a variable harvesting rate, K(t) is a varying
environmental carrying capacity and τ(t) is the time to develop from newborns to
reproductively active adults.

Periodic logistic equations with distributed delay were studied in 1977 by Cush-
ing [30]. In 1982, Bardi and Schiaffino [11] considered the following integro-differential
equation with periodic coefficients

N ′(t) = N(t)

[
a(t)− b(t)N(t)− c(t)

∫ t

∞
K(t− s)N(s)ds

]
,

where a, b, c and K are positive periodic continuous functions. The functions a and b
describe the growth of a single population whose size is N(t) while c and K describe
the hereditary factors. In 2001, Li and Kuang [84] presented a delay Lotka-Volterra
system with periodic coefficients for multiple species population growth which is a
generalization of the single species population growth model developed by Freedman
and Wu. In particular, the following periodic Lotka-Volterra cooperative system
with distributed delays was considered

x′i(t) = xi(t)
(
ci(t)− aii(t)xi(t) +

n∑
j=1,j 6=i

aii(t)xj(t)

+
∑

j=1,j 6=i

bij(t)

∫ 0

−τj
xj(t+ θ)dµj(θ)

)
.

(2.6)
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See also Li and Xu [87] for a periodic prey-predator system with infinite delay. For
other related works on periodic logistic equations with distributed delay, we refer
to Bardi [10], Cohen and Rosenblat [26], Karakostas [77] and the references therein.

In a classic study by Nicholson in 1957 [102], the regulation of population size
in laboratory colonies of the Australian sheep-blowfly Lucilia cuprina was analyzed.
The dynamics of Nicholson’s blowflies was described using a delay differential e-
quation with constant coefficients by Gurney et al. [53]. However, during the ex-
periments of Nicholson, the population size showed large-amplitude quasi-periodic
oscillations. One of the cultures was maintained for a period of two years and
the oscillations continued for this entire period of time. Thus, in 2002, Saker and
Agarwal [117] modified the model in Gurney et al. [53] by assuming that all the
parameters of this model are w-periodic. Their model is given by

N ′(t) = −δ(t)N(t) + P (t)N(t−mw)e−aN(t−mw),

where N(t) is the size of the population at time t, P is the maximum per capita
daily egg production, 1/a is the size at which the population reproduces at its
maximum rate, δ is the pair capita daily adult death rate, and mw is the generation
time. Taking spatial distribution of the blowfly population into account, the above
periodic Nicholson blowflies model with delay was recently extended by Pang and
Wang in 2015 [106] to the following nonlinear diffusive form,
∂N(x, t)

∂t
= ∆Nm − δ(x, t)N(x, t) + P (x, t)N(x, t− τ)e−aN(x,t−τ), x ∈ Ω, t > 0,

N(x, t) = 0, x ∈ ∂Ω,

where ∆ is the Laplacian operator modeling nonlinear diffusion. The given bound-
ary condition means that the habitat Ω is surrounded by a lethal environment. See
also Ruan [116] for a brief survey on periodic single species models with delay.

2.3. Seasonal migration and avian influenza

Bird migration is the regular seasonal movement, often north and south along a
flyway, between breeding and wintering grounds. Periodic systems of delay differ-
ential equations arise naturally from modeling the bird migration. In 2010, Gourley
et al. [52] formulated a deterministic mathematical model capturing some features
of the spatial dynamics of migratory birds as follows: A typical migration pro-
cess involves different phases based on the consequences of biological activities and
seasonality, as wintering, spring migration, breeding, maturation and autumn mi-
gration. Migration routes are interrupted by major nodes, the so called stopovers,
which provide the resting locations between the flights for refueling. Therefore, the
proposed model took the form of a periodic system of differential equations with
multiple delays which account for the time needed for migratory birds to fly from
one stopover to the next. In particular, if Si(t) denotes the number of birds in patch
i, then one obtains the following model system

S′1(t) =b(S1(t), t) + α2,1d2,1(t− τ1)S2(t− τ1)− d1,2(t)S1(t)− µ1(t)S1(t),
...

S′i(t) =αi−1,idi−1,i(t− τi−1)Si−1(t− τi−1)− di,i+1(t)Si(t)
+ αi+1,idi+1,i(t− τi)Si+1(t− τi)− di,i−1(t)Si(t)− µi(t)Si(t),

...
S′n(t)=αn−1,ndn−1,n(t−τn−1)Sn−1(t−τn−1)−dn,n−1(t)Sn(t)−µn(t)Sn(t),

(2.7)
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where the first patch is the summer breeding area, the last patch (the n-th patch)
is the winter refuge ground, and patches in between are the major stopovers along
the migratory route. b(S1(t), t) is the birth rate function and di,j(t) accounts for
migration into or out of each patch. Model parameters except delays are all time-
periodic functions. The framework of Smith in 1987 [126] was used here to develop a
threshold dynamics of such a model system. In 2010, Bourouiba et al. [19] developed
a periodic model with delay to discuss the effect of repeated epizootic at specific
migratory stopovers for bar-headed geese.

To develop some qualitative insights of the role of migratory birds in the global
H5N1 spread, the model by Gourley et al. [52] was further expanded by Bourouiba
et al. in 2011 [18] to incorporate the disease progress within each patch and the
interaction of migratory birds with domestic poultry for a patchy model of avian
influenza spread. The aim was to understand the role of the interplay between
migratory birds and nonmigratory birds, particularly poultry, in the persistence
and recurrence of H5N1 in endemic regions.

In 2012, Wang and Wu [141] developed a model of single species bird migration
between the summer breeding ground and the winter refuge site. The obtained
model is a simplified version of the models in Gourley et al. [52] and Bourouiba et
al. [19]. The model is given by the following periodic differential equations with
delay, 

x′s(t) = −(msw(t) + µs)xs(t) + e−µwsτwsmws(t− τws)xw(t− τws)

+ γs(t)xs(t)

(
1− xs(t)

K

)
,

x′w(t) = −(mws(t) + µw)xw(t) + e−µswτswmsw(t− τsw)xs(t− τsw),

where xs(t) and xw(t) are the numbers of birds in the summer and winter sites,
respectively, the functions mws(t) and msw(t) describe the migration rates between
the two patches. The subscription w represents winter, s represents summer, ws
represents migration from the winter patch to the summer patch and sw represents
migration from the summer patch to the winter patch. The time delay τws represents
the time (days) flying from the winter site to the summer site, while τsw represents
the time (days) flying from the summer site to the winter site. The corresponding
rates of in-flight mortality are denoted by µws and µsw, and the death rates in the
summer and winter sites, respectively, are denoted by µs and µw. The birth rate
in the summer site is the intrinsic birth rate γs(t) regulated by the density through
a logistic term. All the coefficients in the system are periodic functions with the
period T = 365 days. The authors showed that the periodic delay differential system
is completely characterized by a finite-dimensional ordinary differential system. As
a consequence, they derived the threshold condition, explicitly in terms of the model
parameters, for the extinction and persistence of the considered bird species. This
model was then further expanded, in 2014, by the same authors Wang and Wu [142]
to incorporate the spread of avian influenza within each patch.

