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THE ASYMPTOTIC BEHAVIORS OF A
STOCHASTIC SOCIAL EPIDEMIC MODEL
WITH MULTI-PERTURBATION

Xunyang Wang!, Qingshan Yang®' and Haifeng Huo!+?

Abstract Alcohol abuse is a major social problem, which is often called
social epidemic, for the some similarities to the classical infectious diseases.
In this paper, we formulated a new stochastic alcoholism model based on the
deterministic model proposed in [24], with the mortalities of all populations as
well as the contact infected coefficient are all perturbed. Based on this model,
we investigate the long-term stochastic dynamics behaviors of two equilibria
of the corresponding deterministic model and point out the effect of random
disturbance on the stability of the system. Finally, we carry out numerical
simulations to support our theoretical results.

Keywords Stochastic differential equation, Ergodic, positive recurrence, s-
tochastic Lyapunov functional.
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1. Introduction

As we all know, currently, some social behaviors such as drinking and smoking
as well as drug abuse et al are more frequently occurred than any previous historical
period although the rapid development of social economy and technology, with part
of the reasons are probably that the pressure of people’s life is increasing day by day
and the way of life is diversified [10]. Among of these irrational social behaviors,
drinking is particularly serious in doing harm to society and individuals, for example,
drunk driving and drunk dangerous sexual behaviors frequently occurred [1,15,21].

There are studies show that drinking and smoking as well as drug abuse and so
forth are social infectious disease, since their transmission characteristics are just
similar to the infectious diseases in the common sense [26], such as influenza, maria,
et al. Based on such facts, we can use the compartment theory of infectious disease
to formulate appropriate mathematical model to investigate the law of the spread of
alcoholism. Recently, there appeared many research papers on modeling alcoholism
from several aspects. Specifically speaking, one is the prediction of the development
trend of alcoholism [9,14,28], the second is the control of alcohol abuse [11,24], the
third is complications caused by alcohol abuse [17,19,22, 23], the forth is taking
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the complexity of alcohol abuse into consideration, and formulate complex network
alcoholism models [2,8], and so on(please see the references therein).

We can easily found that almost all the models formulated in the above-mentioned
references are deterministic. Actually, it doesn’t agree with the reality completely,
since drinking behavior is influenced by many random factors, such as climate, cus-
toms, habits, individual mood and so on. Considering these random factors, based
on alcoholism model proposed in [25] as

S = pN — (1 —u (1) 532 — uS,
A= (1= uy (£) 232 + €T — (ua(t) + p) A

1.1
T = us()A— (u+ € + 0T, -
Q' = 6T — 4Q,
we modify the standard contact infection rate /3 SA into saturated form as %)AA((:))

and omit the corresponding control factors ( please see the reasons described in [25]),
we formulate a new deterministic alcoholism model as

8/ =11 - %%%*mﬂm
A= BSOR0) G A(t) + T () — taAlt),
=& A(t) = &T(t) —nT'(t) — wT(t),
Q' =nT(t) = pngQ(t).
Furthermore, we perturbed the mortality rates of all kinds of population involved
due to the influence of alcohol abuse as that [25]:

(1.2)

s = s + €ITOT1, [lq = [lq + €TTOYra, [l = (4 + €ITOr3, [lg = [4q + E€ITOI4.

By the central limit theorem, the error terms may be approximated by normal
distributions with mean zero and variance o2dt,1 < i < 4 respectively, so we
represent them as

error;dt = 0;dB;(t), 1<i<4.

Hence, we formerly got a stochastic alcoholism model in [25] as follows:

dS(t) = (11— 538280 — 1 S(#))dt + 01 S(t)d By (8),

dAWM) = (050 — S A0 + T — meAW)dt + 2 ABABa(D), o
dT(t) = (@A(t) = &T(t) = T () — pT(8))dt + 05T (t)dB(1)
)=(

dQ(t) = (NT(t) — pqeQ(t))dt + 04Q(t)dBa(t).

The model (1.3) is obviously more objective and reasonable than the models
(1.1) and (1.2). However, the model (1.3) only embodies the effect of alcohol on
population mortality. Then, besides, in this paper, we will further continue to
consider the random effect of alcoholism on contact infection coefficient. Hence,
we let (0, F,{F}i1>0,P) be a complete probability space with a filtration {F;}i>0
satisfying the usual conditions ( i.e., it is increasing and right continuous while
Fo contains all P-null sets), and let B;(t),0 < ¢ < 4 be 5 independent standard
Brownain motion. In practice, we usually estimate a parameter by an average value
plus an error term. In this case, the parameters 3, s, ftq, i+ and p, in equations

(1.1) change to random variables B, Tis, lia, fir and g respectively such that

B = B4errorg, [ = Ws+EITory, lg = flq+€ITOrs, [y = [i;-FEITOrs, [ig = [ig+erTory.
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By the central limit theorem, the error terms may be approximated by normal
distributions with mean zero and variance o?dt,0 < i < 4 respectively, so we
represent them as follows

error;dt = ZUideJ’(t)a 0<13<4,

where {B,(t),t > 0},1 < j < d is a sequence of independent scaled Brownian
motion.

