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MULTIPLE SIGN-CHANGING SOLUTIONS
FOR A CLASS OF SEMILINEAR ELLIPTIC

EQUATIONS IN RN
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Abstract In this paper, we study the following semilinear elliptic equations

−△u+ V (x)u = f(x, u), x ∈ RN ,

where V ∈ C(RN ,R) and f ∈ C(RN ×R,R). Under some suitable conditions,
we prove that the equation has three solutions of mountain pass type: one
positive, one negative, and sign-changing. Furthermore, if f is odd with respect
to its second variable, this problem has infinitely many sign-changing solutions.
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1. Introduction and preliminaries
In this paper, we study the following semilinear elliptic equations

−△u+ V (x)u = f(x, u), x ∈ RN , (1.1)

where N ≥ 3, V ∈ C(RN ,R) and f ∈ C(RN × R,R).
During the past years, problem of the form (1.1) has been extensively studied

via the critical point theory, for example, see [2,8,10,12,13,24,25] and the reference
therein, because such problems arise naturally in various branches of Mathematical
Physics, on the other hand, they present specific mathematical difficulties that make
them challenging to the researchers. Moreover, because the embedding H1(RN ) ↪→
Lp(RN ) is continuous, but not compact, the usual variational methods, that allow
to prove the existence of infinitely many solutions to (1.1) in a bounded domain Ω.

When the nonlinearity f is of super-quadratic growth near infinity in u and is
also allowed to be sign-changing, in [17] the author proved the existence of infinitely
many nontrivial solutions of (1.1). If f is of subcritical growth and satisfies the
global (AR) condition, Bartsch and Wang [4] obtained the existence of a sign-
changing of (1.1). Recently, in [1], the author obtained the existence of positive
solutions for the following class of elliptic equation

−△u+ V (x)u = f(u), x ∈ RN , (1.2)
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where f has a subcritical growth and V is a nonnegative potential, which can vanish
at infinity. When V (x) ≡ 1, in [19] Weth gave a lower bound for the energy of sign
changing solutions of (1.2) if f is superlinear by using the compactness lemma. By
applying another version of the compactness lemma under a more general condition,
Wang [18] proved that the result of Weth [19] was also true if f is asymptotically
linear. When V (x) ≡ a > 0 is fixed, Bartsch and Weth [5] proved the existence of
three nodal solutions of (1.2) provided Ω contains a large ball BR(0), where Ω is
bounded domain with smooth boundary in RN . For the following equation:

−△u+ V (x)u = λf(u), in RN ,

for λ sufficiently large, the authors [9] proved the existence of positive, negative
and a sign-changing solution by using Minimax methods. Liu and Chen [14] proved
the existence of sign changing solutions and multiple solutions for the following the
semilinear elliptic eigenvalue problem with constraint of the form:

−△u+ V (x)u = λf(x, u) x ∈ RN , u ∈ H1(RN )∫
RN (|∇u|2 + V (x)u2)dx = r2

u(x) → 0, |x| → +∞,

(1.3)

where λ ∈ R, r > 0. The authors constructed nonempty invariant sets of the
gradient flow which contained the positive and the negative solutions of the problem
(1.3). Several authors have studied the following equation:−△u+ V (x)u = f(x, u) x ∈ RN , u ∈ H1(RN )

u(x) → 0, |x| → +∞.
(1.4)

Bartsch, Liu and Weth [3] proved the existence of sign changing solutions and
estimated the number of nodal domain of (1.4) under some other condition on
V (x) and f(x, u). Moreover, if f is odd they obtained an unbounded sequence of
sign changing solutions of (1.4). Qian [16] obtained infinitely many sign-changing
solutions of (1.4) by using critical point theorem. Zhao and Ding [26] proved the
existence and multiplicity of solutions of (1.4) by variational methods.

In this paper, we study the sign-changing solutions of problem (1.1). We need
the following assumption:

(V ) V ∈ C(RN ,R), V0 := inf
x∈RN

V (x) > 0, lim
|x|→+∞

V (x) = +∞.

(f1) f ∈ C(RN × R,R), and there exist constants C > 0 and 2 < p < 2∗ such
that

|f(x, t)| ≤ C(1 + |t|p−1),

where 2∗ = 2N
N−2 is the Sobolev critical exponent.

(f2) f(x, t) = o(|t|) uniformly in x ∈ RN , as |t| → 0.
(f3) lim

|t|→+∞
F (x,t)

t2 = +∞ uniformly in x ∈ RN , where F (x, t) :=
∫ t

0
f(x, s)ds.

(f4) tf(x, t) ≥ 2F (x, t), ∀(x, t) ∈ RN × R.
(f5) There exist µ > 2 and α > 0 such that

inf
x∈RN ,|t|=α

F (x, t) > 0,

and
µF (x, t) ≤ f(x, t)t



14 X. M. He, & X.Wu

for all x ∈ RN and |t| ≥ α.
(f6) f(x,−t) = −f(x, t), ∀(x, t) ∈ RN × R.
We need the following several notations. Let

H1(RN ) := {u ∈ L2(RN ) : ∇u ∈ L2(RN )}
with the inner product and the norm

⟨u, v⟩1 =

∫
RN

(
∇u∇v + uv

)
dx, ∥u∥1 = ⟨u, u⟩

1
2
1 .

Set
X :=

{
u ∈ H1(RN ) :

∫
RN

V (x)u2dx < ∞
}

with the inner product and the norm

⟨u, v⟩ =
∫
RN

(
∇u∇v + V (x)uv

)
dx, ∥u∥ = ⟨u, u⟩ 1

2 .

Recall that a function u ∈ X is called a weak solution of problem (1.1) if∫
RN

∇u∇ϕdx+

∫
RN

V (x)uϕdx =

∫
RN

f(x, u)ϕdx, ∀ϕ ∈ X.

Seeking a weak solution of problem (1.1) is equivalent to finding a critical point of
the functional

J(u) =
1

2

∫
RN

|∇u|2dx+
1

2

∫
RN

V (x)u2dx−
∫
RN

F (x, u)dx, u ∈ X.