2.4. Biology

A few periodic delay models have been developed in biology. In 2002, Saker and
Agarwal [117] modified the delay model of dynamic disease involving respiratory
disorders, introduced by Mackey and Glass in 1977 [97], by assuming the periodicity
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of the volume of air passed through the lungs during a single breath times the
frequency of respiration. In 2001, Andersen and Mackey [2] developed different
versions of models of delayed periodic differential equations to evaluate the effects
of periodic chemotherapy administration on normal and leukemic (a cancer of the
white blood cells) cell populations. First, Andersen and Mackey assumed that all
proliferating cells are affected by the drug which leads to the following system{

N ′(t) = −δN − β(N)N + 2e(−γ0τ−
∫ t
t−τ γc(s)ds)β (Nt)N(t− τ),

P ′(t) = −γ(t)P + β(N)N − e(−γ0τ−
∫ t
t−τ γc(s)ds)β (Nt)N(t− τ),

where N and P , respectively are the numbers of nonproliferative cells and prolif-
erative cells, γ is the rate of cell loss from nonproliferative phase, τ is the time
spent in the proliferative phase, β is the feedback function, rate of recruitment from
non-proliferative phase. The cells in the proliferative phase die due to an increased
apoptotic rate γ0 + γc(t). Moreover, the parameter γc(t) is the loss rate due to
chemotherapy and is periodic with the period π. They concluded, using this for-
mulation, that in every case the protocols are more destructive to the normal cell
population than they are to the leukemic cell population. Thus, they extended this
model to show the effect of chemotherapy administration only on the specific phase
S (DNA synthesis) to obtain the following:

N ′(t) = − [δ + β(N)]N(t) + 2e(−γ0τ−
∫ t−τ+Ts
t−τ γc(a)da)β (N(t− τ))N(t− τ),

S′(t) = −(γ0+γc(t))S+β(N)N−e(−γ0Ts−
∫ t
t−Ts

γc(a)da)β (N(t− Ts))N(t− Ts),

M ′(t) = −γ0M + e(−γ0Ts−
∫ t
t−Ts

γc(a)da)β ((t− Ts))N(t− Ts)

− e(−γ0τ−
∫ t−τ+Ts
t−τ γc(a)da)β (N(t− τ))N(t− τ),

where S is the number of cells in DNA synthesis phase and M is the number of
cells in mitosis (Note that the variable S in the S−equation above is written as P
in Andersen and Mackey’s paper but it is only a typo!). This last formulation leads
the following conclusion: S-phase-specific resonance (optimal therapeutic success) is
more pronounced than cycle-non-specific resonance, and M -phase-specific resonance
is even sharper than the S-phase resonance. This (N ;S;M)-model was further
extended to a (N := G0/G1; S; P := G2,M)-model to track the total cell number
and fraction of cells in each phase for host and tumor during a course of periodic
chemotherapy by Bernard et al. in 2010 [16]. Furthermore, they assumed that
transition from one phase to another depends on the circadian time. The model is
given by the following periodic differential equation with periodic delays,

N ′(t) = − [δ(t) + β(t)]N(t) + 2 (1− τ ′P (t− τM ))σ(t)β ((t− τ(t)))N(t− τ(t)),

S′(t) = −γS(t)S(t) + β(t)N(t)− σS(t)β (N(t− τs))N(t− τs),
P ′(t) = −γp(t)P (t)−(1−τ ′P (t))σP (t)σS(t−τP (t))β(t−τS−τP (t))N(t−τS−τP (t)),

+ σS(t)β(t− τS)N(t− τS)

M ′(t) = −γM (t)M(t)− (1− τ ′P (t− τM ))σ(t)β ((t− τ(t)))N(t− τ(t))

+ (1− τ ′P (t))σP (t)σS(t− τP (t))β(t− τS − τP (t))N(t− τS − τP (t)),

where all the time dependent parameters are 24-hours periodic.
Concerning In-host models, to the best of our knowledge, there was only one

work -up to date- that consider the incorporation of time-periodic combination
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antiviral drug therapy (reverse transcriptase inhibitors and protease inhibitors) into
the in-host model with delay for HIV. In fact, in 2004, Dixit et al. [37] developed
a model of HIV infection that combines drug pharmacokinetics and intracellular
delay. Here we will only present the model which consider the effect of reverse
transcriptase inhibitors drug, given by

dT

dt
= λ− dT (t)− (1− εRTI(t)) kT (t− τ1)V (t− τ1)e−mτ1 ,

dT ∗

dt
= (1− εRTI(t− τ2)) kT (t− τ)V (t− τ)e−mτ − δT ∗(t),

dV

dt
= NδT ∗(t)− cV (t),

where the viral replication period (τ) is divided into pre- (τ1) and post- (τ2) drug
action parts, T are uninfected CD4+ T cell lymphocytes which are generated at a
rate λ and die at rate d. In the presence of virus V , healthy cells are converted, at
a rate k, into productively infected cells, T ∗ an interval τ after they are infected.

2.5. Engineering

Several engineering problems give rise to time delays and periodicity at the same
time. Examples include transmission lines (Lopes [93]), neural networks (Hagan
et al. [54]), parametric control of robotic systems (Insperger et al. [70]), machine
tool vibrations in cutting processes (Bayly et al. [12], Zhao et al. [151], Insperger
et al. [73], Hartung et al. [62], Bachrathy and Stepan [9]), aeroelastic systems with
structural nonlinearities (Trickey et al. [137]), optimal controls (Deshmukh et al.
[33]) and reaction-diffusion BAM neural networks (Zhou et al. [156]). Here we
choose to briefly describe the model by Insperger et al. in 2000 [70] where a single
degree of freedom mechanical model for milling process is proposed. This models
a machine tool where a workpiece is rotating, the tool cuts the surface that was
formed in previous cut. The chip thickness is determined by the current and the
previous position of the tool and the workpiece. In the case of milling, the direction
of the cutting force is changing due to the tool rotation, and the cutting is also
interrupted as each tooth enters and leaves the workpiece. Consequently, the system
can be modeled as a one degree of freedom oscillator that is excited by the cutting
force. The resulting equation of motion is a delay differential equation with a time
periodic coefficient given by

ẍ(t) + 2ξwnẋ(t) + w2
nx(t) = Fx/m,

where m is the modal mass, ξ is the damping ratio, wn is the natural angular
frequency and Fx is the cutting force in the x−direction for a zero helix cutter. The
total cutting force acting in the x-direction, Fx, is given by

Fx(t) = −bKs(t) (x(t)− x(t− τ))− bf0(t),

where b is the nominal depth of cut, Ks and f0 are τ−periodic functions and
characterize the instantaneous chip width and τ is the tooth pass period. Another
milling-process model, introduced by Long et al. in 2007 [92], that give rise to a
delay system with periodic coefficients is described in detail in Section 2.7.