To this end, we finally formulate a new stochastic alcoholism model as

d

ds(t) =(— 6111(7)%1(()) 1sS(t)) dt— ’; Zaodej Zolde

dA(t) (1+(v)j((;)) fA(t)+£2T(t)—uaA(t))dt+mgawd&(ﬂ
t) Z 9, dB;(t)

dT(t) =(& A(t) — &T(t) — nT(t) — peT(t))dt — T Zag,de

dQ(t) =(nT(t) — pgQ(t))dt — Q Zm,]dB

(1.4)

Since the compartment Q(t) is determined by the compartment T'(¢), for the

sake of simplicity, we can omit the compartment Q(¢) and just analyze the following
3-dimension SDE unless explicit emphasis throughout this paper:

o BS(HA®) SHA() ¢ .
ds(t) _(H—W—ussu))dt—HVA(t)j;UO,dej(t)—S(t)Zal,dej(t)
d
1) (050 — a0 + &T(0) - Ay + SO0 S a0 a0
d
A(t)Y " 02,;dB; (1)
j=1
dT(t) =(&A(t) — &T(t) — nT(t) — T (t) Zagde

(1.5)

The parameters involved in (1.4) and their explanations, please see Table 1. In

this paper, we will utilize stochastic analysis method and technique to investigate
the behaviors of the sub-dynamic (1.5).

This paper is arranged as follows. In section 2, we put forward preliminaries

including some tools for stochastic analysis and fundamental results of the cor-

responding deterministic model (1.3); In section 3, we discuss the existence and
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Table 1. The parameters description of model(1.3).

Parameter Description

sy fhas [ty fog Death rate in S(t), A(t), T'(t), Q(t) accordingly

I6] Transmission coefficient between S(t) and A(t)

11 The recruitment constant of population

vy Half saturation coefficient

& The ratio of alcoholics in the treatment

& The ratio of the treatment population who are failed and return to be
alcoholisms

n The ratio of successfully treated population and never drink hereafter

0;,1=0,1,2,3,4 Disturbance intensity according to 3, fis, fa, tit, fq Tespectively

Bj,j=1,---,d a sequence of independent scaled Brownian motions

uniqueness of the positive solution of (1.4); In section 4, we discuss the stochastic
stability of alcohol free equilibrium point Ejy; In section 5, we discuss the stochastic
stability of the internal alcoholism equilibrium point E*; In section 6, we carry out
some simulations to support our theoretical results; In last section, we give some
conclusions to end this paper.

2. Preliminaries

Firstly, we give some criteria on the ergodic property. Denote
Rl_i_:{xERl:xi>0fora111§i§l}.

In general, let X be a regular temporally homogeneous Markov process in E; C Rl+
described by the stochastic differential equation

d
dX(t) =b(X(t))dt+ Y o (X () dB,(t), (2.1)
r=1

with initial value X (t9) = x9 € E; and B,(t),1 < r < d, are standard Brownian
motion defined on the above probability space. The diffusion matrix is defined as

follows
d

Alz) = (Aij(2))1; <y s Aila) =Y ol (x)ol(x).

r=1
Define the differential operator L associated with equation (2.1) by
l 9 1 ¢ 02
L=Y" e N P ¢

i=1 g=1

If L acts on a function V € C?1(E; x Ry; R), then

l l
ov 1 0?V
i=1 ? .. K2 J

3,j=1
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2 A
where V, = (37‘/17 e ,%) and Vi, = (Bfig;j)m. By Ito’s formula, we have

d
dV(X(t)) = LV(X(t))dt + Z Vo (X (2)or (X(t)) dB(t).

Lemma 2.1 ( [6]). We assume that there exists a bounded domain U C E; with
reqular boundary, having the following properties:

(i) In the domain U and some neighborhood thereof, the smallest eigenvalue of
the diffusion matriz A(x) is bounded away from zero.

(ii) If x € E\U, the mean time 7 at which a path issuing from x reaches the set
U is finite, and sup ¢y E,7 < 0o for every compact subset K C Ej.

Then, the Markov process X (t) has a stationary distribution v(-) with density
in Ey such that for any Borel set B C E)

tlirgo P(t,z,B) = v(B),
and

1 (T
Pw{Tli_I}éOT / F(eo)e= [ f<x>v<dm>} 1,
for all x € E; and f(x) being a function integrable with respect to the probability
measure v.

Remark 2.1. (i) The existence of the stationary distribution with density is
referred to Theorem 4.1 on page 119 and Lemma 9.4 on page 138 in [6] while
the ergodicity and the weak convergence are referred to Theorem 5.1 on page
121 and Theorem 7.1 on page 130 in [6].

(ii) To verify Assumptions (B.1) and (B.2), it suffices to show that there exists a
bounded domain U with regular boundary and a non-negative C2-function V'
such that A(z) is uniformly elliptical in U and for any « € E;\U, LV (z) < -C
for some C' > 0 (See e.g. [30, pp. 1163]).

To facilitate subsequent analysis, we can derived the alcohol-free equilibrium FEj
of deterministic model (1.2), that is, Ey = (%,0,0,0), and get the fundamental
reproduction number of alcoholism as '

I o+ 1+

Bo= B et i) + e Tt )

Simultaneously, the following results is given in [25].

