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Abstract In this paper, we derive a semi-discrete system for a nonlinear
model of blood cell production. The local stability of its fixed points is inves-
tigated by employing a key lemma from [23,24]. It is shown that the system can
undergo Neimark-Sacker bifurcation. By using the Center Manifold Theorem,
bifurcation theory and normal form method, the conditions for the occurrence
of Neimark-Sacker bifurcation and the stability of invariant closed curves b-
ifurcated are also derived. The numerical simulations verify our theoretical
analysis and exhibit more complex dynamics of this system.
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1. Introduction and Preliminaries

To describe the process of blood cells production in the bone marrow, Mackey and
Glass [15] proposed the so-called hematopoiesis model

dξ

dt
= −δξ(t) +

pξ(t− τ)

1 + ξm(t− τ)
, t ≥ 0, (1.1)

where p, δ, m ∈ (0,+∞), satisfying 0 < δ < 1, p > δ, and τ is the time delay
between the production of immature cells in the bone marrow and their maturation
for release in the circulation blood stream.

Since its introduction in 1977, the hematopoiesis model has gained a lot of atten-
tion due to its extensively realistic significance. Recently, there have been extensive
contributions on the qualitative behavior of Eq.(1.1), including the existence and
attractivity of periodic solutions, oscillation, stability and chaos.

Hale and Sternberg [9] gave interesting and perfect conclusions for the numerical
and chaotic problems. Some sufficient and necessary conditions were established by
Gopalsamy et al. [7] for the oscillation and global attractivity of all positive solu-
tions to Eq.(1.1). By three kinds of stabilization methods based on conventional
feedback, tracking filter, and delayed feedback, Namajtinas et al. [16] provided the-
oretical and experimental results of stabilizing an unstable steady state in Eq.(1.1).
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Gopalsamy et al. [8] suggested new sufficient conditions ensuring the positive equi-
librium of Eq.(1.1) to be a global attractor. Kubiaczyk and Saker [10] investigated
the oscillation of all positive solutions and the stability of all equilibrium points in
Eq.(1.1). The persistence and extinction conditions for Eq.(1.1) with variable coef-
ficients and a nonconstant delay were presented by Berezansky and Braverman [1].
Rost [18] proved the global attractivity of the positive equilibrium for Eq.(1.1). The
bubbles behavior of Eq.(1.1) was studied by Krisztin and Liz [11]. Berezansky et
al. [2] generalized and unified the existing results on oscillation, stability and chaos.
At the same time , some new results for more general versions of Eq.(1.1) were pro-
vided, involving the existence, positivity and permanence of solutions, oscillation
and global asymptotic stability. In addition, some open problems and topics for
further research were stated. For the details, refer to [2] and the references there-
in. Based on the outlook in [2], Berezansky et al. [3] investigated the permanence,
oscillation and stability of the positive equilibrium for non-autonomous equations,
which are generalizations of Eq.(1.1), and a linear control was introduced such that
stabilizing an unstable positive equilibrium is possible. Kanno and Uchida [12] ob-
tained standard deviation of the probability distribution for finite-time Lyapunov
exponents in Eq.(1.1) .

However, most of models in practice cannot be solved completely by analytic
techniques. Since discretion models of differential equations can inherit some corre-
sponding properties of original differential equations, and numerical simulations are
helpful to understand the dynamics of such systems, regarding scientific computa-
tion and real-time simulation, it is quite important to discrete Eq.(1.1). In recent
years, there has been a more and more interest in the analysis of discrete systems
of Eq.(1.1).

In 2007, by using a new approach better than contraction mapping principle,
Wang and Li [22] studied the existence and uniqueness of positive almost periodic
solution to the difference equation of Eq.(1.1). Also, some sufficient conditions
were established for global attractivity. In [4], for a semidiscretization of Eq.(1.1)
with periodic coefficients, Braverman and Saker not only proved the existence and
oscillation of a positive periodic solution, but also gave sufficient conditions for the
attractivity of this solution. Ding et al. [6] proved that the occurrence of Hopf
bifurcation for a discrete version of Eq.(1.1) obtained by Trapezium method, and
provided explicit algorithm for determining the direction of the bifurcation and the
stability of the bifurcating periodic solutions. Su and Ding [20] studied the discrete
system of Eq.(1.1) by appling a nonstandard finite-difference scheme. They analyzed
the stability of the fixed point, and obtained the occurrence and direction of Hopf
bifurcation at the positive fixed point as the delay increases. In particular, Su et
al. [21] discussed Neimark - Sacker and fold bifurcations for the difference equation
of Eq.(1.1). Qian [17] considered the global attractivity of periodic solutions of
Eq.(1.1) in a discrete form. In [14], by means of Lyapunov exponent spectrum and
bifurcation diagrams, Li investigated bifurcation and chaos of the discrete system
of Eq.(1.1) formulated by a new method.

