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EXACT TRAVELLING WAVE SOLUTIONS FOR
NONLINEAR SCHRÖDINGER EQUATION

WITH VARIABLE COEFFICIENTS∗
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Abstract In this paper, two nonlinear Schrödinger equations with variable
coefficients in nonlinear optics are investigated. Based on travelling wave trans-
formation and the extended (G′

G
)-expansion method, exact travelling wave so-

lutions to nonlinear Schrödinger equation with time-dependent coefficients are
derived successfully, which include bright and dark soliton solutions, trian-
gular function periodic solutions, hyperbolic function solutions and rational
function solutions.
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1. Introduction

Nonlinear evolution equations (NLEEs) are used to describe many nonlinear phe-
nomena which occur in the field of nature science. The constructing of exact so-
lutions to nonlinear evolution equations is an important topic in studying these
nonlinear phenomena. During the past decades, much efforts have been made to
give exact travelling wave solutions of NLEEs and various powerful approaches have
been proposed for obtaining exact travelling wave solutions, such as the inverse s-
cattering method, the homogenous balance method, the tanh-function method, the
bilinear method and so on [1, 4–8,10,11,16,17,21–23,27].

Lately, M L Wang et al. [26] presented a new method called the (G
′

G )-expansion
method and illustrated that this is a powerful approach to obtaining the analytic
solution of NLEEs. The key ideas of the (G

′

G )-expansion method are that the trav-

elling wave solutions of NLEEs can be expressed by a polynomial in (G
′

G ), where
G = G(ζ) satisfies a second order linear ordinary differential equation(ODE). By

means of various extended (G
′

G )-expansion method, many researchers have obtained
travelling wave solutions of a large of NLEEs [3, 14, 15, 24, 30, 31]. More recently,

Malik et al. [18] proposed the extended (G
′

G )-expansion method based on a new
assumption. They illustrated the efficiency of this new method to solve the Bogoy-
avlenskii equation and gave some exact solutions.
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The well-known cubic nonlinear Schrödinger equation(NLSE) which describe the
wave dynamics of nonlinear pulses propagation in monomode fiber is in the following
form [29]

iut + αuxx + γ|u|2u = 0, (1.1)

where u(x, t) is a complex-valued function of related system dynamics in nonlinear
optics, while x, t are the independent variables. And α, γ are the group velocity
dispersion and self-phase modulation parameters, respectively.

In the present paper, we employ the extended (G
′

G )-expansion method to con-
struct more travelling wave solutions for the following nonlinear Schrödinger equa-
tion with time-dependent coefficient

iut + f(t)uxx + g(t)|u|2u = 0, (1.2)

and the generalized cubic nonlinear Schrödinger equation with variable coefficients
[28]

iut +
1

2
β(t)uxx + α(t)|u|2u− iu = 0, (1.3)

where u(x, t) is a complex function that represents complex amplitude of the wave
form, the variable x represents the normalized propagation distance, and t repre-
sents the retarded time. Under some special parameters of f(t) and g(t), Eq.(1.2)
can be reduced to some Schrödinger-tpye equations. For example, If f(t) = α, g(t) =
γ, then Eq.(1.2) become Eq.(1.1). Taghizadeh et al constructed exact solutions of
this model by employing the first integral method [20] . Due to widely application
of Eqs.(1.2) and (1.3) in various area of physics, such as nonlinear optics, plasma
physics and quantum mechanics [1,2,9,12,13,25], much attention has been paid to
Eq.(1.2) and their various generalizations. For more details about this equation,
the readers are advised to see reference [19] and references therein.

The rest of the paper is organized as follows. In Section 2, the extended (G
′

G )-
expansion method is described. In Section 3, the proposed method and several
suitable transformations is used to solve two nonlinear Schrödinger equation with
timedependent coecient and more travelling wave solutions are derived. In Section
4, some conclusions and remarks are given.

2. Description of the extended (G
′

G )-expansion method

In this section, we describe the main steps of the extended (G
′

G )-expansion method.
For a given NLEEs

F (u, ut, ux, utt, uxx, uxt, · · · ) = 0, (2.1)

with two independent variables X = (x, t). To obtain the travelling wave solution
of Eq.(2.1), we make use of the generalized wave transformation

u(x, t) = u(ζ), ζ = ζ(X).