Under the assumption (V ), it is well known that the embedding X ↪→ Ls(RN )
is continuous for all s ∈ [2, 2∗] and the embedding X ↪→ Ls(RN ) is compact for all
s ∈ [2, 2∗). Under our conditions, we know that J ∈ C1(X,R) and for each u ∈ X,

⟨J ′(u), ϕ⟩ =
∫
RN

∇u∇ϕdx+

∫
RN

V (x)uϕdx−
∫
RN

f(x, u)ϕdx,

for all ϕ ∈ X.
The main results of this paper are the following:

Theorem 1.1. Suppose that (V ), (f1), (f2) and (f5) are satisfied. Then the equa-
tion (1.1) has three solutions of mountain pass type: one positive, one negative, and
one sign-changing. Moreover, if f is odd with respect to its second variable, i.e.
(f6) holds, then problem (1.1) has infinitely many sign-changing solutions.

Theorem 1.2. If conditions (f3) and (f4) are used in place of (f5), then the
conclusion of Theorem 1.1 holds.

Notice that the condition (f4) is weaker than the condition (f ′
4) (see [23]). Hence

we have the following corollary.

Corollary 1.1. If the following (f ′
4) is used in place of (f4):

(f ′
4)

f(x,t)
t is non-increasing on (−∞, 0) and non-decreasing on (0,+∞),

then the conclusion of Theorem 1.2 holds.
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Throughout the paper, → and ⇀ denote the strong and weak convergence,
respectively. C, c, Ci and ci express distinct constants. For 1 ≤ q < ∞, the usual
Lebesgue space is endowed with the norm

∥u∥q :=
(∫

RN

|u|qdx
) 1

q

.

The paper is organized as follows. In Section 2, we introduce some notions and
results of some critical point theorems. In Section 3, we complete the proof of the
main conclusions.

2. Some critical point theorems
Let us begin by recalling some notions and results of critical point theory (see [6]).

In the following, P ⊂ X is a closed convex cone. For ε > 0, we denote by Vε(S)
the ε-neighborhood of S ⊂ X, that is

Vε(S) := {u ∈ X : dist(u, S) := inf
v∈S

∥u− v∥X < ε}.

Define
+P := {u ∈ X : u ≥ 0}, −P := {u ∈ X : u ≤ 0},

P±
ε := Vε(±P ) = {u ∈ X : dist(u,±P ) < ε}.

Let J ∈ C1(X,R). We denote by K the set of critical point of J and E = X\K.
For ε0 > 0, we consider the following situation:
(Aε0) There exists a locally Lipschitz continuous vector field B : E → X (B

odd if J is even) such that
(i) B(P±

ε

⋂
E) ⊂ P±

ε , ∀ε ∈ (0, ε0);
(ii) there exists a constant α1 > 0 such that

⟨J ′(u), u−B(u)⟩ ≥ α1∥u−B(u)∥2X , ∀u ∈ E;

(iii) for ρ1 < ρ2 and α < 0, there exists β > 0 such that ∥u−B(u)∥X ≥ β if
u ∈ X is such that J(u) ∈ [ρ1, ρ2] and ∥J ′(u)∥X∗ ≥ α.

Definition 2.1. Let J ∈ C1(X,R), c ∈ R. We say that J satisfies the (PS)c
condition if each sequence {un} ⊂ X with J(un) → c and J ′(un) → 0 in X∗

possesses a convergent subsequence.

Theorem 2.1 ( [6]). Let J ∈ C1(X,R) with J(0) = 0. Assume there exists ε0 > 0
such that (Aε0) is satisfied. Assume also that there exist e± ∈ ±P and r > 0 such
that

(A1) ∥e±∥X
> r and ρ := inf

u∈X

∥u∥
X
=r

J(u) > δ := max{J(0), J(e±)}.

Then there exist sequences {un
±} ⊂ P±

ε such that
J ′(un

±) → 0 in X∗ and J(un
±) → c± := inf

γ∈Γ±
sup

u∈γ([0,1])

J(u) ≥ ρ, ∀ε ∈ (0, ε0),

where
Γ± :=

{
γ ∈ C([0, 1], P±

ε ) : γ(0) = 0, γ(1) = e±

}
.

If in addition J satisfies the (PS)c condition for any c > 0, then J has critical point
u± ∈ ±P\{0}.
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Theorem 2.2 ( [6]). Let J ∈ C1(X,R). Assume there exists ε0 > 0 such that
(Aε0

) is satisfied. Assume also that there exists a continuous map ϕ
0
:△→ X such

that, for any ε ∈ (0, ε0), the following conditions are satisfied:
(1) ϕ0(∂1 △) ⊂ P+

ε and ϕ0(∂2 △) ⊂ P−
ε ,

(2) ϕ0(∂0 △)
⋂
P+
ε

⋂
P−
ε = ∅,

(3) c0 := sup
u∈φ0 (∂0△)

J(u) < c∗ := inf
u∈∂P+

ε

∩
∂P−

ε

J(u),

where
△= {(s, t) ∈ R2 : s, t ≥ 0, s+ t ≤ 1},

∂1 △= {0} × [0, 1], ∂2 △= [0, 1]× {0} and ∂0 △= {(s, t) ∈△: s+ t = 1}.

Then there exists a sequence {un} ⊂ V ε
2
(X \ (P+

ε ∪ P−
ε )) such that

J ′(un) → 0 in X∗

and
J(un) → c := inf

φ∈Γ
sup

u∈φ(△)
∩
(X\(P+

ε ∪P−
ε ))

J(u) ≥ c
0
, ∀ε ∈ (0, ε0),

where

Γ := {ϕ ∈ C(△, X) : ϕ(∂1 △) ⊂ P+
ε , ϕ(∂2 △) ⊂ P−

ε and ϕ|∂0△ = ϕ
0
}.

If in addition J satisfies the (PS)c condition for any c > 0, then J has a sign-
changing critical point.