In terms of the existing research, even though there have been increasing meth-
ods on dynamics of discrete hematopoiesis model, less is known to see that complete
and systematic study including bifurcation and other complex dynamics has been
conducted. In this paper, we use a semi-discrete scheme to Eq.(1.1), and inves-
tigate its dynamics by applying the Center Manifold Theorem, bifurcation theory
and numerical simulations, which is motivated by Wang and Li [23].
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First, without loss of generality, we assume τ = 1 in (1.1). In fact, by taking

s = t
τ , and letting ξ(t) = ξ(sτ)

∆
= η(s), (1.1) is transformed to

dη

ds
= −δτη(s) +

pτη(s− 1)

1 + ηm(s− 1)
, s ≥ 0. (1.2)

By resetting p and δ by p
τ and δ

τ respectively, Eq.(1.2) can be rewritten as

dη

ds
= −δη(s) +

pη(s− 1)

1 + ηm(s− 1)
, s ≥ 0. (1.3)

This is just (1.1) in the case of τ = 1.
Suppose [s] denotes the greatest integer not exceeding s. We consider the fol-

lowing semi-discretization version of (1.3)

dη

ds
= −δη([s]) +

pη([s− 1])

1 + ηm([s− 1])
, s 6= 0, 1, 2, 3, . . . . (1.4)

Obviously, Eq. (1.4) has piecewise constant arguments, and for s ∈ [0,+∞) the
solution η(s) of Eq. (1.4) possesses the following features:

(i) η(s) is continuous on [0,+∞);

(ii) dη(s)/ds exists everywhere when s ∈ [0,+∞) except for the points s ∈
{0, 1, 2, 3, ...};

(iii) Eq. (1.4) is true in each interval [k, k + 1) with k = 0, 1, 2, 3, . . . .

For any n ∈ {0, 1, 2, 3, ...}, s ∈ [n, n + 1), we integrate (1.4) on the interval [n, s]
and get

η(s)− η(n) =

(
−δη(n) +

pη(n− 1)

1 + ηm(n− 1)

)
(s− n). (1.5)

Letting s→ (n+ 1)−, Eq. (1.5) becomes

η(n+ 1) = (1− δ)η(n) +
pη(n− 1)

1 + ηm(n− 1)
, (1.6)

which can be viewed as a discrete form of Eq. (1.3) without delay.
Under the transformation xn = η(n− 1),

yn = η(n),
(1.7)

one has  xn+1 = yn,

yn+1 = (1− δ)yn +
pxn

1 + xmn
,

(1.8)

which is a discrete system of (1.1), where p, δ, m are defined as in Eq. (1.1),
satisfying 0 < δ < 1, p > δ, x0, y0 ∈ (0,+∞).

It is noted that the fixed points of the system (1.8) satisfy x = y,

y = (1− δ)y +
px

1 + xm
.

(1.9)
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By solving (1.9), we obtain that the system (1.8) has two nonnegative fixed points
O(0, 0) and E+(x∗, y∗), where

x∗ =
(p
δ
− 1
)1/m

, y∗ =
(p
δ
− 1
)1/m

. (1.10)

This paper aims to investigate the dynamics of the system (1.8). We not only
study the stability of the fixed points, but also derive sufficient conditions for the
existence of Neimark - Sacker bifurcations by center manifold theory and bifurcation
theory, which have not been considered in the existing literature.

In what follows, we recall the definitions of topological types and lemmas of the
local stability and bifurcation for a fixed point, needed in the sequel. For more
details, the reader can refer to [23,24].

Definition 1.1. Let E(x, y) be a fixed point of the system (1.8) with multipliers
λ1 and λ2.