A short survey on delay differential systems with periodic coefficients 307

2.6. Economics

A very few periodic delay models have been developed in economics. There is an
interesting work of Boucekkine et al. in 1999 [17] where the authors showed that job
creation can be modeled by a delayed differential equation with periodic coefficients,
where the delay describes the optimal age of capital goods and the period describes
the length of an exogenous profitability cycle. Their model is given by

h′(t) =

(
−k2(t) +

k′2(t)

k2(t)

)
h(t) + k2(t)h(t− T 0),

where h(t) represents employment associated with vintage t, k2(t)= 1−β
β

(
e−γT

0−p(t)
)

,

β is a share of the surplus going to the worker, 1 − β is a share going to the firm,
e−γT

0

are the produced units (of good from one unit of the non-produced good)
from each unit of labor associated with an operating vintage T 0 and p(t) is the peri-
odic exogenous price. The mathematical analysis and numerical simulations lead to
some conclusions. Firstly, creation is asymptotically periodic with the same period
as the profitability cycle. Secondly, replacement echoes seem to play a fundamental
role in the short run dynamics of job creation and job destruction.

2.7. Models with periodically time-varying delays

In some cases there are good reasons for allowing the delay to vary with time, and
the use of a periodic delay is especially relevant since it can model daily, seasonal
or annual fluctuations. In comparison with the aforementioned systems where the
delay is a constant, the situation becomes more complex, even for modeling, when
the system has periodically time-varying delays such as

y′(t) = F (t, y(t− τ(t), α), (2.8)

where F and τ are smooth functions in (t, y, α) ∈ R× R× Rp for some p ∈ N and
τ satisfies

τ(t+ w) = τ(t)

for some w > 0.
In 2000, Schely and Gourley [119] considered the effect of seasonal fluctuations

on populations in a predator prey model. Liu and Liao in 2004 [90] and Jiang et al.
in 2006 [74] obtained sufficient conditions for the stability of the periodic solutions
of cellular neural networks and bidirectional associative memory neural networks
with time-varying delays by constructing suitable Lyapunov functionals.

In 2007, Long et al. [92], presented a milling-process model with a variable time
delay associated with each cutting tooth as follows,

mxq̈x + cxq̇x + kxqx = Fx (t; τ(t, i, z)) ,

my q̈y + cy q̇y + kyqy = Fy (t; τ(t, i, z)) ,

muq̈u + cuq̇u + kuqu = Fu (t; τ(t, i, z)) ,

mv q̈v + cv q̇v + kvqv = Fv (t; τ(t, i, z)) ,

where the tool has two degrees of freedom and the workpiece has two degrees of
freedom. The variables qx and qy, respectively, represent the tool dynamic displace-
ments measured along the X and the Y directions. The variables qu and qv represent
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the workpiece displacements measured respectively along the U and V directions.
The quantities mx , my , mu, and mv are the modal masses, the quantities cx, cy ,
cu and cv are the modal damping coefficients, and the quantities kx , ky, ku and kv
are the modal stiffness parameters associated with the motions along the X, Y, U
and V directions, respectively. Furthermore, τ(t, i, z) is a periodic variable time
delay introduced in the governing equations through the cutting-force components
F.

Recently in 2015, Wu et al. [146] developed a model describing the evolution
of the ectothermic insects population in each biologically distinctive stage under
seasonally varying periodic environment. The authors used the formulation in Webb
[145], for general structured population dynamics models, and a subdivision of
the life cycle of the given population into n stages to obtain the following stage-
structured population system with temporally periodic delay: for t > An(t),

x
′

1 =δαn (t, t−An(t)) b (x1(t−An(t)))
(

1−A
′

n(t)
)
− µ1(x1(t))x1(t),

x
′

2 =b(x1(t))− α2(t, t−A2(t))b (x1(t−A2(t)))
(

1−A
′

2(t)
)
− µ2(x2(t))x2(t),

x
′

i =αi−1(t, t−Ai−1(t))b (x1(t−Ai−1(t)))
(

1−A
′

i−1(t)
)

− α2(t, t−Ai(t))b (x1(t−Ai(t)))
(

1−A
′

i(t)
)
− µi(xi(t))xi(t), i = 3, . . . , n,

where x1 represents the size of the mature subpopulation who are able to produce
offspring (egg-laying females), xj , j = 2, . . . , n, is the size of subpopulation at the
jth stage, δ is the fixed sex ratio for such population, Ai−1 and Ai are the time-
dependent minimum and maximum ages of those individuals who are developing
within the specific ith stage, αi(t, t − Ai(t)), i = 2, . . . , n, represents the density-
dependent survival probability of an egg who was born at time t − Ai(t) and is
able to live until time t when the egg eventually belongs to the stage xi with full
maturation, b(x1(t)) is the birth rate and µi(xi(t)) is the mortality rate for the ith

stage.
For more models that incorporate periodic delay, see also the work by Berezansky

and Idels [15] described in Subsection 2.2 and the work by Bernard et al. [16]
described in Subsection 2.4.

3. Theory

The theory of periodic systems of delay differential equations has been studied for
a long time and the study of linear periodic systems with time lag dates back at
least to the work of Hahn in 1961 [55], Stokes in 1962 [128], Shimanov in 1963 [120]
and Zver’kin in 1967 [157]. Despite the relatively matured theoretical framework
already established, the main difficulty, however, lies in realizing such a theoretical
framework for specific systems to provide qualitative insights of the dynamics of
these specific systems using the model parameters as explicitly as possible.

Let us look at the following seemingly simple periodic differential equation with
delay

y′(t) = α sin(νt)y(t− r) (3.1)

with a fixed delay r > 0 and constant parameters α, ν ∈ R. Define the period map
T (s): C → C as follows:

T (s)(φ) = ys+2π/ν(φ, s). (3.2)
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We observe that the linear continuous operator T (s) is given by the following vari-
ation of parameters formula

T (s)(φ)(u) = φ(0) + α

∫ s+2π/ν

0

sin(νθ)y(θ − r)dθ.

Thus, it is obvious that T can not be given explicitly if the delay r is not a multiple
of the period 2π/ν. However, if we set, for example, r = 2π and ν = 1, then T
becomes

T (s)(φ)(u) = φ(0) + α

∫ u

−2π
sin(s+ θ)φ(s)ds,

which has a close form. The case of periodic delay difference equations with integer
time lags has received considerable attention. Efforts have been made to develop the
expansion of solutions in terms of a series of Floquet solutions. Earlier results and
discussions about the difficulties involved can be found in Hahn [55] and Zver’kin
[157].

3.1. Floquet theory and stability

The early paper of Halanay in 1961 [56] started the development of the infinite
dimensional version of the Floquet theory for delayed periodic systems, but it gave
only a theoretical possibility for the stability analysis of the most general case.
However, the Floquet theory have been completely developed in Hale and Lunel
by [59] in 1993, Diekmann et al. in 1995 [35] and Avdonin and Germanovich in
1995 [3], when the delay is a multiple of the period. See also the recent development,
by Ford and Lamb in 2007 [47], of some basic of Floquet theory for small solutions.
When the delay is not a multiple of the period, but commensurable with it, then in
some cases, the Floquet multipliers can be deduced from the explicit solution of a
system of ordinary differential equations. By linearizing along a periodic solution of
period 3 of a retarded autonomous equation of delay 1, Skubachevskii and Walther in
2003 [124] have obtained some information on Floquet multipliers of this problem,
and they formulated, under some conditions, a criterion for the hyperbolicity of
the 3-periodic solution. A generalization of this result for irrartional periods is
established, for general linear periodic differential equation with delay 1, by the
same authors in 2006 [125]. By constructing a special boundary value problem
for ordinary differential equations, Dolgii in 2006 [40] determined conditions of
asymptotic stability, of linear periodic delay systems, in terms of the spectrum of
the monodromy operator (Floquet transition matrix).