In this following, we assume that X is of the form
X := ⊕∞

j=1Xj , with dimXj < ∞,

and that there is another norm ∥ ·∥∗ on X such that (X, ∥ ·∥X) embeds continuously
into (X, ∥ · ∥∗).

In this following, we assume that X is of the form
X := ⊕∞

j=1Xj , with dimXj < ∞,
and that there is another norm ∥·∥∗ on X such that (X, ∥·∥X) embeds continuously
into (X, ∥ · ∥∗).

We introduce the following notations:

Yk := ⊕k
j=1Xj and Zk := ⊕∞

j=kXj , for k ≥ 2,

Jα := {u ∈ X : J(u) ≤ α}, for α ∈ R.
Notice that

(X, ∥ · ∥X) ↪→ (X, ∥ · ∥∗) ⇒ ∃ C∗ > 0, s.t. ∥u∥∗ ≤ C∗∥u∥X ,∀u ∈ X,

dimYk < ∞ ⇒ ∃ θk > 0, s.t. ∥u∥X ≤ θk∥u∥∗,∀u ∈ Yk.

Assume there exist constants ρ > 0 and q > 2, and numbers ρ
k
, dk > 0 such that

(ρ
k
/θk)

q

ρ2
k

+
ρ

k
(ρ

k
/θk)

ρ
k
+ C∗dkρk

> ρ, (2.1)

and define

Bk := {u ∈ Yk : ∥u∥ ≤ ρ
k
} and Nk := {u ∈ Zk :

∥u∥q∗
∥u∥2X

+
∥u∥X · ∥u∥∗

∥u∥X + dk · ∥u∥∗
= ρ}.

In this following, we introduce a sign-changing critical point theorem.
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Theorem 2.3 ( [6]). Let J ∈ C1(X,R) be an even functional. Assume that there
exist ρ, ρ

k
, dk > 0 and q > 2 such that (2.1) holds. Assume also that there exists

ε0 > 0 such that (Aε
0
) and the following conditions are satisfied:

(B1) ak := sup
u∈∂B

k

J(u) ≤ 0 and bk := inf
u∈Nk∩Ja0

J(u) → +∞, as k → ∞.

(B2) Nk

⋂
Ja0 ⊂ X \ (P+

ε

⋃
P−
ε ), ∀ε ∈ (0, ε0), where a0 := max

u∈Bk

J(u).

Then, for k large enough there exists a sequence {un
k}n ⊂ V ε

2
(X \ (P+

ε ∪ P−
ε )) such

that
J ′(un

k ) → 0 in X∗ as n → ∞,

and
J(un

k ) → ck := inf
γ∈Γ

k

max
u∈γ(Bk)

∩
(X\(P+

ε

∪
P−

ε ))
J(u) ≥ bk, ∀ε ∈ (0, ε0),

where
Γk :=

{
γ ∈ C(Bk, X) : γ is odd, γ|∂Bk

= id, sup
u∈Bk

J(γ(u)) ≤ a0

and γ(P+
ε ∪ P−

ε ) ⊂ (P+
ε ∪ P−

ε )
}
.

If in addition J satisfies the (PS)c condition for any c > 0, then it possesses a
sequence {uk} of sigh-changing critical points such that J(uk) → ∞, as k → ∞.

3. Proof of the main theorems
Now X =

{
u ∈ H1(RN ) :

∫
RN V (x)u2dx < ∞

}
, for u ∈ X fixed, we consider

the functional

Ĩu(v) =
1

2

∫
RN

|∇v|2dx+
1

2

∫
RN

V (x)v2dx−
∫
RN

f(x, u)vdx, v ∈ X. (3.1)

By (f1) and (f2), for any ε > 0, there exists Cε > 0 such that

|f(x, t)| ≤ ε|t|+ Cε|t|p−1, ∀(x, t) ∈ RN × R, (3.2)

and
|F (x, t)| ≤ ε|t|2 + Cε|t|p, ∀(x, t) ∈ RN × R. (3.3)

It is easy to prove that Ĩu is of class C1, coercive, bounded below, weakly lower
semicontinuous and strictly convex in X. Therefore, by Theorem 1.1 in [11], Ĩu
admits a unique global minimizer in X which is the unique solution to the problem

−△v + V (x)v = f(x, u), u ∈ X. (3.4)

Now, we may introduce an auxiliary operator A : X → X: for u ∈ X,Au ∈ X is
the unique solution of (3.4). Then the set of fixed points of A coincide with the set
K of critical points of J .

Furthermore, the operator A has the following important properties.

Lemma 3.1. Under the assumption (f1) and (f2),

(1) A is continuous and maps bounded sets to bounded sets.
(2) For any u ∈ X, J ′(u) = u−Au.
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(3) There exists ε0 > 0 such that A(P±
ε ) ⊂ P±

ε , ∀ε ∈ (0, ε0).

Proof. (1) Let {un} ⊂ X be such that un → u in X. For any w ∈ X, by the
definition of A, we have∫

RN

∇(Aun)∇wdx+

∫
RN

V (x)(Aun)wdx =

∫
RN

f(x, un)wdx, (3.5)

and ∫
RN

∇(Au)∇wdx+

∫
RN

V (x)(Au)wdx =

∫
RN

f(x, u)wdx. (3.6)

Let vn = Aun and v = Au. Taking w = vn − v ∈ X in (3.5) and (3.6), we obtain

∥vn − v∥2 =

∫
RN

[
f(x, un)− f(x, u)

]
· (vn − v)dx. (3.7)

Furthermore, because vn = Aun is the solution of (3.4), one has

−△vn + V (x)vn = f(x, un).

Thus ∫
RN

|∇vn|2dx+

∫
RN

V (x)v2ndx =

∫
RN

f(x, un)vndx,

i.e.
∥vn∥2 =

∫
RN

f(x, un)vndx.