(i) A fixed point E(x, y) is called sink if |λ1| < 1 and |λ2| < 1, so a sink is locally
asymptotically stable.

(ii) A fixed point E(x, y) is called source if |λ1| > 1 and |λ2| > 1, so a source is
locally asymptotically unstable.

(iii) A fixed point E(x, y) is called saddle if |λ1| < 1 and |λ2| > 1(or |λ1| > 1 and
|λ2| < 1 ).

(iv) A fixed point E(x, y) is called to be non-hyperbolic if either |λ1| = 1 or
|λ2| = 1.

Lemma 1.1. Let F (λ) = λ2 + Bλ + C, where B and C are two real constants.
Suppose λ1 and λ2 are two roots of F (λ) = 0. Then the following statements hold.

(i) If F (1) > 0, then

(i.1) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and C < 1;

(i.2) λ1 = −1 and λ2 6= −1 if and only if F (−1) = 0 and B 6= 2;

(i.3) |λ1| < 1 and |λ2| > 1 if and only if F (−1) < 0;

(i.4) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and C > 1;

(i.5) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1 if
and only if −2 < B < 2 and C = 1;

(i.6) λ1 = λ2 = −1 if and only if F (−1) = 0 and B = 2.

(ii) If F (1) = 0, namely, 1 is one root of F (λ) = 0, then the other root λ satisfies
|λ| = (<,>)1 if and only if |C| = (<,>)1.

(iii) If F (1) < 0, then F (λ) = 0 has one root lying in (1, ∞). Moreover,

(iii.1) the other root λ satisfies λ < (=)− 1 if and only if F (−1) < (=)0;

(iii.2) the other root λ satisfies −1 < λ < 1 if and only if F (−1) > 0.

The remainder of the paper is organized as follows. In Section 2, the stability of
the fixed points is investigated. In Section 3, we prove sufficient conditions for the
occurrence of the Neimark-Sacker bifurcation. In Section 4, we provide numerical
simulations to verify the theoretical results and explore some complex dynamics of
system (1.8). Finally, a conclusion is established in Section 5.
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2. Stability of a fixed point

In this section, we determine the local stability of every fixed point of the system
(1.8).

The Jacobian matrix of the system (1.8) at a fixed point E(x, y) is

J =


0 1

p+ p(1−m)xm

(1 + xm)2
1− δ

 . (2.1)

The characteristic equation of J is

λ2 − Tr(J)λ+ Det(J) = 0, (2.2)

where Tr(J) and Det(J) are the trace and determinant of (2.1) respectively, namely,

Tr(J) = 1− δ (2.3)

and

Det(J) = −p+ p(1−m)xm

(1 + xm)2
. (2.4)

Now, we give the results for the stability of the fixed pointsO(0, 0) and E+(x∗, y∗)
in Theorem 2.1 and Theorem 2.2 respectively.

Theorem 2.1. The following statements about the fixed point O(0, 0) of the system
(1.8) are true:

(i) When δ < p < 2− δ, O(0, 0) is a saddle.

(ii) When p = 2− δ, O(0, 0) is non-hyperbolic.

(iii) When p > 2− δ, O(0, 0) is a source.

Proof. The Jacobian matrix J of the system (1.8) at O(0, 0) is given by

J(O) =

 0 1

p 1− δ

 . (2.5)

The characteristic equation of (2.5) can be formulated as

F (λ) = λ2 − (1− δ)λ− p = 0. (2.6)

It is obvious that
F (1) = δ − p < 0, (2.7)

and
F (−1) = 2− δ − p. (2.8)

When δ < p < 2 − δ, F (−1) > 0. By Lemma 1.1 (iii.2), Eq. (2.6) has two
eigenvalues λ1 and λ2 with |λ1| > 1 and |λ2| < 1, so O(0, 0) is a saddle.

When p = 2−δ, F (−1) = 0. By Lemma 1.1 (iii.1), Eq. (2.6) has two eigenvalues
λ1 and λ2 with |λ1| > 1 and |λ2| = 1, so O(0, 0) is non-hyperbolic.

