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MULTIPLE SIGN-CHANGING SOLUTIONS
FOR A CLASS OF SEMILINEAR ELLIPTIC
EQUATIONS IN RY

Xiumei He' and Xian Wu?

Abstract In this paper, we study the following semilinear elliptic equations
—Au+V(z)u= f(z,u), =R,

where V € C(RY,R) and f € C(RY x R, R). Under some suitable conditions,
we prove that the equation has three solutions of mountain pass type: one
positive, one negative, and sign-changing. Furthermore, if f is odd with respect
to its second variable, this problem has infinitely many sign-changing solutions.
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solutions.
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1. Introduction and preliminaries
In this paper, we study the following semilinear elliptic equations
~Au+V(z)u= f(r,u), RN, (1.1)

where N >3,V € C(RY,R) and f € C(RY x R,R).

During the past years, problem of the form (1.1) has been extensively studied
via the critical point theory, for example, see [?,7,7,7,7,7,?] and the reference
therein, because such problems arise naturally in various branches of Mathematical
Physics, on the other hand, they present specific mathematical difficulties that make
them challenging to the researchers. Moreover, because the embedding H(RY) —
LP(RY) is continuous, but not compact, the usual variational methods, that allow
to prove the existence of infinitely many solutions to (1.1) in a bounded domain €.

When the nonlinearity f is of super-quadratic growth near infinity in u and is
also allowed to be sign-changing, in [?] the author proved the existence of infinitely
many nontrivial solutions of (1.1). If f is of subcritical growth and satisfies the
global (AR) condition, Bartsch and Wang [?] obtained the existence of a sign-
changing of (1.1). Recently, in [?], the author obtained the existence of positive
solutions for the following class of elliptic equation

~Au+V(z)u= f(u), zeRY, (1.2)
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where f has a subcritical growth and V' is a nonnegative potential, which can vanish
at infinity. When V' (z) = 1, in [?] Weth gave a lower bound for the energy of sign
changing solutions of (1.2) if f is superlinear by using the compactness lemma. By
applying another version of the compactness lemma under a more general condition,
Wang [?] proved that the result of Weth [?] was also true if f is asymptotically linear.
When V(z) = a > 0 is fixed, Bartsch and Weth [?] proved the existence of three
nodal solutions of (1.2) provided € contains a large ball Br(0), where € is bounded
domain with smooth boundary in RY. For the following equation:

—Au+V(z)u=Af(u), in RY,

for A sufficiently large, the authors [?] proved the existence of positive, negative
and a sign-changing solution by using Minimax methods. Liu and Chen [?] proved
the existence of sign changing solutions and multiple solutions for the following the
semilinear elliptic eigenvalue problem with constraint of the form:

—Au+V(z)u=Af(r,u) z€RY, uwe H(RYN)
Jan ([Vul? + V(z)u?)dz = r? (1.3)

u(z) = 0, |z| = Fo0,

where A € R,r > 0. The authors constructed nonempty invariant sets of the
gradient flow which contained the positive and the negative solutions of the problem
(1.3). Several authors have studied the following equation:

—Au+V(z)u= f(z,u) xRN, uwe HY(RY)

(1.4)
u(z) = 0, |z| — 4o0.

Bartsch, Liu and Weth [?] proved the existence of sign changing solutions and
estimated the number of nodal domain of (1.4) under some other condition on
V(z) and f(z,u). Moreover, if f is odd they obtained an unbounded sequence of
sign changing solutions of (1.4). Qian [?] obtained infinitely many sign-changing
solutions of (1.4) by using critical point theorem. Zhao and Ding [?] proved the
existence and multiplicity of solutions of (1.4) by variational methods.

In this paper, we study the sign-changing solutions of problem (1.1). We need
the following assumption:

(V) Ve CRN,R), Vo:= inf V(z)>0, lim V(z)=+oo.

z€RN |z| =400

(f1) f € C(RYN x R,R), and there exist constants C > 0 and 2 < p < 2* such

that

|flz, )] < CA+[tP7h),

where 2* = ]\2,—1_\[ is the Sobolev critical exponent.

(f2) f(x t) = o(|t|) uniformly in z € RV, as |¢t| — 0.
F(z,t) _

-~ = +00 uniformly in x € RV, where F(z,t) fo

(fs) | JMim
(fa) tf(z,t) >2F(x,t), Y(z,t) € RY xR,
(fs) There exist g > 2 and « > 0 such that
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and
uF(x,t) < f(z, )t

for all x € RY and [t| > a.