Theorem 2.1 ( [25]). For the system (1.2), when Ry < 1, it only exists an
alcohol-free equilibrium Ey = (I%,O,O,O) and it is globally asymptoticly stable;

when Ro > 1, besides Eq (it is not stable), there also exists an internal equilibri-
um E* = (S*, A*, T*,Q*), which is globally asymptoticly stable.
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3. The existence and uniqueness of the positive
solution of (1.4)

In this section, we will investigate the existence and uniqueness of the global solution
of system (1.4) under the given initial conditions ( i.e., it won’t blow up in a limited
time ), we generally require that the coefficient of stochastic system (1.4) satisfy
the linear growth condition and the local Lipschitz condition [16]. However, the
coefficient of the system (1.4) does not satisfy the linear growth condition, therefore,
the solution is likely to blow up in a finite time. In the following, we will use
the analysis method of Lyapunov functional to prove global existence of positive
solution.

Theorem 3.1. For arbitrary initial value (S(0), A(0),7(0),Q(0)) € Ry, ast >0,
the system (1.4) exists a unique positive solution (S(t), A(t), T(t), Q(t)), which fall
in R almost with probability 1, i.e., (S(t), A(t),T(t),Q(t)) € Ry, a.s.

Proof. We firstly prove that system (1.4) exists a unique local solution. Noticing
that the right hand of the system (1.4) does not satisfy the local Lipschitz condition,
we introduce variable transformations S = €%, A = e¥, thus, the system (1.4) can
be converted into the one whose coefficients satisfy the local Lipschitz condition.

Next, we prove that the only solution is positive and non-explosive. We assume
that system (1.4) only exists the unique local solution (S(t), A(t), T(t),Q(¢)), t €
[0, 7.), where T, means the explosive time. To show that the solution is global, we
should prove 7. = 00, a.e.. Exists a sufficient large mg such that (S(0), A(0),7(0),
Q(0)) € [mio,mo]. For arbitrary positive integer m > myg, we define the stopping
time

Tm = inf{t € [0,7.) : min{S(t), A(t),T(t),Q(t)} <
max{S(t), A(t), T(t), Q(t)} = m},

here, inf ¢ = co(¢ means empty set). Obviously, as m — 00, 7y, is monotonically
increasing. Due to 7, < 7., sequence {7,,} is convergent. Let 7o = lim 7y, so
m—o0

1
— or
m

Too < Te a.s.. If we can show 7., = 00, so is 7, = oo obviously.

We take apagoge to prove this conclusion. Assume 7o, # 00 (i.e., Too < 00),
then there must be a large enough positive constant 7" and a small enough positive
constant € € (0,1) such that

Pl{ree <T} > e

Hence, there exists a positive integer m; > mg such that
P{rm <T} > €e,Ym > my. (3.1)
We define a Lyapunov functional V; : Rfl,_ — R, as follows
(S, AT.Q)=(S-1-InS)+(A-1-ImA)+(T-1-InT)+(Q—-1-1nQ).

By the simple inequality of u — 1 —Inu > 0,Vu > 0, it’s easy to know V (S, A, T, Q)
is nonnegative. In virtue of It6 formula, we calculate the stochastic differential of
V(S,A,T,Q) along with (1.4) as follows

H+ BA i B8S

L‘/IZH_MSS_NaA_NtT_MqQ_E 1+'YA Ms_m

+&—&£
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A T d A? d
+ la £1T+§2+77+m nQ+Mq+]§:100’](1+7A)2+]E:101’j

d

g2 d d d
+Y O T Y 0s Y 0k + ) 03,
(1+~A4) = = =

Jj=1
d

d
A2 s
gC(1+S+A+Q+T)+ZU§JW+Z(’3im
1 j=1

i
d d
SCA+S+A+Q+T)+)) 05,42+ 05,5
j=1

j=1

<C(1+S+A+Q+T+A*+ 5% (3.2)

for some positive constant C.
Define another Lyapunov functional Vs : RY — Ry as follows

Vo(S,AT,Q) = (S+A+T+Q)>.
By calculation, we note that

LVVQ:2(S+A+Q+T)(H_H_MSS_MQA_MtT_/J’qQ)

d d d d
+3°02,8% 4+ 03,4213 0217+ Y o3, (3.3)
Jj=1 j=1 j=1 j=1
< C(1+V2),

where the last inequality is derived by the Holder’s inequality and the definition of
V5 for some positive constant C.
Combining V7 with V5 and define

V=V+"W.

By virtue of (3.2), (3.3), the definition of Vi, V2 and Holder’s inequality again, we
have
LV <C1+V). (3.4)

In fact, we define V := exp(—Ct)(1 4 V), then
LV = exp(—Ct)[-C + L(1 + V)] < exp(=Ct)[-CV + CV] = 0. (3.5)

Integrating the two sides of dV above from 0 to T, A T, we get

Tm AT . T AT
[ avasw.an. 0.0 < [ Iva Mo < 0,
0 0

where {M(t A 7,,),t > 0} is a martingale.
Taking expectation of the two sides in the above expression to get

EV (T, S(tm AT), A(tm AT), T (7 AT), Q(1m AT))] < V (0, S(0), A(0), T(0), Q(0)).