When p > 2−δ, F (−1) < 0. By Lemma 1.1 (iii.1), Eq. (2.6) has two eigenvalues
λ1 and λ2 with |λ1| > 1 and |λ2| > 1, so O(0, 0) is a source.
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Theorem 2.2. E+(x∗, y∗) is the unique positive fixed point of the system (1.8),

where x∗ = y∗ = (pδ − 1)1/m. Let p(1+δ)
δ(p−δ)

∆
= m0, then the following statements about

E+(x∗, y∗) are true:

(i) E+ is a sink if m < m0, at this time E+ is locally asymptotically stable;

(ii) E+ is a source if m > m0, then E+ is unstable;

(iii) E+ is non-hyperbolic if m = m0, and the system (1.8) may undergo a Neimark-
Sacker bifurcation.

Proof. The Jacobian matrix J of the system (1.8) at E+ is given by

J(E+) =

 0 1

δ[(1−m)p+ δm]

p
1− δ

 . (2.9)

We can express the characteristic equation of (2.9) as

F (λ) = λ2 +Bλ+ C = 0, (2.10)

where B = −(1− δ), C = −δ
p

[(1−m)p+ δm].

By computing we get

F (1) = δm

(
1− δ

p

)
> 0 (2.11)

and

F (−1) = 2(1− δ) + δm

(
1− δ

p

)
> 0. (2.12)

When m <
p(1 + δ)

δ(p− δ)
∆
= m0, mδ(p − δ) < p + pδ, −δ[p(1 −m) − δm] < p, then

C = −δ
p

[p(1−m)− δm] < 1. By Lemma 1.1 (i.1), Eq.(2.10) has two eigenvalues λ1

and λ2 with |λ1| < 1 and |λ2| < 1, so E+ is a sink.

When m >
p(1 + δ)

δ(p− δ)
∆
= m0, mδ(p − δ) > p + pδ, −δ[p(1 −m) − δm] > p, then

C > 1. Therefore, Lemma 1.1 (i.4) tells us that Eq.(2.10) has two eigenvalues λ1

and λ2 with |λ1| > 1 and |λ2| > 1, and hence E+ is a source.
When m = m0, mδ(p − δ) = p + pδ, −δ[p(1 − m) − δm] = p, then C = 1

and B = −(1− δ) ∈ (−1, 0). By Lemma 1.1(i.5), Eq.(2.10) has a pair of conjugate
complex roots λ1 and λ2 with|λ1| = |λ2| = 1, so E+ is non-hyperbolic .

3. Neimark-Sacker bifurcation analysis

In this section, by using the Center Manifold Theorem and bifurcation theory in
[5, 13, 19, 25], we investigate the Neimark-Sacker bifurcation of the system (1.8) at
E+(x∗, y∗).

Set

SE+
= {(m, p, δ) ∈ (0,+∞)3 : 0 < δ < 1, p > δ,m = m0

∆
=
p(1 + δ)

δ(p− δ)
}.
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Theorem 2.2 (iii) shows that the fixed point E+(x∗, y∗) can undergo a Neimark-
Sacker bifurcation when the parameters (m, p, δ) ∈ SE+

and m varies in a small
neighborhood of m0.

By arbitrarily taking parameters (m, p, δ) ∈ SE+
, we consider the system (1.8)

as follows x→ y,

y → (1− δ)y +
px

1 + xm0
,

(3.1)

Now we study the stablity of Neimark-Sacker bifurcation according to the ways or
methods formulated in [5, 13,19,25].

The first step. For convenience, we choose the parameter m as a bifurcation
parameter. Giving a small perturbation m∗ of m0, a perturbation of the system
(3.1) is described by: x → y,

y → (1− δ)y +
px

1 + xm0+m∗ ,
(3.2)

where |m∗| � 1.

The second step. Let u = x − x∗ and v = y − y∗, then the fixed point
E+(x∗, y∗) is transformed into the origin O(0, 0), and system (3.2) is rewritten as

u→ v,

v → (1− δ)v +
p(u+ x∗)

1 + (u+ x∗)m0+m∗ − δy∗.
(3.3)

The corresponding characteristic equation of the system (3.3) at (u, v) = (0, 0) is

λ2 − a(m∗)λ+ b(m∗) = 0, (3.4)

where

a(m∗) = 1− δ,

and

b(m∗) = −p+ p(1−m0 −m∗)xm0+m∗

∗

(1 + xm0+m∗
∗ )2

.