Then Eq.(2.1) can be reduced to the following ODE

G(u, u′, u′′, · · · ) = 0. (2.2)
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we introduce the solution of Eq.(2.2) as

u(ζ) = a0(X) +

N∑
i=1

[
ai(X)

(G′
G

)i
+bi(X)

(G′
G

)i−1√
1 +

1

µ

(G′
G

)2]
, (2.3)

where G = G(ζ) satisfies the following second order ODE

G′′(ζ) + µG(ζ) = 0, (2.4)

where G′ = dG(ζ)
dζ , G′′ = d2G(ζ)

dζ2 , and a0(X), ai(X), bi(X) (i = 1, 2, · · · , N) are

functions of X to be determined. The integer N in Eq.(2.3) can be determined
according to the homogeneous balance principle. We define the degree of u(ζ) as
D[u(ζ)] = M, then

D

[
dpu

dξp

]
= M + p, D

[
up
(dqu
dξq

)s]
= Mp+ (M + q)s.

Substituting (2.3) along with (2.4) into Eq.(2.2), collecting all terms with the

same power of (G
′(ζ)
G(ζ) )i

√
1 + 1

µ (G
′

G )2
j

(j = 0, 1, i = 0, 1, 2, · · · ) and setting each

coefficients to zero, we get a system of algebraic equations for a0(X), ai(X), bi(X).
The solution of Eq.(2.4) are given as

(
G′

G
) =


√
−µ(A1sinh

√
−µζ+A2cosh

√
−µζ

A1cosh
√
−µζ+A2sinh

√
−µζ ), µ < 0,

√
µ(

A1sin
√
µζ+A2cos

√
µζ

A2sin
√
µζ−A1cos

√
µζ ), µ > 0,

A2

A1+A2ζ
, µ = 0,

which can be written in the following simplified form

(
G′

G
) =



√
−µ tanh(

√
−µζ + ζ0), µ < 0, tanh ζ0 = A2

A1
, | A1

A2
|> 1,

√
−µ coth(

√
−µζ + ζ0), µ < 0, coth ζ0 = A2

A1
, | A1

A2
|< 1,

√
µ cot(

√
µζ + ζ0), µ > 0, cot ξ0 = −A2

A1
,

A2

A1+A2ζ
, µ = 0.

By solving the over-determined algebraic system with the help of Mathematica,
we obtain the values of a0, ai and bi. Substituting these results into (2.3) and
combining with the solution of Eq.(2.4), we obtain some exact solutions of Eq.(2.1).

3. Application

3.1. The exact solutions of Eq.(1.2)

In this section, we will illustrate the extended (G
′

G )-expansion method mentioned in
Section 2 to obtain the exact solutions of Eq.(1.2).
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Since u = u(x, t) is a complex function, we introduce travelling wave transfor-
mation in the following form

u(x, t) = v(x, t)exp(iη(x, t)), (3.1)

where v(x, t) and η(x, t) are amplitude and phase functions respectively.
Substituting the wave transformation (3.1) into Eq.(1.2), we have

vt + 2f(t)vxηx + f(t)vηxx = 0, (3.2)

and
− ηtv + f(t)vxx − f(t)η2xv + g(t)v3 = 0. (3.3)

Considering the homogeneous balance between v3 and vxx in Eq.(3.3), we get
N = 1. In order to search for exact solutions, we assume that Eqs.(3.2) and (3.3)
have the following formal solutions

v(x, t) = v(ξ) = a0 + a1(
G′

G
) + b1

√
1 +

1

µ

(G′
G

)2
, (3.4)

ξ = p(t)x+ q(t), η(x, t) = α(t)x2 + β(t)x+ γ(t), (3.5)

where G = G(ξ) satisfies Eq.(2.4). Substituting (3.4) along with (2.4) into E-
qs.(3.2) and (3.3), the left hand side of Eqs.(3.2)-(3.3) is converted into a poly-

nomial of xi(G
′

G )j
√

1 + 1
µ (G

′

G )2
k

(k = 0, 1). Collecting the coefficient of power of

xi(G
′

G )j
√

1 + 1
µ (G

′

G )2
k

(k = 0, 1) and setting each coefficient to zero yields a set of

algebraic system.