By (3.2) with ε = 1, the Hölder inequality and the Sobolev embedding theorem,
one has

∥vn∥2 ≤ ∥un∥2 · ∥vn∥2 + C∥un∥p−1
p · ∥vn∥p ≤ C1∥un∥2 · ∥vn∥+ C2∥un∥p−1

p · ∥vn∥.

Therefore,
∥vn∥ ≤ C1∥un∥2 + C2∥un∥p−1

p .

By un → u in X, we obtain that {vn−v} is bounded in X. Consider any subsequence
of {vn}, we still denotes as {vn}. Since the embedding X ↪→ Lq(RN ) is compact
for all q ∈ [2, 2∗), we can assume that

vn − v ⇀ u0 in X,

vn(x)− v(x) → u0(x) a.e. x ∈ RN ,

vn − v → u0 in L2(RN ),

and
vn − v → u0 in Lp(RN ).

By the Lemma A.1 in [20], up to a subsequence, there exists g2, h2 ∈ L2(RN ), gp, hp ∈
Lp(RN ) such that

|vn(x)− v(x)| ≤ h2(x), a.e. x ∈ RN ,

|un(x)| ≤ g2(x), a.e. x ∈ RN ,

|vn(x)− v(x)| ≤ hp(x), a.e. x ∈ RN ,

|un(x)| ≤ gp(x), a.e. x ∈ RN
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and
un(x) → u(x), a.e. x ∈ RN .

By (3.2) with ε = 1, we have∣∣∣[f(x, un)− f(x, u)
]
· (vn − v)

∣∣∣
≤ |un(x)| · |vn(x)− v(x)|+ C|un(x)|p−1 · |vn(x)− v(x)|+ |u(x)| · |vn(x)− v(x)|

+C|u(x)|p−1 · |vn(x)− v(x)|
≤ g2(x)h2(x) + Cgp−1

p (x)hp(x) + |u(x)| · h2(x) + C|u(x)|p−1hp(x) ∈ L1(RN ).

Hence, by the Lebesgue domained convergence theorem, we get∫
RN

[
f(x, un)− f(x, u)

]
· (vn − v)dx → 0.

Consequently, ∥Aun −Au∥ → 0. This shows that A is continuous on X.
Moreover, for any u ∈ X, taking w = Au ∈ X in (3.6), we obtain∫

RN

|∇(Au)|2dx+

∫
RN

V (x)|Au|2dx =

∫
RN

f(x, u) ·Audx.

By (3.2), using the Hölder inequality, the Sobolev embedding theorem, we obtain

∥Au∥ ≤ C(1 + ∥u∥p−2)∥u∥,

where C > 0 is constant. This shows that Au is bounded in X whenever u is
bounded in X.

(2) For any u,w ∈ X, using again (3.6), we have

⟨J ′(u), w⟩ =
∫
RN

∇u∇wdx+

∫
RN

V (x)uwdx−
∫
RN

f(x, u)wdx

=

∫
RN

∇(u−Au)∇wdx+

∫
RN

V (x)(u−Au)wdx

= ⟨u−Au,w⟩.

Hence
J ′(u) = u−Au.

(3) Set u ∈ X and v = Au ∈ X. We denote w+ = max{0, w} and w− =
min{0, w}, for any w ∈ X. Taking w = v+ in (3.6) and using the Hölder inequality,
we obtain

∥v+∥2 ≤ ε∥u+∥2 · ∥v+∥2 + Cε∥u+∥p−1
p · ∥v+∥p. (3.8)

Since ∥z+∥q ≤ ∥z − w∥q, for all z ∈ X,w ∈ −P and 2 ≤ q ≤ 2∗, it follows from the
Sobolev embedding theorem that there is a constant C1 = C1(q) > 0 such that

∥u+∥q ≤ C1dist(u,−P ).

Moreover, one can easily verify that

dist(v,−P ) ≤ ∥v+∥.
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Consequently, by (3.8) and the Sobolev embedding theorem, we have

dist(v,−P )∥v+∥ ≤ ∥v+∥2 ≤ C2

[
εdist(u,−P ) + Cεdist(u,−P )p−1

]
∥v+∥,

where C2 > 0. Therefore,

dist(v,−P ) ≤ C2

[
εdist(u,−P ) + Cεdist(u,−P )p−1

]
.

Similarly, we can prove that

dist(v,+P ) ≤ C3

[
εdist(u,+P ) + Cεdist(u,+P )p−1

]
.

Hence
dist(v,±P ) ≤ C4

[
εdist(u,±P ) + Cεdist(u,±P )p−1

]
,

where C4 = max{C2, C3}. Now, we can choose ε0 > 0 small enough such that, for
all ε ∈ (0, ε0),

dist(v,±P ) ≤ 1
2dist(u,±P ) whenever dist(u,±P ) < ε.

It then follows that A(P±
ε ) ⊂ P±

ε , ∀ε ∈ (0, ε0).

Lemma 3.2 (see [7], Lemma 3.4). There exists a locally Lipschitz continuous op-
erator B : E ≜ X\K → X (B odd when J is even) such that

(1) ⟨J ′(u), u−Bu⟩ ≥ 1
2∥u−Au∥2, for any u ∈ E.

(2) 1
2∥u−Bu∥ ≤ ∥u−Au∥ ≤ 2∥u−Bu∥, for any u ∈ E.

(3) B(P±
ε

⋂
E) ⊂ P±

ε for any ε ∈ (0, ε0), where ε0 is obtained in Lemma 3.1(3).

Remark 3.1. Lemma 3.1 and Lemma 3.2 imply that

⟨J ′(u), u−Bu⟩ ≥ 1

8
∥u−Bu∥2,

and
∥J ′(u)∥ ≤ 2∥u−Bu∥.

Lemma 3.3. Let ρ1 < ρ2 and α > 0. Then there exists β > 0 such that ∥u−Bu∥ ≥
β if u ∈ X is such that J(u) ∈ [ρ1, ρ2] and ∥J ′(u)∥ ≥ α.