The roots of (3.4) are

λ1,2(m∗) =
1

2

[
a(m∗)±

√
4b(m∗)− a2(m∗)i

]
. (3.5)

Hence

|λ1,2(m∗)| =
√
b(m∗) (3.6)

and

d|λ1,2|
dm∗

∣∣∣∣
m∗=0

=−p{[(1−m0)xm0
∗ lnx∗−xm0

∗ ](1+xm0
∗ )−2[1+(1−m0)xm0

∗ ]xm0
∗ lnx∗}

2(1+xm0
∗ )3

√
b(m∗)

.

(3.7)
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The occurence of Neimark-Sacker bifurcation requires the following conditions

(C.1)
d|λ1,2|
dm∗

∣∣∣∣
m∗=0

6= 0;

(C.2) λi1,2 6= 1, i = 1, 2, 3, 4.

Since a(m∗)|m∗=0 = 1 − δ and b(m∗)|m∗=0 = 1, we have λ1,2 =
1

2
[(1 − δ) ±√

(3− δ)(1 + δ)i], which obviously satisfy condition(C.2).
With the expression in (3.7), the condition(C.1) is equivalent to the following

condition:
(1 +m0)lnx∗ + (1−m0)xm0

∗ lnx∗ + xm0
∗ + 1 6= 0. (3.8)

Substituting x∗ =
(p
δ
− 1
)

1/m0 ,m0 =
p(1 + δ)

δ(p− δ)
into (3.8), one has

(δ2 + 2δ − p)ln
(p
δ
− 1
)

+ p(1 + δ) 6= 0. (3.9)

However (3.9) is uncertain when 0 < δ < 1, p > δ. To demonstrate this, we can

regard (δ2 +2δ−p)ln
(p
δ
− 1
)

+p(1+δ) as a two-variable function h(δ, p). It is easy

to get the following surface graph and projection graph on (x, z) plane of h(δ, p) by
Matlab.

(a) surface graph (b) projection graph on (x, z) plane

Figure 1. Surface graph and projection graph on (x, z) plane of h(δ, p)

Figure 1(b) shows that there exist some (δ, p)’s such that h(δ, p) = 0. So Con-
dition (3.9) must be provided to ensure condition(C.1) is satisfied.

The third step. Look for the normal form of the system (3.3) when m∗ = 0.
First the system (3.3) is expanded as Taylor series at (u, v) = (0, 0) to the third
order as follows:

u→ a10u+ a01v + a20u
2 + a11uv + a02v

2 + a30u
3

+a21u
2v + a12uv

2 + a03v
3 +O((

√
|u|2 + |v|2)4),

v → b10u+ b01v + b20u
2 + b11uv + b02v

2 + b30u
3

+b21u
2v + b12uv

2 + b03v
3 +O((

√
|u|2 + |v|2)4),

(3.10)
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where

aij =
1

i!j!
·∂
i+jf(u, v)

∂iu∂jv

∣∣∣∣
(0,0)

, i, j = 0, 1, 2, 3, f(u, v) = v,

bij =
1

i!j!
·∂
i+jg(u, v)

∂iu∂jv

∣∣∣∣
(0,0)

, i, j = 0, 1, 2, 3, g(u, v) = (1−δ)v+
p(u+x∗)

1+(u+x∗)m0
−δy∗.

Thereout one has

a01 = 1, a10 = a20 = a11 = a02 = a21 = a12 = a03 = a30 = 0,

b10 = −1, b01 = 1− δ, b11 = b02 = b12 = b21 = b03 = 0,

b20 =
−pm0x

m0−1
∗ [m0 + 1 + (1−m0)xm0

∗ ]

2(1 + xm0
∗ )3

,

b30 =
pm0x

m0−2
∗ [1−m0

2 + 2(1 + 2m0
2)xm0
∗ + (1−m0

2)x2m0
∗ ]

6(1 + xm0
∗ )4

.

Let

J(E+) =

a10 a01

b10 b01

 , namely, J(E+) =

 0 1

−1 1− δ

 .

Then the eigenvalues of the matrix J(E+) are

λ1 =
1− δ +

√
3 + 2δ − δ2i

2
and λ2 =

1− δ −
√

3 + 2δ − δ2i

2
.