−b1γ′(t) + µb1f(t)p2(t)− b1f(t)β2(t) + 3a20b1g(t) + b31g(t) = 0,

−a0γ′(t)− a0f(t)β2(t) + a30g(t) + 3a0b
2
1g(t) = 0,

−a1γ′(t) + 2a1µf(t)p2(t)− a1f(t)β2(t) + 3a20a1g(t) + 3a1b
2
1g(t) = 0,

−a0β′(t)− 4a0α(t)β(t)f(t) = 0,

−a1β′(t)− 4a1α(t)β(t)f(t) = 0,

−b1β′(t)− 4b1α(t)β(t)f(t) = 0,

−a0α′(t)− 4a0f(t)α2(t) = 0,

−a1α′(t)− 4a1f(t)α2(t) = 0,

−b1α′(t)− 4b1f(t)α2(t) = 0,

3a0a
2
1 + 3

µa0b
2
1 = 0,

2b1f(t)p2(t) + 1
µb

3
1g(t) + 3a21b1g(t) = 0,

2a1f(t)p2(t) + a31g(t) + 3
µa1b

2
1g(t) = 0.

Solving the above algebraic system with the help of Mathematica, we get the
following three cases.

Case 1.

a0 = 0, b1 = 0, a1 = a1, β(t) = c1α(t), p(t) = c2α(t),

q(t) = c1c22α(t) + c3, g(t) = − 2c22f(t)α
2(t)

a21
,

γ(t) =
c21−2µc

2
2

4 α(t),
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where ci(i = 1, 2, 3, 4, 5) are arbitrary constants, c2 6= 0 and α(t) is given by

α(t)

[
4

∫
f(t)dt+ c5

]
= 1.

In this case, the exact solution of Eq.(1.2) has the form

u(x, t) =


√
−µa1(A1sinh

√
−µξ+A2cosh

√
−µξ

A1cosh
√
−µξ+A2sinh

√
−µξ )× exp[iη(x, t)], µ < 0,

√
µa1(

A2cos
√
µξ−A1sin

√
µξ

A1cos
√
µξ+A2sin

√
µξ )× exp[iη(x, t)], µ > 0,

A2

A1+A2ζ
, µ = 0.

When µ < 0, tanh ξ0 = A2

A1
, | A1

A2
|> 1, the dark solitary wave solution of Eq.(1.2)

can be expressed by

u1,1(x, t) =
√
−µa1 tanh(

√
−µξ + ξ0)× exp[iη(x, t)]. (3.6)

When µ < 0, coth ξ0 = A2

A1
, | A1

A2
|< 1, the hyperbolic function solution of Eq.(1.2)

can be written as

u1,2(x, t) =
√
−µa1 coth(

√
−µξ + ξ0)× exp[iη(x, t)]. (3.7)

When µ > 0, tan ξ0 = A1

A2
, the triangular periodic wave solution of Eq.(1.2) is

given by
u1,3(x, t) =

√
µa1 cot(

√
µξ + ξ0)× exp[iη(x, t)], (3.8)

where η(x, t) = α(t)(x2 + c1x+
c21−2µc

2
2

4 ).

Case 2.

a0 = 0, a1 = 0, b1 = b1, β(t) = c1α(t), p(t) = c2α(t),

q(t) = c1c2
2 α(t) + c3,

g(t) = − 2µc22f(t)α
2(t)

b21
, γ(t) =

c21+µc
2
2

4 α(t),

where α(t) satisfies the constraint condition

α(t)

[
4

∫
f(t)dt+ c5

]
= 1.

In this case, the exact solution of Eq.(1.2) has the form

u(x, t) =



b1

√
1− ( A1sinh

√
−µξ+A2 cosh

√
−µξ

A1 cosh
√
−µξ+A2 sinh

√
−µξ )2

×exp[iη(x, t)], µ < 0,

b1

√
1 + (

A2cos
√
µξ−A1sin

√
µξ

A1cos
√
µξ+A2sin

√
µξ )2

×exp[iη(x, t)], µ > 0.