Proof. Otherwise, there exists a sequence {un} ⊂ X such that J(un) ∈ [ρ1, ρ2],
∥J ′(un)∥ ≥ α and ∥un − Bun∥ → 0. By remark 3.1, we conclude ∥J ′(un)∥ → 0.
This is a contradiction.

Lemma 3.4. Assuming that (V ), (f1), (f2) and (f5) hold, then the functional J
satisfies the (PS)c condition at any positive level c.

Proof. Let {un} ⊂ X be a sequence such that sup
n

|J(un)| < ∞ and J ′(un) → 0

in X∗ as n → ∞. By (f2), for 0 < ε1 < 1
4

(
1
2 − 1

µ

)
V0, there exists δ0 > 0 such that∣∣∣ 1

µ
tf(x, t)− F (x, t)

∣∣∣ ≤ ε1t
2, ∀|t| ≤ δ0.

By (f1), for δ0 ≤ |t| ≤ α (α is the constant appearing in condition (f5)), one has∣∣∣ 1
µ
tf(x, t)− F (x, t)

∣∣∣ ≤ C
( 1

δ0
+ αp−2

)
t2.
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Thus, ∣∣∣ 1
µ
tf(x, t)− F (x, t)

∣∣∣ ≤ ε1t
2 + C

( 1

δ0
+ αp−2

)
t2, ∀|t| ≤ α.

Since lim
|x|→+∞

V (x) = +∞, there exists ρ0 > 0 such that

1

4

(1
2
− 1

µ

)
V (x) ≥ C

( 1

δ0
+ αp−2

)
, ∀|x| > ρ0.

Combining with 0 < ε1 < 1
4

(
1
2 − 1

µ

)
V0, one has

(1
2
− 1

µ

)∫
RN

V (x)u2
ndx+

∫
|un(x)|≤α

[ 1
µ
unf(x, un)− F (x, un)

]
dx

≥
(1
2
− 1

µ

)∫
RN

V (x)u2
ndx−

∫
|un(x)|≤α

[
ε1u

2
n + C

( 1

δ0
+ αp−2

)
u2
n

]
dx

=
1

2

(1
2
− 1

µ

)∫
RN

V (x)u2
ndx−

∫
|un(x)|≤α

ε1u
2
ndx+

1

2

(1
2
− 1

µ

)∫
RN

V (x)u2
ndx

−
∫
|un(x)|≤α

C
( 1

δ0
+ αp−2

)
u2
ndx

≥
∫
|un(x)|≤α

[1
2

(1
2
− 1

µ

)
V0 − ε1

]
u2
ndx+

1

4

(1
2
− 1

µ

)∫
RN

V (x)u2
ndx

− C
( 1

δ0
+ αp−2

)
α2|Bρ0

|

≥1

4

(1
2
− 1

µ

)∫
RN

V (x)u2
ndx− C

( 1

δ0
+ αp−2

)
α2|Bρ0

|, (3.9)

where Bρ0
:= {x ∈ RN : |x| < ρ0}, |Bρ0

| := meas(Bρ0
).

Consequently, by (f5) and (3.9), we have

J(un)−
1

µ
⟨J ′(un), un⟩

=
(1
2
− 1

µ

)∫
RN

|∇un|2dx+
(1
2
− 1

µ

)∫
RN

V (x)u2
ndx+

∫
RN

[ 1
µ
f(x, un)un−F (x, un)

]
dx

≥
(1
2
− 1

µ

)∫
RN

|∇un|2dx+
(1
2
− 1

µ

)∫
RN

V (x)u2
ndx

+

∫
|un(x)|≤α

[ 1
µ
f(x, un)un−F (x, un)

]
dx

≥
(1
2
− 1

µ

)∫
RN

|∇un|2dx+
1

4

(1
2
− 1

µ

)∫
RN

V (x)u2
ndx− C

( 1

δ0
+ αp−2

)
α2|Bρ0 |

≥1

4

(1
2
− 1

µ

)
∥un∥2 − C

( 1

δ0
+ αp−2

)
α2|Bρ0

|.

Hence, {un} is bounded in X. Consequently, up to a subsequence, we have un ⇀ u
in X, un → u in Lq(RN ) for 2 ≤ q < 2∗ and un(x) → u(x) for almost all x ∈ RN .
Using a standard argument, one has J ′(u) = 0. Notice that

on(1) = ⟨J ′(un)−J ′(u), un−u⟩ = ∥un−u∥2−
∫
RN

[
f(x, un)−f(x, u)

]
· (un−u)dx.
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Consequently, by (3.2) and the Hölder inequality, we have

∥un − u∥2 ≤ ε∥un∥2 · ∥un − u∥2 + Cε∥un∥p−1
p · ∥un − u∥p

+ε∥u∥2 · ∥un − u∥2 + Cε∥u∥p−1
p · ∥un − u∥p + on(1) → 0.

Hence un → u in X.

Lemma 3.5. Assuming that (V ) and (f1)-(f4) hold. Then the functional J satisfies
the (PS)c condition at any positive level c.

Proof. Let {un} ⊂ X be (PS)c sequence of J , i.e., {J(un)} is bounded and
J ′(un) → 0 as n → ∞. If {un} is unbounded in X, then, without loss of the
generality, we may assume that ∥un∥ → +∞. Consequently, we can assume that
un ̸= 0 for all n.

Set wn = un

∥un∥ . Then, up to a subsequence, there exists w ∈ X such that

wn ⇀ w in X,

wn → w in Lq(RN ) for 2 ≤ q < 2∗,

wn(x) → w(x) a.e. on RN .

Case 1: w = 0. By (3.3) and the Sobolev embedding theorem, one has

β(t) := J(twn) =
1

2
t2∥wn∥2 −

∫
RN

F (x, twn)dx

≥ 1

2
t2 − εt2

∫
RN

|wn|2dx− Cεt
p

∫
RN

|wn|pdx ≥ 1

2
t2 − C1εt

2 − C2Cεt
p > 0

for small ε > 0 and t > 0. Moreover, by (f3) and Fatou Lemma imply that

β(t) = J(twn) =
1

2
t2 −

∫
RN

F (x, twn)dx = t2
[1
2
−

∫
RN

F (x, twn)

t2w2
n

w2
ndx

]
→ −∞

as t → +∞. Hence β(·) has a positive maximum. Let tn ∈ [0, 1] be such that

J(tnwn) = max
t∈[0,1]

J(twn).