The most difficult case arises if the delay is incommensurable with the period.
In 1993, Hale and Lunel [59] showed by example that, in this case, a complete Flo-
quet theory will not exist. There is only a Floquet representation on generalized
eigenspaces of characteristic multipliers. For periodic delay differential equations,
the difficulty is that, in general, the monodromy operator has no closed form (see
example given for the linear equation (3.1)), so no closed form stability conditions
can be expected directly except for a few and very special cases. To overcome the
difficulty due to the lack of closed forms for periodic differential equations with
delay, other approaches and alternatives should be developed and exploited. For
example, Mallet-Paret and Sell in 1996 [98] considered a special case of delayed
periodic equations with a cyclic feedback structure. They defined a discrete Lya-
punov function and related their values to the real parts of the Floquet multipliers.
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In particular, they proved that all Floquet subspaces are at most two-dimensional.
A characteristic function in the form of a continued fraction expansion is given for
a scalar delay equation by Just in 2000 [76].

If the given system is monotone (i.e., the comparison principle holds), we may
expect to have some simple but practical criteria of stability. Below we present an
illustrative example.

Let τ ≥ 0 and Y = C([−τ, 0],R). We consider a linear scalar delay equation:

u′(t) = a(t)u(t) + b(t)u(t− τ), (3.3)

where a(t) and b(t) are T -periodic and continuous. Let ut(ϕ) be the solution semi-
flow for equation (3.3) defined by ut(ϕ)(s) = u(t+ s, ϕ),∀s ∈ [−τ, 0], where u(t, ϕ)
is the unique solution of (3.3) with u(s, ϕ) = ϕ(s),∀s ∈ [−τ, 0], ϕ ∈ Y . Define the
Poincar?map P : Y → Y by P (ϕ) = uT (ϕ). It is easy to see that Pn(ϕ) = unT (ϕ)
for all integer n ≥ 0. Let r(P ) be the spectral radius of the linear operator P . The
following result is from Proposition 2.1 of Xu and Zhao in 2005 [147].

Proposition 3.1. Assume that b(t) > 0 for all t ≥ 0. Then r = r(P ) is positive
and is an eigenvalue of P with a positive eigenfunction ϕ∗. Moreover, if τ = kT

for some integer k ≥ 0, then r − 1 has the same sign as
∫ T
0

(a(t) + b(t))dt.

This result shows that if the time delay is an integer multiple of the period, then
the linear stability of the zero solution of (3.3) is determined by that of the linear
ordinary differential equation u′(t) = (a(t) + b(t))u(t), which can be obtained by
ignoring the time delay in (3.3).

In the case where a(t) = −1, b(t) = αg(t), τ = 1 and g : [0,∞) → [0,∞) is
continuous and periodic with arbitrary period T > 0, Chen and Wu in 2013 [25]
used a discrete Lyapunov functional and the monodromy operator to show that
there exists a positive value α∗ such that the solution is stable if α ∈ (0, α∗) and
unstable if α > α∗. When a is a negative periodic function and b is a positive
periodic function with arbitrary period T > 0, such that b(t + 1) − a(t) does not
change its sign, Nah and Röst in 2016 [101] showed that r = 0 is the stability

threshold where r :=
∫ T
0

(a(t) + b(t))dt. Namely, they showed that zero is unstable
when r > 0, stable when r = 0 and asymptotically stable when r < 0.

In 1980, Simpson [123] used the two-timing method to state a Floquet theory
for a class of linear integro-differential equations with periodic coefficients of the
form

x′(t) = A(t)x(t) +

∫ ∞
0

K(t, s)x(t− s)ds, (3.4)

where x is a column vector in Rn, A(t) is an n × n matrix function, periodic in t
with period w > 0, K(t, s) is the kernel function, an n× n matrix function defined
for s ≥ 0, periodic of period w in its first argument, K(t, s) = O(e−γs) as s → ∞
for some γ > 0 uniformly in t. It is assumed also that, for each continuous function
φ : [0,∞) → R such that supθ≤0 | eγ

+θφ(θ) |< ∞ for some γ+ < γ, there exists a
unique x(t) solving equation (3.4) for t > 0 such that x0 = φ. Simpson stated and
proved the following theorem.

Theorem 3.1. Corresponding to (3.4) there exists a set
∑
, called the spectrum of

(3.4), consisting of finitely many points in the complex plane, each µ ∈
∑

satisfying

| µ |> e−γ
+w. Corresponding to each µ ∈

∑
there exist (i) an r × r matrix B

(consisting of complex constants) whose sole eigenvalue is λ where λ = (1/w) logµ
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(Reλ > −γ+; r depends on µ) and (ii) a set of r column vector functions Pµ(t) in
Cn (i = 1, ..., r) which are each periodic of period w. Then for each solution x(t) of
(3.4) generated by initial data satisfying φ there are, for each µ ∈

∑
, unique r × 1

constant complex vectors aµ such that x(t) differs from∑
µ∈

∑ (Pµ1(t), ..., Pµr(t)) e
Btaµ (3.5)

by a function xR(t) which is O(eγ
+t) as t → +∞. Conversely, sums of the form

(3.5) are solutions of (3.4) for arbitrary choices of aµ.

An application of this theory results in a computation of relevant Floquet expo-
nents associated with the linearization of the equations about the periodic solutions.
Using a reduction method of integro-differential equations to systems of ordinary
differential equations obtained by Domoshnitsky in 2003 [38], a study of Floquet
theory for integro-differential equations with periodic coefficients was presented by
Agarwal et al. in 2005 [1]. The authors employed this theory to establish a relation-
ship between oscillation and asymptotic properties of solutions of integro-differential
equations.

See also the work by Tang et al. in 2006 [132] for periodic n-species Lot-
ka–Volterra competition system with periodic delays and the works by Davidson
and Gourley in 2001 [31] and by Pao in 2005 [107] for periodic semilinear parabolic
equations with delays and monotonic cases.

A large flow of numerical methods have been proposed to approximate the infi-
nite dimensional monodromy operator with finite dimensional one with application
to periodic delay differential equations. Examples of numerical methods include,
but are not limited to, the methods based on averaged coefficients method by Minis
and Yanushevsky in 1993 [100], semidiscretization method by Insperger and Stepan
in 2002 and 2004 [71,72], full discretization method by Yilmaz et al. in 2002 [149],
temporal finite element method by Bayly et al. in 2003 [13] and by Mann et al. in
2004 [99], Chebyshev polynomials by Butcher et al. 2004 [24], by Bueler in 2007 [21]
and by Butcher and Bobrenkov in 2011 [23]. A more general result, due to Sza-
lai and its collaborators in 2006 [130], presented a construction of a characteristic
matrix for general periodic delay differential equations, but was only useful in the
numerical continuation of bifurcations. In 2011, Sieber and Szalai [122] showed
that matrices constructed by Szalai et al. [130] can have a discrete set of poles in
the complex plane, which may possibly obstruct their use when determining the
stability of the linear system. Then they modified and generalized the original con-
struction such that the poles get pushed into a small neighborhood of the origin of
the complex plane. In 2012, Tweten et al. [138] provided a comparison of the semi-
discretization, spectral element, and Legendre collocation method and showed that
the spectral element method has the quickest convergence rate. Thus, Khasawneha
and Mann in 2013 [78] developed a general spectral element approach for periodic
systems with multiple delays. This approach was recently generalized by Lehotzky
et al. in 2016 [83] for periodic systems with multiple delays and distributed delay.