Let Q,, = {7, < T}, there exists my > 0, for ¥m > mq, by (3.1), we know
P(Qy,) > €.
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For Vw € Q,,, at least one of S(7,,), A(7), T(7m) and (7,,,) equals to m or L.
Specifically, when S(7,,,w) =m or X; or A(7,,w) =m or L; or T(7,,w) = m or

%; or Q(Tm,w) =m or %, there will always be

~ 1 1
V(T AT, S(tin AT, A(tin AT, T (i AT, Q(11n AT')) > (m—l—lnm)/\(%—l—ln E)

Comprehensive consideration of (3.1) and (3.2), we can get

V(0,5(0), A(0), 7(0), Q(0))
E[lﬂm(u})v(s(ﬂn A T)v A(Tm A T)7 T(Tm A T), Q(Tm A T))]
>e[(m — 1 —lnm) A (% - m%)],

where 1g  denotes the indicator function of €,,. By letting m — oo, it’s easy to

m

get the following contradiction
oo > V(0,5(0), A(0), T(0), Q(0)) = oc.

Thus, 7o, = o0 a.e.. The proof is complete. O

4. Asymptotic behavior near alcohol free equilibri-
um point Ej

Seen from Theorem 2. 1 for deterministic system (1.3), as Ry < 1, alcohol free
equilibrium point Ey = ,0,0,0) is globally asymptotically stable, which means
the alcohol population Wlﬁ disappear in the appropriate conditions finally, and the
alcohol behavior will be effectively controlled. However, there is no any equilibrium
point in the stochastic system (1.5), therefore, in this section, we will discuss the
disturbance behavior of system (1.5) by investigating the stability and the ergodic
property of Ejy.

Theorem 4.1. Assume (S(t), A(t),T(t)) is the solution of system (1.5) with the
initial value (5(0), A(0),T(0)) € R3.. IfZ?Zl(al)j—i—ag’j—&-a&j)Q <Fa<he<

B ez < ”g’“, and
_ L So+n+ pe
Ry=p—"- <
ps [Ea(n 4 ) + pa(§2 + 1+ )]
then
e a +

lim 7/ El(ps — 2¢1)(S(8) — S0)% + (K2 — ey a2y + (L2E  cyr2(e)ar

T T 2 2
<cg + 20153, (41)

where m, ¢c;, i = 1,2,3 are defined as follows

m = ps A pa A (pe + 1),
co = 'y oty N (s + pa)® | (ps + 1+ )
d s 2 2(n + pe
m%[m — 6 Z (017j + JQ’J' + 0’3,]')2} H Ha (77 'uf)
j=1

)]
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c=|—
! [us 24t 2(n + pt)

d d
3 2 3 Hat+nAtfu 2
B 52‘724’ =5+ T)Z"B,j-

1 ((Ns"’ﬂa)Q + (Ms+n+ﬂt)2)+%]za_2

then

So(S — So)
< —ps(S = So)* - ﬂ01(+ AO +52A2200g+522011

Let

&2
VoA T) = A+ —>2 T,
2 ) N+ pe + &2

then

BSA
14+~A
_ B(S—5))A = BSoA
_ B(5—5)A BSy
Y T &t
B(S — Sp)A E1(n + )
<P =208 yigg, — S\t i)
T 1+174 [#S0 n+ue+ &2
B(S — Sp)A
1+~A

&2

LV, = _
2 N+ p + &2

—&A+ET — pa A+ (&A= &T — T — T

§162A
N+ pe + &2
&

n+ pe + &2

+ Af

_a]

The last inequality is attribute to the following relation

II
§1(n + ) o <0 Ry = S+ 0+ e

N+ g+ & ts 61+ pe) + palba+n+ )] =

Consider linear combination V7 + SyVs, then

BSo —

d d
L(V1 + SoVa) < —ps(S = S0)* + S2A*Y 03, + 52y ot .
i=1 =

Let
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then
LVs = T(&A — &T — T — i, T) + Zag ;
= GAT — (n+ e + &) + fZag,j
Let
(S—So+A+T)?
V4 = )
2
then
1 d
LVi = (8= So+ A+ T) (I~ pis S~ pa A= e T—T) + 5 > (01,;8+03,A+05,;T)°
j=1

= —ps(S = 50)% = paA? = (n + ) T? = (s + 12a)(S = So) A

d
— (s +0+pe) (S —S0)T — (pta + 1 + p1t) AT + - Z (01,58 + 02, A + 03,;T)°

a + S+ a
< _MS(S_SO)2_%A2_ (77 2;U’t)T2 (/1‘ 2’u5 ) (S_SO)Q

2
(s +m+ 1) (S_SO)Q

- a + + AT

d
200138 + (02547 + (03,7)°

j=1
(s + pa)® | (s + 04 pe)? o Nt
= [—pe + + S =80 = LAz 1K
=n 2/ta 2(n + ) K o)* 2
d
— (pa + 1+ ) AT + Z 71,j5)? + (02,;4)? + (03,,T)7].
j=1

In order to eliminate the cross term AT, we consider linear combination of V3
and V, as %‘/}, + V4, then

Na"'n"i'ﬂt

L & Vs + V4]
(s + 11a)® | (04 pe + ps)? o Mt e
[~ 2 201+ ) I( 0)? 5
d
3 Pa + 1+ p
t3 D> (01,39)% + (02,,4)* + (03,,T)°] + 7f' Z 03 ;-
j=1

At last, to eliminate the term (S — Sp)?, we consider linear combination

Mo + 1+ [t
&1

i[(l‘s +pa)® (A e+ ps)?