When µ < 0, tanh ξ0 = A2

A1
, | A1

A2
|> 1, the bright solitary wave solution of

Eq.(1.2) can be expressed by

u2,1(x, t) = b1sech(
√
−µξ + ξ0)× exp[iη(x, t)]. (3.9)
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When µ < 0, coth ξ0 = A2

A1
, | A1

A2
|< 1, the singular solution of Eq.(1.2) becomes

u2,2(x, t) = ib1csch(
√
−µξ + ξ0)× exp[iη(x, t)]. (3.10)

When µ > 0, tan ξ0 = A1

A2
, the triangular periodic solution of Eq.(1.2) is given

by
u2,3(x, t) = b1 csc(

√
µξ + ξ0)× exp[iη(x, t)], (3.11)

where η(x, t) = α(t)(x2 + c1x+
c21+µc

2
2

4 ).

Case 3.

a0 = 0, a1 = a1, b1 = ±√µa1, β(t) = c1α(t),

p(t) = c2α(t), q(t) = c1c2
2 α(t) + c3,

g(t) = − c
2
2f(t)α

2(t)

2a21
, γ(t) =

c21− 3
2µc

2
2

4 α(t),

where α(t) satisfies the constraint condition

α(t)

[
4

∫
f(t)dt+ c5

]
= 1.

Substituting Case 3 into (3.4) and (3.5), and using (3.1) and the general solutions
of (2.4), we get two types of exact solutions for equation (1.2).

When µ < 0, the hyperbolic function solution can be expressed by

u3,1(x, t) =
√
−µa1

[(A1sinh
√
−µξ +A2cosh

√
−µξ

A1cosh
√
−µξ +A2sinh

√
−µξ

)
±i

√
1−

(A1sinh
√
−µξ +A2cosh

√
−µξ

A1cosh
√
−µξ +A2sinh

√
−µξ

)2]
exp[iη(x, t)]. (3.12)

If we set µ < 0, tanh ξ0 = A2

A1
, | A1

A2
|> 1, then the bright-dark soliton solution of

(1.2) are derived

u(x, t) =
√
−µa1[tanh(

√
−µξ + ξ0)

±isech(
√
−µξ + ξ0)]× exp(iη(x, t)). (3.13)

If we set µ < 0, coth ξ0 = A2

A1
, | A1

A2
|< 1, then the solution (3.12) becomes the

following singular wave solution

u(x, t) =
√
−µa1[coth(

√
−µξ + ξ0)

±csch(
√
−µξ + ξ0)]× exp(iη(x, t)). (3.14)

When µ > 0, the triangular periodic solution can be given by

u3,2(x, t) =
√
µa1

[(A2 cos
√
µξ −A1 sin

√
µξ

A1 cos
√
µξ +A2 sin

√
µξ

)
±

√
1 +

(A2 cos
√
µξ −A1 sin

√
µξ

A1 cos
√
µξ +A2 sin

√
µξ

)2]
× exp[iη(x, t)]. (3.15)

If we set µ > 0, tan ξ0 = A1

A2
, then the solution (3.13) becomes

u(x, t) =
√
µa1[cot(

√
µξ + ξ0)± i csc(

√
µξ + ξ0)]× exp(iη(x, t)),

where η(x, t) = α(t)(x2 + c1x+
c21− 3

2µc
2
2

4 ).



1592 X. Liu

3.2. The exact solutions of Eq.(1.3)

In this section, we will construct the exact solutions of Eq.(1.3) by using of the

extended (G
′

G )-expansion method.
Since u = u(x, t) is a complex function, we assume that travelling wave trans-

formation is in the form

u(x, t) = v(x, t)exp(iθ(x, t)), (3.16)

where v(x, t) and θ(x, t) are amplitude and phase functions respectively. Substitut-
ing the wave transformation (3.16) into (1.3) and separating the real and imaginary
parts, we have

− vθt +
1

2
β(t)(vxx − vθ2x) + α(t)v3 = 0, (3.17)

and

vt +
1

2
β(t)(2θxvx + vθxx)− v = 0. (3.18)

Considering the homogeneous balance in Eq.(3.17), we assume that Eqs.(3.17)
and (3.18) have the following solutions

v(x, t) = v(ξ) = a0 + a1

(G′
G

)
+ b1

√
1 +

1

µ

(G′
G

)2
, (3.19)

ξ = p(t)x+ q(t), θ(x, t) = a(t)x2 + b(t)x+ c(t), (3.20)

where G = G(ξ) satisfies Eq.(2.4). Substituting (3.19) along with (2.4) into E-
qs.(3.17) and (3.18), the left hand side of Eqs.(3.17)-(3.18) is converted into a poly-

nomial of xi(G
′

G )j
√

1 + 1
µ (G

′

G )2
k

(k = 0, 1). Collecting the coefficient of power of

xi(G
′

G )j
√

1 + 1
µ (G

′

G )2
k

(k = 0, 1) and setting each coefficient to zero yields a set of

algebraic system.