3.2. Bifurcation theory

The bifurcation theory studies persistence and exchange of qualitative properties of
dynamical systems under continuous perturbations. Very few “rigorous” works have
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been done for “constructive” bifurcation theory in periodic differential equations
with delay and periodic linearized equations. The first bifurcation result, to the best
of our knowledge, was established by Busenberg and Cooke in 1978 [22]. Busenberg
and Cooke exploited some basic techniques on positive operators and coincidence
theorem to show a transcritical (forward) bifurcation in a class of scalar periodic
delay differential equation of the form

y′(t) = b(t)y(t− T ) (1− y(t))− cy(t). (3.6)

Using Floquet theory and spectral projection method, Röst in 2005 [114] ob-
tained a formula to compute the coefficient that determines the direction of the
Neimark–Sacker bifurcation for some scalar periodic delay differential equations of
the form

y′(t) = γ (a(t)y(t) + f(t, y(t− 1))) , (3.7)

where γ is a real parameter, a(t+1) = a(t), f : R×R→ R is a C4−smooth function
satisfying f(t + 1, ξ) = f(t, ξ) and f(t, 0) = 0 for all t, ξ ∈ R. When a(t) = 0, Röst
in 2006 [115] determined some conditions leading to bifurcation of invariant curves
and four-periodic orbits for the equation (3.7).

Bifurcations in integro-differential equations were also studied. Simpson in
1980 [123], dealt with problems of bifurcation of periodic solutions for systems of
the form (3.4). In his work, Simpson used the two-timing perturbation procedure
to determine conditions which lead to different kind of bifurcations and stability of
their bifurcating branches, namely, Hopf bifurcation and other multi-codimension
bifurcations. Another result of bifurcation in periodic differential equations with
delay was given by Britton in 1990 [20] which carried out a linear stability analysis
for the positive steady-states of a periodic integro-differential reaction-diffusion e-
quation with delay. Domoshnitsky and Goltser in 2002 [39] developed a method of
reduction of nonlinear integro-differential equations (IDE) to a system of ordinary
or delay differential equations to study stability and bifurcation for a wide class of
IDE. In particular, Domoshnitsky and Goltser considered a Hopf bifurcation result
in IDE.

In 2001, Elmer and van Vleck [27] considered traveling wave solutions to delayed
spatially discrete reaction-diffusion equations with periodic diffusion. The authors
have obtained analytic solutions for the traveling wave problem using a piecewise
linear nonlinearity and presented numerical analysis of period doubling bifurcation
in the wave speed.

The Center manifold and normal forms theories are one of the most effective
tools in the study of nonlinear dynamical systems when analyzing bifurcations of a
given type. In 1997, Faria [43] presented the method of normal forms, to calculate
the elements of bifurcations, for periodic functional differential equations of the
form (3.11) where N is a purely nonlinear term. The reason for imposing such a
restriction is due to the difficulty to provide a suitable change of coordinates in the
neighborhood of periodic solutions for a general periodic equations of the form (1.1).
Faria proved that, if certain nonresonance conditions are satisfied, the normal form
on center manifolds of the trivial equilibrium for periodic equations of the form
(3.11) coincides with the normal form for the averaged equation

y′(t) = Lyt + F0(yt),

where F0(φ) = 1
w

∫ w
0
F (s, φ)ds for φ ∈ C. However, Hale and Weedermann in 2004

[61] established a local system of coordinates near a periodic orbit of autonomous
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delay differential equations of the form

x′(t) = f(xt), (3.8)

where f : C → Rn is Ck, k ≥ 1. The key idea to set this system is summarized as
follows: Suppose Γ = {pt : 0 ≤ t ≤ w} is a nontrivial periodic orbit of (3.8), and
consider the linear variational equation

x′(t) = L(t)xt. (3.9)

Since 1 is always a Floquet multiplier of (3.9), consider a decomposition of the
phase space C with respect to µ = 1. One possible choice for the basis of E1(s) is
Φ1(s) = {ṗs, φ2, ..., φd1} , because ṗt is a corresponding eigenvector for µ = 1. Let
T (t, s), t ≥ s, be the solution operators for (3.9), defined by T (t, s)φ = xt(s, φ) for
all t ≥ s and φ ∈ C, where x = x(s, φ) is the solution of (3.9) such that xs = φ.
Assume that Γ is non-degenerate, that is , µ = 1 is a simple Floquet multiplier of
(3.9). In this case a decomposition of C is given by

C = [ṗs]⊕Q1(s),

where Q1(s) is such that T (t, s)Q1(s) = Q1(t). So, the above decomposition is a
natural moving coordinate system in C. Every element in C has a unique rep-
resentation of the form φ = 〈qs, w〉s ṗs + Lsw, where Ls is explicitly defined as
Lsw = w − 〈qs, w〉s ṗs. Furthermore, they gave a description of the flow of (3.8) on
the center manifold of the periodic orbit.

In 2007, Qesmi and Hbid [112] considered a class of nonlinear periodic differential
equations with delay of the form

y′(t) = f (y(t− 1), a (ε sin(νt)), ε cos(νt)) , α) , (3.10)

where ε, ν, α are real parameters, f : R3 → R and a : R3 → R are a C∞−smooth
function satisfying

f (0, a(0, 0), α) = 0 and
∂

dy
f (0, a(0, 0), α) = 0

for all α ∈ R. Thus, equation (3.10) can be viewed as a perturbation, in a special
way, of an autonomous differential equation. They proved the existence of integral
manifolds with periodic structure without any restriction on the relationship be-
tween period and delay. Their method was based on calculation of center manifolds
coefficients for autonomous differential systems with discrete delays. Consequently,
they investigated the saddle-node bifurcation for this class of periodic equations
with delay.

In 2010, Szalai et al. [129] developed an analytic method to compute bifurcation
elements (Poincar–Lyapunov constant) for some periodic delay equations where
the delay is equal to the period. Their method used center manifolds theory but
avoided the computation of their coefficients (Note that despite the publication of
this paper in 2010, it was already accepted for publication in 2008). Deshmukh et
al. in 2008 [32] used a nonlinear extension of the infinite dimensional monodromy
operator defined by Halanay in 1966 [57], for linear periodic delay equations, to
reduce the system of T -periodic delay differential equations of the form

ẋ(t) = A(t)x(t) +B(t)x(t− τ) + εf (x(t), x(t− τ), t)
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on center manifolds. Their method does not involve the explicit computation of the
adjoint equation and formalize the center manifold theory. However, it is applied,
once again, only when the period is the same as the delay.

3.3. Oscillations and periodic solutions

A solution of a given dynamical system is called oscillatory if it has arbitrary large
zeros. Otherwise it is called non-oscillatory; that is, if it is eventually positive or
eventually negative. Oscillation theory has long been rich and attractive areas of
mathematical research. This section will be organized following different class of
differential equations: Periodic equations with constant delays, Periodic equations
with periodic delays, periodic neutral differential equations and periodic semi-linear
parabolic equations.