Vi + SoVe) +
Bs 2fq 2(n + pt) 1 + SoVe)

Vs 4+ Vy.



X. Wang, Q. Yang & H. Huo

282
Let
L (ps + pa)® | (s +0+ pe)? Ha 1+ pe
Ve = — + Vi + SoV- —V3+ V.
"=l 2 2t ) T S2) & s
Integrated all the formulas of LV;, then
a + L o(ps +pa)? | (s + 0+ m)?
LVs < — pg(S — Sp)? — Hag2 DT Htp2 +
PSS =S 2 m[ 214 200+ )
d d g
52 A2 Zaaj + 52 ZU%J 3 Z 01,35 (o2 JA)Q + (03,;T)7]
= e
Ma + 77 + pe
+ ' Z 93,5
::—Mw—&ﬂ—lgﬁ—?%#%ﬂ+ew+Af+q§+@Ahwﬂﬂ
where ¢;(i = 0,1,2,3) is defined as follows
L (st pa)® (s 0+ )?
¢ = [—( =06
Hs 2/J/a 2(77 + /J/t) j=1
U (ps + pa)* | (s +n+pe)® 3 2
L= |— + +35 o1 j
TR 2o+ ) ) 2]; "
3 & 3 fatnt+p d
2 _ a t 2
D PN R
j=1 j=1
Consider
S+A+T
vy = BHATT]
4
— (pe +m)T]

then
M%=@+A+TWH—MS La
S+A+T 22 O'17jS—|—0'27jA—|—O'3]T)2
j=1
d
(S+A+T)?P —m(S+A+T)* + S+A+T4Zolj+agj+ogj)
j=1

d
(S+A+T +S(S+A+T)*D (01 + 025 +03,)°
Jj=1

< m* m
~ Ami
M m 3
=i 73 D (01402 +03,)°1(S+A+T)
ma =
where m = pg A g A (e +1). Seen from the definition of V;,i =1,2,3,4,5
Vi
V=Vt coVe
T 5 2o+ oo, +os)

m
j=1
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is obviously positive definite, it’s easily to know that

LV = —py(S = So)? = Paq2 _ N Mg 0062 1 A2 4 T2

2 2
. +
< —(ps — 2¢1)(S — So)? — (% — ) A2 — (% — ¢3)T? + co + 2¢182,
h _ LD, 1L (rstna)® | (petntpe)?
where ¢ = — [/ts( 21ta + 2(n+pe) )l
4

d
m4[m—6 3} (01,;+02,;+03,;)?]
j=1

tim o [ Bl 200)(S() — S0)? + (A7 — ) A%(0) + (TEI e 70

T—o0 0
S co + 26153.
The proof is complete. O

Remark 4.1. In the proof, if o = o1 = 0, we see

LV < (S = S0)* = (5t = ea)a? = (T - )7,

Thus, the solution of system is stochastically asymptotically stable in the large
( [16]) as the conditions in the theorem are satisfied.

5. Stochastic behaviors near the internal equilibri-
um point E*

In this section, we will investigate the stochastic behavior of (1.5) around the inter-

nal equilibrium point F* in deterministic model (2.2) from two aspects, that is, the

one is concerned with the stability of its distribution, the other is concerned with
ergodic property of equilibrium point E*.

Theorem 5.1. If the matriz (0 j)o<i<31<j<d are full rank in row,

m
(01j+ 025 +03;)° < 5

J

C
N+ pe > 2 WJFCS )

2 c c
a Ms>?+cla Pa > 2 p‘*‘@ .

Ju

where

m = pis A pra A (pte +1),

a 2 I B -y
¢ = 32031' + [(,Us + f1a) + (s + 1e) Z]—l 1,5 7 1474 Z]—l 0,j
7j=1

Ha (77 + Mt) Hs ’
d [ + [ d
a t
C2Z3ZU§J) 03:(3+ 51 )Zgg,]7
7j=1 j=1

«d +2 ox
! [(uerua)Q + (1s + p1e)? (S 2105,  &T*2S8*Y 05;

Cy = —
S Ha (n + pt) 1+~4* 1A 1+ qAx
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_6 , , ,
+ m Z(ULJ + 02,5 +035)°)

j=1

3
4 o’ d
Z] 1%0,5 (m 2 7

and
C=cq+ cl(S*)2 + cz(A*)2 + 03(T*)2,

then Eq. (1.5) is ergodic and positive recurrent.