−a0a′(t)− 2a0a
2(t)β(t) = 0,

−a1a′(t)− 2a1a
2(t)β(t) = 0,

−b1a′(t)− 2b1a
2(t)β(t) = 0,

−b1b′(t)− 2b1a(t)b(t)β(t) = 0,

b1β(t)p2(t) +
α(t)b31
µ + 3a21b1α(t) = 0,

a1β(t)p2(t) + a31α(t) +
3a1b

2
1α(t)
µ = 0,

3a0a
2
1 +

3a0b
2
1

µ = 0,

1
2b1µβ(t)p2(t) + α(t)b31 − b1c′(t) + 3a20b1α(t)− 1

2b1β(t)b2(t) = 0,

−a1c′(t) + a1µβ(t)p2(t) + 3α(t)a20a1 + 3a1b
2
1α(t)− 1

2a1b
2(t)β(t) = 0,

p′(t) + 2p(t)a(t)β(t) = 0,

q′(t) + p(t)β(t)b(t) = 0,

a(t)β(t) = 1.

Solving the above algebraic system with the help of Mathematica, we get the
following three cases.
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Case 1.

a0 = 0, b1 = 0, a1 = a1, p(t) = c2a(t), q(t) = 1
2c1c2a(t) + c3,

b(t) = c1a(t), c(t) = 1
4 (c21 − 2µc22)a(t) + c4,

a(t)β(t) = 1, α(t) = − c
2
2β(t)a

2(t)

a21
.

where ci(i = 1, 2, 3, 4, 5) are arbitrary constants, and a(t) is given by

a(t)

[
2

∫
β(t)dt+ c5

]
= 1.

In this case, the exact solution of Eq.(1.3) has the form

u(x, t) =


√
−µa1(A1sinh

√
−µξ+A2cosh

√
−µξ

A1cosh
√
−µξ+A2sinh

√
−µξ )× exp[iθ(x, t)], µ < 0,

√
µa1(

A2cos
√
µξ−A1sin

√
µξ

A1cos
√
µξ+A2sin

√
µξ )× exp[iθ(x, t)], µ > 0,

A2

A1+A2ζ
, µ = 0.

Particularly, the dark solitary wave solution of Eq.(1.3) can be expressed by

u1(x, t) =
√
−µa1 tanh(

√
−µξ+ξ0)×exp

{
ia(x, t)

[
x2+c1x+

1

4
(c21−2µc22)

]}
. (3.21)

The hyperbolic function solution of Eq.(1.3) can be written as

u2(x, t) =
√
−µa1 coth(

√
−µξ+ξ0)×exp

{
ia(x, t)

[
x2+c1x+

1

4
(c21−2µc22)

]}
. (3.22)

The triangular periodic wave solution of Eq.(1.3) is given by

u3(x, t) =
√
µa1 cot(

√
µξ + ξ0)× exp

{
ia(x, t)

[
x2 + c1x+

1

4
(c21 − 2µc22)

]}
. (3.23)

Case 2.

a0 = 0, a1 = 0, b1 = b1, p(t) = c2a(t), b(t) = c1a(t),

q(t) = 1
2c1c2a(t) + c3, a(t)β(t) = 1,

c(t) = 1
4 (c21 + µc22)a(t) + c4,

α(t) = −µc
2
2β(t)a

2(t)

b21
,

where a(t) satisfies the constraint condition

a(t)

[
2

∫
β(t)dt+ c5

]
= 1.