Oscillations in periodic differential equations with constant delay of the form

y′(t) = L(yt) +N(t, yt, µ), (3.11)

where L(φ) is a linear map in φ, and N(t, φ, µ) is a perturbation term which is small
for small φ and µ relative to linear part, has been studied first by Driver in 1963 [41],
Bellman and Cooke in 1963 [14], Cooke in 1965 [28] and Perello in 1968 [108]. The
authors used the theory of linear systems, given by Hale in 1963 [58], in order to
establish procedures for studying the oscillations of perturbed autonomous linear
systems by a periodic terms.

By appealing to theory of global attractors and steady states for uniformly per-
sistent dynamical systems (see Zhao [152] and Long et al. [92] for more details),
Zhao [154], in 2008, established the existence of interior periodic solutions for dis-
sipative periodic functional differential equations. This result is then applied to a
multi-species competitive system and a SIS epidemic model. The following result
is from Theorems 3.1 of Zhao [154].

Consider a periodic retarded functional differential equation

dx(t)

dt
= f(t, xt) (3.12)

with f : R × C → Rm a continuous and bounded map, f(t, φ) a locally Lipschitz
function in φ, and f(t+ ω, φ) = f(t, φ) for some ω > 0.

Theorem 3.2. Let M be a closed subset of C and M0 be a convex and relatively
open subset in M such that for any φ ∈M , the unique solution x(t, φ) of (3.12) with
x0 = φ exists on [0,∞), and both M and M0 are positively invariant for solution
maps xt, t ≥ 0. Assume that

(i) Solutions of (3.12) are ultimately bounded in M in the sense that there is a
number K0 > 0 such that lim sup

t→∞
‖xt(φ)‖ ≤ K0 for all φ ∈M .

(ii) Solutions of (3.12) are uniformly persistent with respect to M0 in the sense
that there exists η > 0 such that lim inf

t→+∞
d(xt(φ), ∂M0) ≥ η for all φ ∈M0.

Then system (3.12) has at least one ω-periodic solution x∗(t) with x∗t ∈M0 for
all t ≥ 0.

Freedman and Wu [48], in the best of our knowledge, was the first who proved
the existence of positive periodic solutions of single-species population growth mod-
els with periodic delay and periodic coefficients given by (2.5). In particular, using
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Horn’s asymptotic fixed point theorem, they stated and proved the following theo-
rem.

Theorem 3.3. Assume that
(H1) For any continuous w−periodic function x : R → R, t 7→ B(t, xt) is

w−periodic function.
(H2) There exists a positive w−periodic continuously differentiable function K(t)

such that D(t,K(t)) = B(t,Kt) for t ∈ R.
(H3) For all t ∈ [0, w], we have

inf
x∈R

Dx(t, x)− sup | Bφ(t, φ) |
maxθ∈[0,w]K(θ)

K(θ)
> 0,

where | Bφ(t, φ) | denotes the operator norm of the bounded linear operator Bφ(t, φ) :
C → C.

(H4) There exists a constant δ > 0 such that for every δ0 ∈ (0, δ), and for any
φ ∈ C with φ(s) ≥ φ(0) = δ0, we have B(t, φ)−D(t, φ(0)) ≥ 0.

Then the model equation (2.5) has a positive w−periodic solution Q(t). More-
over, if

inf
x∈R

Dx(t, x)− sup | Bφ(t, φ) |
maxθ∈[0,w]Q(θ)

Q(θ)
> 0,

for all [0, w], then Q(t) is globally asymptotically stable with respect to positive
solutions of (2.5).

Freedman and Wu pointed out that it would be of great interest and difficulty to
consider the existence of positive periodic solutions of higher-dimensional systems
with periodic delays, such as predator–prey or competitive systems. In 1997, com-
bining the theory of monotone flow generated by FDEs, Horn’s asymptotic fixed
point theorem and linearized stability analysis, Tang and Kuang [133] answered the
Freedman-Wu’s question and proved the existence, uniqueness and global asymp-
totic stability of positive periodic solutions for periodic Lotka-Volterra system with
periodic time delay of the form

ẋ(t) = xi(t)Fi (t, x1(t), · · ·xn(t), x1(t− τ(t)), · · ·xn(t− τ(t))) , i = 1 . . . n.

In 1998, Li [86] studied the periodic differential equations with several periodi-
cally varying delays of the form{

y′(t) = F (t, y(t− τ1(t)), ...., y(t− τn(t))),

y(s) = φ(s).φ(0) > 0, φ ∈ C
(3.13)

where F (t, z1, . . . , zn) ∈ C
(
Rn+1,R

)
, F (t + w, z1, . . . , zn) = F (t, z1, . . . , zn), τi ∈

C(R, [0,∞)), τi(t+w) = τi(t), i = 1, . . . , n, and w > 0 is a constant. By using some
techniques of the Mawhin coincidence degree theory, Li proved the existence of a
positive periodic solution of the initial value problem (3.13) as follows.

Theorem 3.4. Suppose the following conditions hold :
(i) there exists a constant C > 0 such that if x(t) is a continuous w−periodic

function and satisfies∫ w

0

F (t, ex(t−τ1(t)), . . . , ex(t−τn(t)))dt = 0,
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(ii) there exists a constant H > 0 such that when ui ≥ H, i− 1, . . . , n,

F (t, eu1 , . . . , eun) > 0 and F (t, e−u1 , . . . , e−un) < 0,

uniformly hold for t ∈ [0,∞). Then the initial value problem (3.13) has at least one
positive w−periodic solution.

In 2000, Schely and Gourley [119] considered scalar models incorporating a small
discrete periodic delay. They shows that the steady state (if it can ever bifurcate)
will bifurcate to periodic solutions. Furthermore, two-timing method was used to
investigate how the stability of the system differs from that with a constant delay.
Using the coincidence degree method, existence of positive periodic solutions for
periodic differential equations with periodic state-dependent delays was considered
by Li and Kuang in 2001 [85].

By applying a perturbation method to a class of differential equations with
periodic delay close to zero, Qesmi and Hbid in 2006 [111] transformed the studied
equation into a perturbed periodic ordinary differential equation. This technique
can be a powerful tool to show existence of positive periodic solutions for general
periodic systems with small periodic delays (See the work by Qesmi [110]).

Very little is known about positive periodic solutions for general non-monotone
periodic systems with periodic delays. To the best of our knowledge, the most
important work was done by Faria [44] in 2016. The author used the Schauder fixed
point theorem and relies on the permanence of the system to prove the existence
of periodic solutions for n-dimensional periodic delay differential equations, with
patch structure and multiple time-varying delays, of the form

x′i(t)=−di(t)xi(t)+
n∑

j=1,j 6=i

aij(t)xj(t)+

m∑
k=1

βik

∫ t

t−τik(t)
bik (s, xi(s))dsηik(t, s), i=1, . . . , n,

where all the coefficients and delay functions are assumed to be continuous, non-
negative and periodic on t, with a common period w > 0, and ηik(t,s) are bounded,
nondecreasing on s, locally integrable on t and w-periodic.