Proof. Constructing Lyapunov function U; as

calculating to get

LU = (8 — S*)(I1 - fffA — p1sS) + ;Jz;(al]m ‘l’ojij)z
— (8= S~ g — (5 s*>]+§jzz<m,j5+ TSy
= B(S = S ~ o)~ (S = ST+ ;i«n,jm Ty
= B(S =SS A (o~ 1) ] (S S

j=1
wqe (A=AN(S=5")  BS*(S—5")(A—-A)
— ByS* A —
S A T A A+ A) 1+74
BA(S — 5%)? w2 Ise, o, 90554,
ey w S5 — 5% +2Zal,]s+1+%4)
Jj=1
L(S=8A-4) 1T 7054 oo
< _8S += S+ 2 — (S — S*)2.
<-B (1 +yA)(1 + 7A%) 2;(0“ 1+7A) s )
Next, we let
Up= A— A* — A*In 2
2 — nEv

and calculate to get

BSA
1+~A

A 1<
LUy = (1 2-)( ~&A+&T — pad) + 5 )

A

<.
Il
—

SA A* 1 00.;S
= (1= S~ @A) (L= S6T + 45 YT — o

_|_
B *k
— (&1 + pa)| + &T — &T
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(A=A (et e T 6T+ Z (T2 =on
== A (g~ )+ S - A T &T%
+;; 1U+7A 02,5)°
_ s —1A+*)(i‘5*) +ﬂS*(A—A*)(1+17A - le)
52 (A= A%) + 6T - fQTA*-‘r;; 54 —025)°
LB _1A;)y(i_ ) R R 52T§+S2§:10(2),j+§:10§,j'

Then, it’s easy to know

*

MO+ )
d
1 09.;SA St LT
*\ 2 - . 0. 2 2 — A*
< — ps(S — 5%) +2;Ul7]5+1+714)+1+714* T (A— A*)
T YRR S S S I ST P
d
1 00.jSA St &1
_ *\ 2 = . 0,5 2 2
=~ H(5 =57 +2;U“S+1+7A)+1+7A* A
+L£ (T-T%) - > T > (522(1:"2 '+2d302 )
1+’YA* 2 1+ A* 2 1+7A* j:1 0,7 J:1 2,9
S* A T T A*
_ _oQx\2 &~ *[0 7 i A
=~ sl =8 = T [(A*+ *+T*A 1)]
d
1 00,54 5 2
+2;(017J5+ 1_’_%4) + 1—|—A/A* (S ;UQJ—FZO’Z]
S* A A* T T
d
1 00,54 5 2
+§Z(‘71J5+1+7A) Jr14—%1* (S ZJOJJFZU?J

I
-

i j=1

where the last inequality is derived from = > logxz + 1,z > 0.
Let
(S—S*+A—A"+T —T%)?

U3 = 2 )

we calculate to get

LUs= (S —S*+A— A"+ T — T — 1S — pta A — (0 + )T
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d
1
+3 Z(ULJ‘S +02;A+03,T)?

j=1
=(S—S* 4+ A— A +T —T*)—ps(S — 5) — pa(A — A7)
d
1
—m+mxT—Tw+§§:wms+amA+awa
j=1

= —ps(S = 8%)% = pa(A = A*)? = (n + ) (T — T*)?
= (s + pa) (S = ST)(A = A7) = (s + pe) (S = S™)(T = T7)
d
- (,Uza +,U¢)(A — A*)(T — T*) + % Z(O’Ljs + 0—27]‘A+ 03JT)2.

j=1

Let )
T-—-T*
U4 = ( 2 ) )

similar to the technique in computing LU;, we calculate to get

2 d
LU = (T~ T4~ A%) — (&2 0+ )T~ T + 33,
j=1

o d
S G- AT =T = @t )T - TP+ 302,
j=1

Considering the linear combination of Us and Uy as

Ha +
&1

Us + Uy,

then

Ha + My
1

LUs + Us]

= ns(S =877 = B -t - (TR B g o ) (T - T

d
(1s + Ha)? o, (s +m)? o, Matpe T° 5
s THa)” (g gey2q Ws THUZ (g g2 4 a2,
2#@ ( ) 2(77+Mt)( ) 51 2 j=1 3]

_|_

d
Z(JL]‘S + O'QJA + Ug’jT)z

Jj=

* a * + a+ *
<= s(8 = 8 = A = AP = (PR 4 BB o+ (T - T2

d
(1s + 1a)? oo, (s 4 m)? w2 Mot T? 5
G B TR (g gr)2y s TR (g gny2 N2,

2fta ( ) 2(77+Mt)( ) &1 2 ; >

DN | =

+

=

d
Z(U%JSQ + Ug’jAz + og’jTQ).