By (f4) we know that F (x,t)
t2 is increasing on (0,+∞) and decreasing on (−∞, 0) in

t. Hence, for any t ∈ (0, 1], one has

J(twn) =
1

2
t2 −

∫
RN

F (x, twn)dx = t2
[1
2
−

∫
RN

F (x, twn)

(twn)2
w2

ndx
]

≥ t2
[1
2
−
∫
RN

F (x,wn)dx
]
= t2J(wn),

and hence
J(tnwn) ≥ max

t∈[0,1]
t2J(wn).

Notice that lim
n→∞

J(wn) =
1
2 , one has J(wn) > 0 for large n. Hence, for large n,

J(tnwn) ≥ max
t∈[0,1]

t2J(wn) = J(wn) =
1

2
+ on(1).
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But, on the other hand,
J(tnwn) = J(tnwn)−

1

2
⟨J ′(tnwn), tnwn⟩

=

∫
RN

[1
2
tnwnf(x, tnwn)− F (x, tnwn)

]
= on(1),

a contradiction.
Case 2: w ̸= 0. By (f3), there exists ρ1 > 0 such that

F (x, t) ≥ 0 for all x ∈ RN and |t| ≥ ρ1.

By (3.3), one has

|F (x, t)| ≤ C1t
2 for all x ∈ RN and |t| ≤ ρ1.

Consequently,
F (x, t) ≥ −C1t

2, ∀(x, t) ∈ RN × R.
Hence ∫

{x∈RN :w(x)=0}

F (x, un)

∥un∥2
dx ≥

−C1

∫
{x∈RN :w(x)=0} u

2
ndx

∥un∥2

≥−C1∥un∥22
∥un∥2

≥ −C1C2∥un∥2

∥un∥2
= −C1C2,

which implies that

lim inf
n→∞

∫
{x∈RN :w(x)=0}

F (x, un)

∥un∥2
dx ≥ −C1C2 > −∞.

Moreover, set Ω := {x ∈ RN : w(x) ̸= 0}. Then |un(x)| → +∞ for each x ∈ Ω. By
(f3) and Fatou Lemma, one has∫

Ω

F (x, un)

∥un∥2
dx =

∫
Ω

F (x, un)

u2
n(x)

w2
n(x)dx → +∞

as n → ∞. Therefore, the boundedness of {J(un)} implies that

on(1)+
1

2
≥
∫
RN

F (x, un)

∥un∥2
dx=

∫
{x∈RN :w(x)=0}

F (x, un)

∥un∥2
dx+

∫
{x∈RN :w(x) ̸=0}

F (x, un)

∥un∥2
dx.

Let n → ∞, we obtain 1
2 ≥ +∞, a contradiction.

Summing up the above arguments we know that {un} ⊂ X is bounded.
Now, we prove that the sequence {un} possesses a convergent subsequence in

X. Indeed, since {un} is bounded in X, up to a subsequence, there exists u ∈ X
such that

un ⇀ u in X,

un → u in Lq(RN ) for 2 ≤ q < 2∗,

un(x) → u(x) a.e. on RN .

Using a standard argument, one has J ′(u) = 0. Notice that

on(1) = ⟨J ′(un)−J ′(u), un − u⟩=∥un − u∥2 −
∫
RN

[
f(x, un)−f(x, u)

]
· (un − u)dx

= ∥un − u∥2 + on(1).

Hence un → u in X.
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Lemma 3.6. For q ∈ [2, 2∗], there exists kq > 0 such that for any ε > 0

∥u∥q ≤ kqε, ∀u ∈ P+
ε

⋂
P−
ε .

Proof. For any u ∈ X, this follows from the fact that

∥u±∥q = inf
w∈∓P

∥u− w∥q ≤ Cq inf
w∈∓P

∥u− w∥ = Cqdist(u,∓P ),

where Cq > 0 is the Sobolev constant in the continuous embedding X ↪→ Lq(RN )
for all q ∈ [2, 2∗].

Lemma 3.7. Under the condition (f1) and (f2), for ε > 0 small enough, we have

J(u) ≥ 1

4
ε2, ∀u ∈ ∂P+

ε

⋂
∂P−

ε .

Proof. Let u ∈ ∂P+
ε

⋂
∂P−

ε . It is clear that

∥u±∥ ≥ dist(u,∓P ) = ε, ∀ε > 0.

Using Lemma 3.6, by (f1) and (f2), for small δ > 0, there exists Cδ > 0 such that

J(u) ≥ 1

2
∥u∥2 − δ∥u∥22 − Cδ∥u∥pp ≥ 1

4
ε2,

for ε > 0 small enough.
Consider the eigenvalue problem∫

RN

(
∇u∇ϕ+ V (x)uϕ

)
dx = λ

∫
RN

uϕdx, ∀ϕ ∈ X.

For real number λ, if there exists 0 ̸= u ∈ X such that∫
RN

(
∇u∇ϕ+ V (x)uϕ

)
dx = λ

∫
RN

uϕdx, ∀ϕ ∈ X,

then λ is called an eigenvalue of the operator L = −△+V . By the assumption (V )
and the compactness of the embedding X ↪→ L2(RN ), we know that the spectrum
σ(L) = {λ1, λ2, · · · , λj , · · · } of L with

0 < λ1 < λ2 < · · · < λj < · · ·

and λj → ∞ (see page 62 in [22]). It is well known that each λj(j ≥ 2) has finite
multiplicity, the principle eigenvalue λ1 is simple with positive eigenfunction e1, and
the eigenfunctions ej corresponding to λj(j ≥ 2) are sign-changing. Let Xj be the
eigenspace associated to λj . We set k ≥ 2

Yk := ⊕k
j=1Xj and Zk := ⊕∞

j=kXj .