Periodic solutions and oscillation theory of periodic neutral differential equations
have received much attention. In 1974, Hale and Mawhin [60] applied the Fredholm
alternative technique and a generalized Leray-Schauder theory to prove the ex-
istence of w−periodic solutions of neutral differential equations with w−periodic
coefficients of equations of the form

d

dt
D(t)xt = f(t, xt), (3.14)

where D(t)φ = φ(0) − A(t)φ and A(t) : C 7→ Rn for t ∈ R and φ ∈ C. In 1975,
Lopes [93] showed the existence and stability of periodic solutions of a class of
periodic neutral differential equations, which include many applications to problems
arising in transmission lines area, of the form

(x(t)+qx(t−r1)−µx(t−r2)−µqx(t−r1−r2))
′
=g (x(t))−qµg (x(t−r1−r2))+p(t),

where g is monotonic nondecreasing function, p is periodic and µ, q satisfy some
conditions.

The relationship between the oscillation of all solutions of a class of linear neutral
differential equations and the corresponding multiplier Floquets was established
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first, in 1990, by Huang and Chen [66]. In particular, they proved that linear
neutral differential equations with periodic coefficients of the form

(x(t)− px(t− r))′ +
n∑
i=1

qi(t)x(t− τi) = 0, (3.15)

where 0 ≤ p ≤ 1, r > 0, τi = ir and qi(t) ≥ 0, i = 1, ..., n are continuous, r−periodic
functions, are oscillatory if and only if all the roots of the corresponding charac-
teristic equation are purely complex. The same results were proved by Ladas in
1984 [82] and Huang in 1988 [65], but for non-neutral delay differential equations,
(i.e, p = 0), with periodic coefficients, without sign restrictions on the coefficients
qi. In 1991, Ladas, Philos and Sficas [81] generalized the result for neutral equations
with two delays of the form

(x(t)− px(t− n1w))
′
+Q(t)x(t− n2w) = 0,

where Q is w−periodic, n1, n2 are positive integers. More precisely, they showed
that every solution of the neutral equations with periodic delay oscillates if and
only if every solution of an associated neutral equation with constant coefficients
oscillates. For non-neutral delay differential equations, (i.e, p = 0), but with general
relationship between delays and period (i.e τi 6= ir), the oscillation phenomena for
equation (3.15) was established by Philos in 1992 [109] for constant delays and by
Kordonis and Philos in 1999 [79] for periodic delays (i,e. τi = τi(t)) and periodic
integro-differential equations. For nonlinear neutral equations with two delays, In
2002, Tanaka [131] gave a necessary condition of oscillation of all solutions of the
following equation

[x(t)− h(t)x(t− τ)]
′
+ σq(t) | x(t− ρ) |γ sgnx(t− ρ) = 0,

where σ = ±1, γ > 0 and h, q are positive functions which can be periodic or not
periodic.

In 1990, using Fredholm alternative technique for periodic solutions of some
linear neutral equations and a generalized Leray-Schauder theory, Erbe, Krawcewicz
and Wu [42] show the existence of periodic solutions for some periodic boundary
value problem (BVP) of neutral functional differential equations of the form{

[x(t)− c(t)x(t− r)]′ = f(t, xt),

x(0) = x(w),

where f : R×C → R is a completely continuous mapping w−periodic with respect
to the first variable. Their approach consists to reduce this BVP to a BVP of
retarded periodic differential equations of the form{

x′(t) = g(t, xt),

x(0) = x(w),

avoiding the neutral character of the BVP. This reduction principle turned out to be
a powerful and useful tool to extend the existence results established for the periodic
boundary value problems of certain retarded equations to neutral equations.

Zhao [154], in 2008, generalized Theorem 3.2 of existence of interior periodic
solutions to dissipative periodic neutral functional differential equations of the form
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(3.14) where D(t) is now defined as follows: Suppose that A(t, θ) is continuous
m×m matrix function and D0 : R→ L(C,Rm) is a C1-continuous map such that
both A and D0 are ω-periodic in t and the zero solution of the linear functional
equation

D0(t)yt = 0, y0 = φ

is uniformly asymptotically stable for φ ∈ CD0
=: {φ ∈ C : D0(0)φ = 0}. For a

given t ∈ R, we define D(t) : C → Rm by

D(t)φ = D0(t)φ+

∫ 0

−τ
A(t, θ)φ(θ)dθ.

We have the following

Theorem 3.5. Let M be a closed subset of C and M0 be a convex and relatively
open subset in M such that for any φ ∈M , the unique solution x(t, φ) of (3.14) with
x0 = φ exists on [0,∞), and both M and M0 are positively invariant for solution
maps xt, t ≥ 0. Assume that

(i) Solutions of (3.14) are ultimately bounded in M .
(ii) Solutions of (3.14) are uniformly persistent with respect to M0.
Then system (3.14) has at least one ω-periodic solution x∗(t) with x∗t ∈M0 for

all t ≥ 0.

In applications of the above theorem and Theorem 3.2, one may prove the uni-
form persistence for a given periodic and time-delayed system with the help of the
persistence theory for periodic semiflows, see the subsequent section 3.5 for some
references.

In 2015, using topological theory, Gao et al. [50] investigated the existence of
periodic solutions of a class of Linard type equations with a deviating argument of
the form(

| x′(t) |p−2 x′(t)
)′

+ f(x(t− τ))x′(t− τ) + β(t)g (x(t− τ)) = e(t)

where p > 1, τ¿0,
∫ T
0
β(s)ds 6= 0, e(.) is T−periodic and

∫ T
0
e(s)ds = 0.

At the same time, much attentions have also been paid to periodic semi-linear
parabolic equations with delays where time lag is taken into consideration in non-
linear reaction functions, see for example, the work of Feng and Lu in 1996 [45],
Lu and Feng in 1996 [96]; Feng and Lu in 1999 [46], Pao in 2005 [107], Wang et al.
in 2006 [140]; Wang in 2008 [139], Yang et al. in 2010 [148] and Wang and Yin in
2011 [143]).

3.4. Spreading speeds

The theory of asymptotic speed of spread (in short, spreading speeds) for periodic
systems with delay has attracted less attention as well. The intuitive interpretation
for the spreading speed v0 in a spatial epidemic model can be stated as follows: If
one runs at a speed v > v0, then one will leave the epidemic behind; whereas if one
runs at a speed v < v0, then one will eventually be surrounded by the epidemic.
To the best of our knowledge, this theory has been developed first, for delayed
periodic systems by Liang, Yi and Zhao in 2006 [88]. Using the Poincaré(period)
map method, the authors extended the results by Liang and Zhao in 2007 [89], for
spreading speeds traveling waves for monotone autonomous semiflows, to periodic



A short survey on delay differential systems with periodic coefficients 319

systems with general delay. In the following, we will state the results obtained by
Liang, Yi and Zhao [88]:

Define, for r ∈ C (the set of all bounded and continuous functions from [t, 0]×
R to Rk),

Cr := {u ∈ C : r ≥ u ≥ 0} .