Jj=

| W

+

—
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Next, we define

T
Us=T—T"—T"log —,
OgT*

then & A* = (& + 0+ p)T* implies

T* T &
LUs = (1= )& A= (2 +n+p)T) + 5 Y 03

LA AT T T &,
—flA (E—E?—F‘Fl)‘i‘?;U&J
A T T T* &
< wp A o o - 2
<A [A* log T 1 (T* log T D]+ 5 jz::lag]
We let
S* £2T* S*

Us =U; +

T A 2T A T A
it’s easy to prove that

d 00,5 A S d d
0,5 2 2 2 2
]:1 j=1 j=1
d
T2 S 25,05
flA* 1+’}/A* 2

d d d
S_NS(S_S )2+ U%’jSQ—F Ug,j(S+A)4+ 1+7A*(S2 Ug,j
Jj=1

j=1 j=1

LUs < — ps(S — )% +

l\DM—l

d . . d 52
+ 202 )+ LT 8" 305,
2T GAY 1444 2

Jj=1
Consider
4
b _ (S+A+D)!
4
then
d
LU; =(S+ A+ T)*[ — p1sS — praA — (e +n)T) + 5+A+T22011
Jj=1

+02,;A+03,T)*

d
(S +A+T) —m(S+A+T) + S+A+T4Zal,j+az,j+og,j)2

Jj=1
n*  m d
<ot 7T AT g S+A+T4Z‘71,j+02,j+03,j)2
dm3s =
I m 3
“ami [Z -3 Z(O’l,j + 09, +03,)%(S+ A+ T)4,

j=1
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where m = pg A pg A (1t + 7).
We consider the linear combination of

d 2
E]’:l 05,;Ur

s+ pa)® | (s 4 )? Us + 235 i(01,5+02,403,5)° Ha =+ ft
U= +Us + 22y,
24tq 2(n + ) s &1
then
% a % + a + *
LU < —piy(§ = 8" = 5 (A = A7) = (T Ft + BB o+ (T = 1)

C1 52 C2 A2 C3T2
2 2 2

< (s —e)(S =8P — (B2 —e)a- AP - (L — )T -T) 4

+C4

where ¢;,7 = 1,2, 3,4 is represented as

a 2 I B Ry
¢ = SZU%J + [(,Us + f1a) + (s + 1e) Z]—l 1,5 7 1T4~A Zj—l 0,j
7j=1

Ha (77 + Mt) Hs ’
d o+ 11 d
c2=3) 03, c3=(3+ ag D0k
j=1 L=
* d 2 * * d 2
4 = i[(us tpa)? (s ut)Q] S 2=103, | LTS5 ) 103
Ms Ha (n + ) 1+~4* 1A 1+ qAx
3
H4 Zd 0,2 4 d
j=1"0,j 2
* m (m ;(ULJ +o25+035)7) |,

and
C = cy+c1(5%)2 + co(A)? 4 c3(T™)2.

Choosing appropriate parameters in system (1.2) to satisfy

(s = e1) (57 > €, (B2 — ea)(A4")? > €, (1L — )T > €

ie.,
C C C
s> oy sMa > 27— ) 23 -
fhs > ERE + 1y e > ((A*)2 +c2),m + e > ((T*)Q +c3)
Then LU < —C for some C' > 0 and the conditions are satisfied if (¢ ;)o<i<3,1<j<d
are full rank in row. The proof is complete. O

Next, we will discuss the mean convergence of system (1.5) based on the condi-
tion in Theorem 4.1.

Theorem 5.2. If the condition in Theorem 4.1 holds, then the following conclusions
are established

1 [T BS(u)A(u) 1T
lim — _— lim — . =1I, a.e.
AT T AW d“+T£f;oT/0 usS(u)du =1L, ace,
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and
1 [T BS(u)A(u) 7/
TlféoT 1+ ~A(u) d“+ A =0
. 1
:Th—>n<iof/0 [E1A(u) 4+ peA(u)du, a.e,
and
e 17
Th_r};T ; §1A(u)du:7}1_{réof/o (&2T (w) + 0T (u) + peT(uw)]du, a.e.

Proof. By ergodic theorem, for arbitrary function f, if it satisfies

/|facy, m(dz, dy,dz)| < +oo,

lim 1 f(S(u), A(u), T'(u))du — /f(m7y,z)m(dm,dy7dz) < 400, a.e.

Note C' = min{ s, f1q,n + ¢ }, since
d(S(t) + At) + T(t)) =II - usS(t) — 1aA(t) = (1 + pe) T(2)

+ Z 01,55(t) + 02,5 A(t) + 03, T(t))dB; (1),

we take stochastic integral of the above formula over [0,¢],0 <t < T,
S(t)+ A(t) +T(t) =5(0) + A(0) + T(0) + It

)+
/0 u) + paA(w) + (0 + pe) T (u)|du
d
/ Z 01,;5(u) + o2, jA(u) + 03 ;T (u))dB;(u)

E[S(t) + A(t) + T(t)] <S(0) + A(0)+T(0) - C /t E[S(u) + A(u) + T'(u)]du,
0
by Grownwall inequality, we can derive
0<E[SHt)+AR)+T(1)] < M < +o0.

Furthermore,

T—o0

lim ;/OT[S(t)+A(t)+T(t)]/\ndt:/(x+y+z)/\nm(da:,dy,dz).

After taking expectation of this formula, by the control convergence theorem, we
know

[ @y 2) Anm(de, dy,d) < M < +oc,
RY
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Let n — 400, then

/ (x +y+z)m(de,dy,dz) < +oo.
R

3
+

Therefore, if we define f = 5_57‘?4 or Sor AorT respectively, we can prove the cor-
responding convergence.

By the use of (1.3), we can get

S(t)= /O [HmMSS(U))du+U1S(u)dBl(u)].

Hence,

d

20 [ stau; [ j}_jl[al,js<u>+"°’jfj’;’j(“>]dBjm).