Take an invertible matrix

T =

 0 1
√

3 + 2δ − δ2

2

1− δ
2

 , then T−1 =


δ − 1√

3 + 2δ − δ2

2√
3 + 2δ − δ2

1 0

 .

Finally using translation

(u, v)T = T (X,Y )T ,

we transform the system (3.10) into the following normal form
X → 1− δ

2
X −

√
3 + 2δ − δ2

2
Y + F (X,Y ) +O((

√
|X|2 + |Y |2)4),

Y →
√

3 + 2δ − δ2

2
X +

1− δ
2

Y +G(X,Y ) +O((
√
|X|2 + |Y |2)4),

(3.11)

where

F (X,Y ) =
2√

3 + 2δ − δ2
(b20Y

2 + b30Y
3)

and

G(X,Y ) = 0.
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Furthermore

FXX |(0,0) = FXY |(0,0) = FXXX |(0,0) = FXXY |(0,0) = FXY Y |(0,0) = 0,

FY Y |(0,0) =
4b20√

3 + 2δ − δ2
, FY Y Y |(0,0) =

12b30√
3 + 2δ − δ2

,

GXX |(0,0) = GXY |(0,0) = GY Y |(0,0) = 0,

GXXX |(0,0) = GXXY |(0,0) = GXY Y |(0,0) = GY Y Y |(0,0) = 0.

The fourth step. In order to determine the stability of the invariant curve
bifurcated from Nemark-Sacker bifurcation of the system (3.11), one requires that
the following discriminating quantity a∗ is not zero(see [5, 13,19,25]):

a∗ = −Re

[
(1− 2λ)λ

2

1− λ
L11L20

]
− 1

2
|L11|2 − |L02|2 +Re(λL21), (3.12)

where

L20 =
1

8
[(FXX − FY Y + 2GXY ) + i(GXX −GY Y − 2FXY )]

L11 =
1

4
[(FXX + FY Y ) + i(GXX +GY Y )],

L02 =
1

8
[(FXX − FY Y − 2GXY ) + i(GXX −GY Y + 2FXY )],

L21 =
1

16
[(FXXX+FXY Y +GXXY +GY Y Y )+i(GXXX+GXY Y −FXXY −FY Y Y )].

(3.13)
By calculation we get

L20 =
−b20

2
√

3 + 2δ − δ2
, L11 =

b20√
3 + 2δ − δ2

,

L02 =
−b20

2
√

3 + 2δ − δ2
, L21 =

−3b30

4
√

3 + 2δ − δ2
i.

(3.14)

Thus

a∗ =
b220(δ3 − 7δ − 6)

4(δ + 1)(3 + 2δ − δ2)
− 3b30

8

=
δ3 − 7δ − 6

4(δ + 1)(3 + 2δ − δ2)

(
−pm0x

m0−1
∗ [m0 + 1 + (1−m0)xm0

∗ ]

(1 + xm0
∗ )3

)2

− 3pm0x
m0−2
∗ [1−m0

2 + 2(1 + 2m0
2)xm0
∗ + (1−m0

2)x2m0
∗ ]

8(1 + xm0
∗ )4

.

(3.15)

Summarizing the above analysis, we obtain the following theorem.

Theorem 3.1. Assume that (m, p, δ) ∈ SE+
, x∗, y∗ and a∗ are described as (1.10)

and (3.15), respectively. If a∗ 6= 0 and (3.9) holds, then the system (1.8) undergoes
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a Neimark-Sacker bifurcation at the fixed point E+(x∗, y∗) when the parameter m∗

varies in the small neighborhood of origin. Moreover, if a∗ < 0 (resp., a∗ > 0), then
an attracting (resp., repelling) invariant closed curve bifurcates from the fixed point
for m∗ > 0 (resp., m∗ < 0).

4. Numerical simulation

(a) m ∈ [3.8, 4.2] (b) m ∈ [4.2, 4.8]

(c) m ∈ [4.8, 5.2] (d) m ∈ [5.2, 5.6]

(e) m ∈ [5.6, 6.0] (f) m ∈ [6.0, 6.4]

Figure 2. Bifurcation of the system (1.8) in (m,x) plane for δ = 0.5, p = 2.