A map Q : Cr → Cr is said to be subhomogeneous if Q(ρv) ≥ ρQ(v) for all ρ ∈ [0, 1]
and v ∈ Cr. Let w > 0 and r ∈ Cr with r ≥ 0 be given. A family of mappings
{Qt}t≥0 is said to be an w−periodic semiflow on Cr provided Qt has the following
properties: (i) Q0(v) = v ∀v ∈ Cr. (ii) Qt+w(v) = Qt(Qw(v)), t ≥ 0, v ∈ Cr. (iii)
Q(t, v) := Qt(v) is continuous in (t, v) on [0,∞)×Cr. The mapping Qw is called the
Poincaré map associated with this periodic semiflow. Now we are in the position
to state the main result in [88]. However, we will avoid some technical assumptions
(A1-A5 in [88]) on the w−periodic semiflow and we refer the reader to the same
paper for more details.

Theorem 3.6. Let {Qt}t≥0 be an w-periodic semiflow on Cr with two x-independent
w-periodic orbits 0 ≤ β(t). Suppose that the Poincaré map Q = Qw satisfies all hy-
potheses (A1)–(A5) in Liang et al. with β = β(0), and Qt satisfies (A1) for any
t > 0. Let c∗ be the asymptotic speed of spread for Qw. Then the following statements
are valid:

(1) For any c > c∗/w, if v ∈ Cβ with 0 ≤ v ≤ β, and v(., x) = 0 for x outside a
bounded interval, then limt→∞Qt(v)(θ, x) = 0 uniformly for θ ∈ [−τ, 0].

(2) For any c < c∗/w, if σ ∈ Cβ with σ ≥ 0, there is a positive number rσ
such that if v ∈ Cβ and v(., x) ≥ σ(.) for x on an interval of length 2rσ, then
limt→∞ (Qt(v)(θ, x)− β(t)(θ)) = 0 uniformly for θ ∈ [−τ, 0]. If, in addition, Qw is
subhomogeneous, then rσ can be chosen to be independent of σ ≥ 0.

As application of this theory, Jin and Zhao in 2009 [75] proved the existence of
the asymptotic speed of spread for a periodic reaction-diffusion population model
with delay.

3.5. Persistence

A basic and important ecological question associated with the study of mathe-
matical population interaction models is the long-term coexistence of the involved
populations. Mathematically, this is equivalent to the so-called persistence of the
populations. We say a population x(t) is persistent if lim inft→∞ x(t) > 0, and we
say a system is persistent if all its populations are persistent. The persistence the-
ory of periodic systems with delay has also received some attention. An excellent
survey of persistence of nonautonomous and infinite dimensional systems was given
by Hutson and Schmitt in 1992. Persistence aspects for general nonautonomous
delay Kolmogorov-type population models of the form{

x′(t) = x(t)f(t, xt, yt)

y′(t) = y(t)g(t, xt, yt),
(3.16)

where f, g : R×C × C → R are continuous and Lipschitz in (φ, ψ) ∈ C × C, were
presented by Kuang and Tang in 1993 [80]. They proved that system (3.16) is
uniformly persistent under the following assumptions:
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(K1f ) : There exist positive constants δ1 = δ1(f), δ2 = δ2(f), K1 = K1(f),
K2 = K2(f), with K1 < K2 such that for all t ≥ 0,

f(t, xt, 0) > δ1, for x(t+ θ) ∈ [0,K1], θ ∈ [−τ, 0],

and
f(t, xt, 0) < −δ2, for x(t+ θ) ∈ [K2,∞], θ ∈ [−τ, 0].

(K2f ) : f(t, xt, 0) ≥ f(t, xt, yt) for all t ≥ 0, xt, yt ∈ C+, and there exist positive
constants δ3 = δ3(f) and k = k(f) such that t ≥ 0, xt ∈ C+

f(t, xt, yt) < −δ3, for y(t+ θ) ∈ [k,∞], θ ∈ [−τ, 0].

Also, for each pair (x0, y0), x0 > 0, y0 > 0, there exists l(x0, y0) such that

f(t, xt, yt) ≥ −l(x0, y0), for q xt q< x0, q yt q< y0.

(K3f ) : There exists a positive constant M = M(f), such that

f(t, xt, yt) < −δ3, for t ≥ 0, xt, yt ∈ C+.

In (K1f )–(K3f ) they replaced f by g and denote the resulting assumptions as
(K1f )–(K3f ), respectively.

Their method is based on the construction of a set of proper autonomous or-
dinary differential systems whose solutions can serve as lower or upper bounds for
the delayed system (3.16) in certain regions.

In 1993, Thieme [134] proved that, under relaxed point dissipativity, uniform
weak persistence implies uniform strong persistence. A more general result of u-
niform strong persistence with applications to periodic delay differential equations
was presented by Thieme in 2000 [135]. Zhao in 1995 [152] and 2003 [153], re-
spectively, proved that the uniform persistence of a periodic semiflow is equivalent
to that of its associated Poincaré map. Thus, one can use the theory of uniform
persistence for discrete-time semiflows to obtain the uniform persistence for a peri-
odic and time-delayed system. In 2005, Xu and Zhao [147] considered the following
periodic system of competing mature populations

u̇i(t) = ui(t− τi)Fi(t, ui(t− τi))− ui(t)Gi(t, u1(t), . . . , um(t))

= fi(t, u1(t), . . . , um(t), ui(t− τi)), 1 ≤ i ≤ m,
(3.17)

where the continuous function fi(t, u1, . . . , um, vi) is T -periodic in t, and Lips-
chitzian in (u1, . . . , um, vi) in any bounded subset of Rm+1

+ , 1 ≤ i ≤ m. By ap-
pealing to theories of monotone dynamical systems, periodic semiflows and uniform
persistence, they analyzed the evolutionary behavior of this system and established
sufficient conditions for competitive coexistence and exclusion.

4. Conclusions

We intended to give a short survey of some existing studies on periodic systems
of delay differential equations. In principle, all general results of periodic processes
and maps on infinite dimensional spaces can be used to study the qualitative theory
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of periodic systems of delay differential equations. Thus, our choice of topics has to
be limited to those addressing the interaction of delay and periodicity. Faced with
the wide number of results connected with delay systems with periodic coefficients,
we hope that this overview has provided some enlightenment to the matter. Despite
significant progress in theories for such systems, there are still many questions that
need to be discussed for more general cases. Some open questions that come to
mind are, for example, explicit stability threshold for general linear delay equations
with periodic coefficients, the influence of the periodicity of the coefficients on the
intrinsic oscillations of the equations such as those caused by the time delay. Which
mechanisms are dominating for specific oscillation and how delay and periodicity
interact to generate complicated behaviors remain challenging questions too. Fur-
thermore, spreading speeds and persistence theories has received little attention in
the literature. Although some progress known recently for relating theory to appli-
cation (such as establishing relationship between the basic reproduction number R0

and the spectral radius of the generation evolution operator and/or the Malthusian
parameter), there is still a great challenge to link general analytic results to specific
systems arising from important applications.

Delay equations with periodic coefficients are widely considered in epidemiology,
ecology, seasonal migration and engineering, however applications in economics and
biology (especially in-host modeling for infectious diseases and cell biology) are
lacking. Finally, it is possible to argue that it is essential or at least interesting
to include stochastic effects, threshold delays and age structures in biological delay
models with periodic parameters. Overall, many challenges are thus opening the
way to the new generations of interdisciplinary researchers.
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