In this case, the exact solution of Eq.(1.3) has the form

u(x, t) =



b1

√
1− ( A1sinh

√
−µξ+A2 cosh

√
−µξ

A1 cosh
√
−µξ+A2 sinh

√
−µξ )2

×exp[iθ(x, t)], µ < 0,

b1

√
1 + (

A2cos
√
µξ−A1sin

√
µξ

A1cos
√
µξ+A2sin

√
µξ )2

×exp[iθ(x, t)], µ > 0.
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The bright solitary wave solution of Eq.(1.3) can be expressed by

u4(x, t) = b1sech(
√
−µξ + ξ0)× exp

{
ia(x, t)

[
x2 + c1x+

1

4
(c21 + µc22)

]}
. (3.24)

The singular solution of Eq.(1.3) becomes

u5(x, t) = ib1csch(
√
−µξ + ξ0)× exp

{
ia(x, t)

[
x2 + c1x+

1

4
(c21 + µc22)

]}
. (3.25)

The triangular periodic solution of Eq.(1.3) is given by

u6(x, t) = b1 csc(
√
µξ + ξ0)× exp

{
ia(x, t)

[
x2 + c1x+

1

4
(c21 + µc22)

]}
. (3.26)

Case 3.

a0 = 0, a1 = a1, b1 = b1, p(t) = c2a(t),

q(t) = 1
2c1c2a(t) + c3, b(t) = c1a(t),

c(t) = 1
8 (c21 − 2µc22)a(t) + c4,

a(t)β(t) = 1, α(t) =
c21β(t)a

2(t)

4b21
,

where a(t) satisfies the constraint condition

a(t)

[
2

∫
β(t)dt+ c5

]
= 1.

In this case, we get two types of exact solutions for equation (1.3).
When µ < 0, the hyperbolic function solution can be expressed by

u7(x, t) =
√
−µa1

[(A1sinh
√
−µξ +A2cosh

√
−µξ

A1cosh
√
−µξ +A2sinh

√
−µξ

)
±i

√
1−

(A1sinh
√
−µξ +A2cosh

√
−µξ

A1cosh
√
−µξ +A2sinh

√
−µξ

)2]
exp[iθ(x, t)]. (3.27)

If we set µ < 0, tanh ξ0 = A2

A1
, | A1

A2
|> 1, then the bright-dark soliton solution of

(1.3) are derived

u(x, t) =
√
−µa1[tanh(

√
−µξ + ξ0)

±isech(
√
−µξ + ξ0)]× exp(iθ(x, t)). (3.28)

If we set µ < 0, coth ξ0 = A2

A1
, | A1

A2
|< 1, then the solution (3.27) becomes the

following singular wave solution

u(x, t) =
√
−µa1[coth(

√
−µξ + ξ0)

±csch(
√
−µξ + ξ0)]× exp(iθ(x, t)). (3.29)

When µ > 0, the triangular periodic solution can be given by

u8(x, t) =
√
µa1

[(A2 cos
√
µξ −A1 sin

√
µξ

A1 cos
√
µξ +A2 sin

√
µξ

)
±

√
1 +

(A2 cos
√
µξ −A1 sin

√
µξ

A1 cos
√
µξ +A2 sin

√
µξ

)2]
× exp[iθ(x, t)]. (3.30)
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If we set µ > 0, tan ξ0 = A1

A2
, then the solution (3.30) becomes

u(x, t) =
√
µa1[cot(

√
µξ + ξ0)± i csc(

√
µξ + ξ0)]× exp(iθ(x, t)).

where θ(x, t) = a(t)[x2 + c1x+
c21−2µc

2
2

8 a(t) + c4], ξ = c2a(t)x+ 1
2c1c2a(t) + c3.

4. Discussion and Conclusion

In summary, the extended (G
′

G )-expansion method is developed to construct exact
solutions of nonlinear evolution equations with variable coefficients. The key of
the used methodology is the idea to transform nonlinear evolution equation with
variable coefficients to a system of nonlinear algebraic. By means of solutions to
the auxiliary equation, we derive numerous exact travelling wave solutions of non-
linear Schrödinger equations with variable coefficients under constraint condition,
which include triangular function periodic solutions, hyperbolic function solutions
and rational function solutions. Particularly, when the parameters take some spe-
cial values, the bright soliton solutions, the dark soliton solutions and combined
soliton solutions are obtained. These results may be helpful for an explanation of
some practical problems in nonlinear optics. The paper shows that the combina-
tion of the extended (G

′

G )-expansion method and several suitable transformations
provide a powerful tool for finding exact solutions of the nonlinear evolution equa-
tions(NLEEs) with time-dependent coefficients and also can be used to solve other
NLEEs with variable coefficients in mathematical physics.

Remark 4.1. All the solutions obtained in this paper for Eqs.(1.2) and (1.3) have
been checked by Maple software.
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