In this section, to verify our theoretical results and reveal some new dynamical
behaviors in the system (1.8), we present the bifurcation diagrams, phase portraits
and Lyapunov exponents for specific parameter values by Matlab software.
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(g) m ∈ [6.4, 6.8] (h) m ∈ [6.8, 7.2]

Figure 2. Bifurcation of the system (1.8) in (m,x) plane for δ = 0.5, p = 2. (con’t)

Based on the theoretical analysis, we choose the parameters δ = 0.5, p = 2, the
initial values (x0, y0) = (0.1, 0.1), and assume that these values are fixed in each
simulation. It is easy to get the unique positive fixed point E+(31/m, 31/m) and
m0 = 4. Since m is chosen as a bifurcation parameter, we let m vary in the interval
[3.8, 7.2].

Now the bifurcation diagrams in the (m,x) plane are given in Figure 2.
In (1.8), xn+1 = yn. So, the bifurcation diagrams for x and y are naturally

the same. And hence for the bifurcation diagrams for y, refer to the ones for x in
Figures 2 and omitted here.

Figure 2(a) shows that E+(31/m, 31/m) is stable for m < 4, and the Neimark-
Sacker bifurcation occurs at the fixed point (1.32, 1.32) when m = 4, whose mul-

tipliers are λ1,2 = 1
4 ±

√
15
4 i with |λ1,2| = 1. Meanwhile E+(31/m, 31/m) becomes

unstable when m > 4. This is in accordance with the results in Theorem 2.2. Figure
2 also displays some interesting dynamics as m increases.

Figure 3 depicts the corresponding maximum Lyapunov exponents, in which one
can easily see that the maximal Lyapunov exponents are always negative for the
parameter m ∈ (3.8, 7.2), that is to say, chaos doesn’t occur .

(a) m ∈ [3.8, 4.8] (b) m ∈ [4.8, 7.2]

Figure 3. Maximal Lyapunov exponent for the system (1.8) with δ = 0.5, p = 2.

In the following, various phase portraits are plotted for δ = 0.5, p = 2 and
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different m in Figure 4.

(a) m = 3.8 (b) m = 3.88 (c) m = 3.98

(d) m = 4.001 (e) m = 4.02 (f) m = 4.1

(g) m = 4.5 (h) m = 4.9 (i) m = 5.8

Figure 4. Phase portraits for the system (1.8) with δ = 0.5, p = 2 and different m.

Figures 4(a)and (b) show that fixed point E+ is a stable attractor when m =
3.8 and m = 3.88. Figure 4(c) depicts the dynamics of the system (1.8) before
the occurrence of Neimark-Sacker bifurcation when m = 3.98, while Figure 4(d)
demonstrates the dynamics of the system (1.8) after the occurrence of Neimark-
Sacker bifurcation when m = 4.001. Comparing Figure 4(c) and Figure 4(d), we
find that the fixed point E+ becomes unstable as the parameter m goes through the
bifurcation value m0 = 4. In Figure 4, subfigures (e)-(f) show that increasing the
parameter m leads to instablity of the fixed point E+ and the creation of invariant
closed curve around E+. This agrees with our Theorem 3.1. As m continues to
increase, it is observed that the dynamics of the fixed point E+ becomes simple
from subfigures(g)-(i), which can be considered as the absence of chaos.

5. Conclusion

In this paper, we discuss the dynamics of a semi-discrete system (1.8) derived for
a nonlinear model of blood cell production with time delay τ . Under the given
parametric conditions, the system (1.8) has two nonnegative equilibria O(0, 0) and
E+(x∗, y∗). First combining the associated characteristic equation with Lemma
1.1, the stability of its equilibrium points has been investigated. We find that the
positive equilibrium E+(x∗, y∗) is asymptotically stable when m < m0 and unstable
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when m > m0, where m0
∆
= p(1+δ)

δ(p−δ) . Moreover, when m crosses through the critical

value m0, the system can undergo a Neimark-Saker bifurcation at E+(x∗, y∗). Then
the Neimark-Saker bifurcation for the system (1.8) at E+(x∗, y∗) has been analysed
in theory by choosing m = m0 as a bifurcation parameter. Finally we provide
numerical simulations,which not only confirm the theoretical analysis results but
also exhibit some new properties in the system (1.8).
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