Note that any element of Zk\{0} is sign-changing.
We define

Nk :=
{
u ∈ Zk :

∥u∥pp
∥u∥2

+
∥u∥ · ∥u∥p

∥u∥+ β−σ
k · ∥u∥p

= ρ
}
,

where
ρ: =

1
8Cε

, Cε is obtained in (3.3). (3.10)

βk := sup
u∈Zk
∥u∥=1

∥u∥p and σ > 0. (3.11)
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Lemma 3.8. Under the conditions (f1) and (f2),

lim
k→∞

inf
u∈Nk

J(u) = +∞.

Proof. By the definition of Nk, we have

∥u∥pp
∥u∥2

≤ ρ, ∀u ∈ Nk.

For any u ∈ Nk, for ε > 0 small enough, by (3.3) and (3.10), the Sobolev embedding
theorem, we have

J(u) ≥ 1

2
∥u∥2 − εC∥u∥2 − Cε∥u∥pp ≥ 1

4
∥u∥2 − Cε∥u∥pp

= ∥u∥2
(1
4
− Cε

∥u∥pp
∥u∥2

)
≥ 1

8
∥u∥2. (3.12)

Furthermore, for any u ∈ Nk, one has

0 < ρ =
∥u∥pp
∥u∥2

+
∥u∥ · ∥u∥p

∥u∥+ β−σ
k ∥u∥p

≤
∥u∥pp
∥u∥2

+ ∥u∥p

≤ βp
k∥u∥

p−2 + βk∥u∥ ≤
(
βp
k + βk

)(
∥u∥p−2 + ∥u∥

)
.

Hence,
∥u∥p−2 + ∥u∥ ≥ ρ

βp
k + βk

> 0. (3.13)

From Lemma 3.8 in [20], we know that βk → 0, as k → ∞. By (3.13), we have
lim
k→∞

∥u∥ = +∞. By (3.12), one has

lim
k→∞

inf
u∈Nk

J(u) = +∞.

This completes the proof of Lemma 3.8.

Lemma 3.9. For any α > 0, we have

δ0(α) := dist(Nk

⋂
Jα, P ) > 0,

where P = (+P )
⋃
(−P ).

Proof. The proof is similar to the proof of Lemma 5.4 in [27].

Proof of Theorem 1.1.
Step 1: The existence of a positive and a negative solution.
By (3.3) and the Sobolev embedding theorem, there exist constants C1 > 0 and

C2 > 0 such that
J(u) ≥ 1

2
∥u∥2 − εC1∥u∥2 − CεC2∥u∥p.

Consequently, there exists r > 0 (small enough) such that

inf
∥u∥=r

J(u) ≥ 1

4
r2 > 0.
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For any (x, t) ∈ RN × R, by (f5), similarly [21], one has

F (x, t) ≥ C1|t|µ, ∀|t| ≥ α,

where C1 := 1
αµ inf

x∈RN ,|t|=α
F (x, t) > 0. Combining with (3.3), we have

F (x, t) ≥ C1|t|µ − C2t
2,∀(x, t) ∈ RN × R, (3.14)

for some positive constant C1 and C2. Thus, by (3.14) and the Sobolev embedding
theorem, one has

J(u) ≤
(1
2
+ C2

)
∥u∥2 − C1

∫
RN

|u|µdx. (3.15)

Hence, for fixed e ∈ X\{0}, it is easy to prove that

J(te) → −∞ as t → +∞.

Therefore, we can find e± ∈ ±P such that

∥e±∥ > r and J(e±) < 0.

This shows that the condition (A1) of Theorem 2.1 is satisfied. By Lemma 3.1,
Lemma 3.2 and Lemma 3.3,the condition (Aε

0
) is satisfied for ε0 > 0 small enough.

By Lemma 3.4, J satisfies the (PS)c condition at any positive level c. Hence, by
Theorem 2.1, J has critical point u± ∈ ±P\{0}. The strong maximum principle
implies that u+(x) is positive and u−(x) is negative. Thus, the equation (1.1) has
a positive and a negative solutions.

In the following proof, we adopt the notations of Theorem 2.2.
Step 2: The existence of a sign changing solution.
Using the the main idea of [15], we will verify the assumptions of Theorem 2.2.
Let v1, v2 ∈ C∞

0 (RN )\{0} be such that supp(v1)
⋂

supp(v2) = ∅, v1 ≤ 0 and
v2 ≥ 0. we define the continuous map ϕ0 :△→ X by ϕ0(s, t) = R(sv1 + tv2)
for all (s, t) ∈△, where R > 0 is a constant to be determined later. Obviously,
ϕ

0
(0, t) ∈ P+

ε and ϕ
0
(s, 0) ∈ P−

ε for all ε > 0. This implies that ϕ
0
(∂1 △) ⊂ P+

ε

and ϕ
0
(∂2 △) ⊂ P−

ε , i.e. Theorem 2.2(1) holds. Now a simple computation that
δ := min

{
∥(1− t)v1 + tv2∥2 : t ∈ [0, 1]

}
> 0.

Then ∥u∥2 ≥ δR for u ∈ ϕ
0
(∂0 △) and it follows from Lemma 3.6 that

ϕ0(∂0 △)
⋂

P+
ε

⋂
P−
ε = ∅,

for R large enough and for any ε > 0.
By (3.15), combining with Lemma 3.7, for R large enough and ε > 0 small

enough, we obtain

c0 = sup
u∈φ0 (∂0△)

J(u) < 0 < c∗ := inf
u∈∂P+

ε

∩
∂P−

ε

J(u).

By Theorem 2.2, J has a sign-changing critical point.
Step 3: The existence of infinitely many high-energy solutions.
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Because dimYk < +∞, there exists θk > 0 such that ∥u∥ ≤ θk∥u∥µ for any
u ∈ Yk. By (3.15), one has

J(u) ≤
(1
2
+ C2

)
∥u∥2 − C1θ

−µ
k ∥u∥µ, ∀u ∈ Yk.