(5.1)
By the law of large numbers of martingale,
1t
lim g Jl’jS(U)dBj(u) — 0.

t—o0 0

Considering that tlim @ exists, then
—00

FE lim —S(t) =
t—oo ¢ t—o00 t

Since ES(t) < M,Vt, then
Thus, we proved

Similarly, we can prove

1T BS(w A B
lim —/0 [II — TroAw) wsS(u)]du = 0.

The others conclusions can be similarly proved. The proof is completed. O

6. Numerical simulations

In this section, to verify the results of stochastic stability, we use Milstein’s numeri-
cal method to make corresponding simulations based on stochastic model (1.5) with
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some given initial values and parameters [7]. Thus, discreting the system (1.5), we
get the following iterative scheme

BS; A 4. 00, A;
e

. —G. II— _
SH-I Sz"'( 1+’7Az /J/s z + A

+ 0’1,jSi)C(j,i)\/ At

Jj=1

i A 94 iSiAi
+05Z o1+ T (T g 5,) - TR (S0

—02,3‘141')](6(3,2) -1
_ BSiA; _ O'OJSA
A =i+ (T — A+ T~ pads At+2 -y

S, A; S,
_U2J ) 37 ) /7_"_052 O'O,j UO,] +0’1’j57,)+( 00,

1+7A 1+7A() 1+~4;
00,75 Ai .
2,j)(ﬁ — 09, A))(c(j,1)? = 1) A t,
Tiv1 =T + (§14i — &1 — T — wTi) & t
d d
=Y o3, Tic(j,)Vat+0.5Y o3 Ti(c(j,i)> —1) ot

j=1 j=1
(6.1)
where ¢(1,4),l = 1,2,3,4;i = 1,2,--- ,n are independent Gaussian random variables

N(0,1), 05,7 =1,2,3,4 are intensities of white noise.

We choose appropriate initial values (5(0), A(0),7°(0), Q(0)) = (6000, 70,20, 5)
and system parameter values as v = 0.2 as well as population mortality are ps =
0.001, g = 0.005, iy = 0.003, ity = 0.0015 respectively by the latest report from
WHO [26]. In addition, some parameters are reasonably estimated as n = 0.3,&; =
& = 0.2. For the sake of simplicity, we will only consider the evolution curves of
S(t) and A(t). Furthermore, we will select different critical parameters to discuss
stability of the stochastic solution of (1.5) as follows.

(1) Choosing population recruitment rate as IT = 0.1 and alcohol infection rate
as 8 = 0.001 to make Ry = 0.797 < 1. In addition, we let disturbance intensity be
o; =0.05(i = 1,2,3,4.)(see figs.1-2).

Synthesizing and comparing the information in Figures 1-2, we can conclude
that when Ry < 1, the solution of stochastic system (1.5) will randomly tend to
the alcohol-free equilibrium Fy = <u£’ 0,0,0) of deterministic system (1.2). Specif-
ically speaking, if we can take some effective measures, for example, controlling
the population recruitment rate II or reducing the infection rate g, the population
in A(t),T(t),Q(t) will eventually tends to zero while the population in S(¢) will
eventually tends to a constant % Figures 1-2 agree to the conclusions in Theorem
4.1.

(2) Choosing population recruitment rate as IT = 0.2 and alcohol infection rate
as f = 0.002 to make Ry = 1.59 > 1. To compare, we still let disturbance intensity
be o; = 0.05(i = 1,2, 3, 4) respectively(see figs.3-4).

Similarly, by synthesizing and comparing the information in Figures 3-4, we
can conclude that in one hand, when Ry > 1, the solution of stochastic system
(1.5) will randomly tend to the internal equilibrium point E* = (S*, A*,T*, Q*)
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50 the dynamics of the stochastic system (1.5) 2000 the dynamics of the stochastic system (1.5)
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Figure 1. Ry < 1, population evolution
curve of A(t) with disturbance intensity o; =
0.05(i = 1,2,3,4.)

the time average dynamics of the stochastic system (1.5)
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time

Figure 3. Ry > 1, population evolution
curve of A(t) with disturbance intensity o; =
0.05(¢ =1,2,3,4.)

time

Figure 2. Ry < 1, population evolution
curve of S(t) with disturbance intensity o; =
0.05(i = 1,2,3,4.)

00 the time average dynamics of the stochastic system (1.5)

S(t)(sigma=0.05)
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3
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Figure 4. Ry > 1, population evolution
curve of S(t) with disturbance intensity o; =
0.05(¢ =1,2,3,4.)

of deterministic system corresponding to o; = 0(i = 1,2, 3,4) in (1.5). Specifically
speaking, if the population recruitment rate II or the infection rate [ is rather large,
the population in A(t), T(t), Q(t) will increase with time going and eventually tends
to a fixed level, while he population in S(t) will randomly vary with time going and
eventually tends to a constant value. Figures 3-4 also reveals the fact that if system
parameters meet the conditions to make Ry > 1, then the model is ergodic and has
a uniqueness stationary distribution which illustrates the persistence. All in all,
Figures 3-4 agree to the conclusions in Theorem 5.1 and Theorem 5.2.
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