Hence, we have J(u) → −∞ on Yk as ∥u∥ → +∞.
We can then choose ρk > 0 large enough so that

Nk

⋂
Ja0 ̸= ∅,

(ρ
k
/θk)

p

ρ2
k

+
ρ

k
(ρ

k
/θk)

ρ
k
+ Cpβ

−σ
k ρ

k

> ρ

and
ak := max

u∈Yk
∥u∥=ρk

J(u) < 0,

where a0 := max
u∈Bk

J(u) > 0, σ is given by (3.11) and Cp is the Sobolev constant.
Combining with Lemma 3.8, the condition (B1) of Theorem 2.3 is satisfied. By
Lemma 3.9,

δ0(a0) := dist(Nk

⋂
Ja

0 , P ) > 0.

For any u ∈ Nk

⋂
Ja0 , v ∈ P, w ∈ P+

ε

⋂
P−
ε , one has

0 < δ0(a0) = inf
u∈Nk

∩
J
a
0

v∈P

∥u− v∥ ≤ ∥u− w∥+ ∥w+ − v+∥+ ∥w− − v−∥,

where v+ = max{v, 0}, v− = min{v, 0}, w+ ∈ P+
ε , w− ∈ P−

ε . Hence

0 < δ0(a0) = dist(u, P+
ε

⋃
P−
ε ) + 2ε.

Set ε0 ∈
(
0, 1

2δ0(a0)
)

, one has

dist(u, P+
ε

⋃
P−
ε ) ≥ δ0(a0)− 2ε > 0, ∀ε ∈ (0, ε0).

This implies that the condition (B2) of Theorem 2.3 holds. Thus, by Theorem 2.3,
we obtain that J possesses a sequence {uk} of sign-changing critical points such
that J(uk) → ∞ as k → ∞.

Proof of Theorem 1.2.
Step 1: The existence of a positive and a negative solution.
By (f3) and Fatou Lemma, for any u ∈ X\{0}, one has

J(tu) =
1

2
t2∥u∥2 −

∫
RN

F (x, tu)dx = t2
[1
2
∥u∥2 −

∫
RN

F (x, tu)

t2u2
· u2dx

]
→ −∞

as t → +∞. Therefore, we can find e± ∈ ±P such that

∥e±∥ > r and J(e±) < 0.

Similarly to the step 1 of the proof in Theorem 1.1, there exist a positive and a
negative of the problem (1.1).
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Step 2: The existence of a sign changing solution.
The proof of step 2 is same to the proof of step 2 of Theorem 1.1.
By (f3), combining with Lemma 3.7, for R large enough and ε > 0 small enough,

we obtain
c
0
= sup

u∈φ
0
(∂0△)

J(u) < 0 < c∗ := inf
u∈∂P+

ε

∩
∂P−

ε

J(u).

By Theorem 2.2, J has a sign-changing critical point.
Step 3: The existence of infinitely many high-energy solutions.
Notice that, let Sρ̃ = {u ∈ X : ∥u∥ = ρ̃}. For u ∈ Sρ̃, by (3.3) and the Sobolev

embedding theorem, one has

J(u) =
1

2
∥u∥2 −

∫
RN

F (x, u)dx ≥ 1

2
∥u∥2 − ε

∫
RN

u2dx− Cε

∫
RN

|u|pdx

≥ 1

2
∥u∥2 − C1ε∥u∥2 − C2Cε∥u∥p ≥ 1

4
ρ̃2 > 0

for small ε > 0 and ρ̃ > 0. For the finite dimensional subspace Yk, we claim that
there exists a constant R̃ > ρ̃ such that J < 0 on Yk\BR̃. In fact, if the conclusion is
false, then there exists a sequence {un} ⊂ Yk with ∥un∥ → +∞ such that J(un) ≥ 0.
Consequently,

1

2
≥

∫
RN

F (x, un)

∥un∥2
dx.

Let wn = un

∥un∥ , then up to a subsequence, there exists w ∈ X such that
wn ⇀ w in X,

wn → w in Lq(RN ) for 2 ≤ q < 2∗,

wn(x) → w(x) a.e. on RN .

Case 1: w = 0. By the equivalency of all norms in Yk, there exists a constant
θk > 0 such that

∥u∥22 ≥ θk∥u∥2, ∀u ∈ Yk.

Hence
0 = lim

n→∞
∥wn∥22 ≥ θk lim

n→∞
∥wn∥2 = θk,

a contradiction.
Case 2: w ̸= 0. In this case, by case 2 in Lemma 3.5, we have

lim inf
n→∞

∫
{x∈RN :w(x)=0}

F (x, un)

∥un∥2
dx ≥ −C1C2 > −∞,

and ∫
{x∈RN :w(x)̸=0}

F (x, un)

∥un∥2
dx → +∞,

as n → ∞. Note that
1

2
≥

∫
RN

F (x, un)

∥un∥2
dx =

∫
{x∈RN :w(x)=0}

F (x, un)

∥un∥2
dx+

∫
{x∈RN :w(x)̸=0}

F (x, un)

∥un∥2
dx.

Let n → ∞, by (f3), one has

1

2
≥ lim inf

n→∞

∫
{x∈RN :w(x)=0}

F (x, un)

∥un∥2
dx+ lim inf

n→∞

∫
{x∈RN :w(x)̸=0}

F (x, un)

∥un∥2
dx = +∞,
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a contradiction. Hence there exists a constant R̃ > ρ̃ such that J < 0 on Yk \BR̃.
We can then choose ρk > 0 large enough so that

(ρ
k
/θk)

p

ρ2
k

+
ρ

k
(ρ

k
/θk)

ρ
k
+ Cpβ

−σ
k ρ

k

> ρ

and
ak := max

u∈Yk
∥u∥=ρk

J(u) < 0,

where σ is given by (3.11) and Cp is the Sobolev constant. The remanent proof is
similar to the step 3 of Theorem 1.1.
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