(fo) f(z,—t) = —f(z,t), V(z,t) € RN x R.
We need the following several notations. Let

H'(RY) := {u e L*(RY) : Vu € L*(RY)}

with the inner product and the norm

(u,v)1 = / (VUVU + uv)d;v, llullh = (u, u)}.
RN

Set

X = {u € H'(RV) : / V(z)ulde < oo}

RN

with the inner product and the norm
(u,v) = / (VUVU + V(z)uv)dm, llul| = (u, u)=.
RN
Recall that a function v € X is called a weak solution of problem (1.1) if

VuVedr + V(z)updr = / fz,u)pdx, Yo e X.
RN RN RN

Seeking a weak solution of problem (1.1) is equivalent to finding a critical point of
the functional

1

1
J(u) = f/ |Vu|?dz + f/ V(x)u’dx —/ F(z,u)dz, ueX.
2 RN 2 RN RN

Under the assumption (V), it is well known that the embedding X < L*(R™M)
is continuous for all s € [2,2*] and the embedding X < L*(RY) is compact for all
s € [2,2*). Under our conditions, we know that J € C*(X,R) and for each u € X,

) = [

VuVpdz + /
RN

V(I)utpdl’—/ f(z,u)pde,
RN RN

for all ¢ € X.
The main results of this paper are the following:

Theorem 1.1. Suppose that (V), (f1), (f2) and (f5) are satisfied. Then the equa-
tion (1.1) has three solutions of mountain pass type: one positive, one negative, and
one sign-changing. Moreover, if f is odd with respect to its second variable, i.e.
(fe) holds, then problem (1.1) has infinitely many sign-changing solutions.

Theorem 1.2. If conditions (f3) and (f4) are used in place of (fs), then the
conclusion of Theorem 1.1 holds.

Notice that the condition (f4) is weaker than the condition (f}) (see [?]). Hence
we have the following corollary.
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Corollary 1.1. If the following (f}) is used in place of (f4):
(fD) @ is non-increasing on (—o0,0) and non-decreasing on (0, +00),
then the conclusion of Theorem 1.2 holds.

Throughout the paper, — and — denote the strong and weak convergence,
respectively. C, ¢, C; and ¢; express distinct constants. For 1 < ¢ < oo, the usual
Lebesgue space is endowed with the norm

fulli= ([ ulraz)"

The paper is organized as follows. In Section 2, we introduce some notions and
results of some critical point theorems. In Section 3, we complete the proof of the
main conclusions.

2. Some critical point theorems

Let us begin by recalling some notions and results of critical point theory (see [?]).
In the following, P C X is a closed convex cone. For € > 0, we denote by V¢(S)
the e-neighborhood of S C X, that is

Ve(S) :={u e X : dist(u,S) := 11612 lu —v||x < e}

Define
+P:={ueX:u>0}, —P:={ueX: :u<0}

PE :=V.(+P) = {u € X : dist(u,+P) < €}.

Let J € C1(X,R). We denote by K the set of critical point of J and £ = X\ K.
For ¢ > 0, we consider the following situation:
(A.,) There exists a locally Lipschitz continuous vector field B : E — X (B
odd if J is even) such that
() BIPENE)C P, Ve e (0,2);
(ii) there exists a constant a3 > 0 such that

(J'(u),u— B(w) = arllu = Bu)l%, Yu € E;

(iii) for p; < p2 and « < 0, there exists § > 0 such that ||u — B(u)||x > g if
uw € X is such that J(u) € [p1, p2] and ||J/ (u)]|x+ > a.

Definition 2.1. Let J € C'(X,R),c € R. We say that J satisfies the (PS).
condition if each sequence {u,} C X with J(u,) — ¢ and J'(u,) — 0 in X*
possesses a convergent subsequence.

Theorem 2.1 ( [?]). Let J € C1(X,R) with J(0) = 0. Assume there exists g > 0
such that (Ag,) s satisfied. Assume also that there exist ex € =P and r > 0 such
that

(A1) |lexlly >7r and p:= inf J(u) > 6 :=max{J(0),J(ex+)}.

Then there exist sequences {uL} C PF such that
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J'(uh) = 0idin X* and J(u'}) — cy = inf  sup J(u) >p, Ve € (0,e0),
V€% uey((0.1])

Ts = {7 € C(0, 1), PF) :7(0) = 0,5(1) = ex. }.
If in addition J satisfies the (PS). condition for any ¢ > 0, then J has critical point
ugy € =P\{0}.

Theorem 2.2 ( [?]). Let J € C*(X,R). Assume there exists g > 0 such that
(Ac,) is satisfied. Assume also that there exists a continuous map @, :A— X such
that, for any € € (0,&¢), the following conditions are satisfied:

(1) (01 b) C BT and ¢,(0; &) C P,

(2) @, &)N PN P =,

(8) ¢, .= sup J(u)<c*:= inf J(u),
u€p, (90) uedPF NOPS

where

where
A={(s,t) eR?:5,t > 0,5+t < 1},

01 A= {0} x [0,1], 92 A=1[0,1] x {0} and Oy A= {(s,t) €A: s+t =1}.

Then there exists a sequence {un} C Ve (X \ (PZ U P-)) such that
J' (un) = 0 in X*

and
J(up) — ¢:= inf sup J(u) > ¢c,, Ve € (0,¢e0),
PEl uep(a) N(X\(PFUPT))

where
I:={peC(n,X): 90 &) C P, o0 A)CP- and ®la,a = @, }-

If in addition J satisfies the (PS). condition for any ¢ > 0, then J has a sign-
changing critical point.
In this following, we assume that X is of the form

X =0%,X;, with  dimX; < oo,

and that there is another norm || ||« on X such that (X, |- ||x) embeds continuously
into (X, ||+ ||+)-

In this following, we assume that X is of the form
X =52, X, with dimX; < oo,
and that there is another norm ||- ||« on X such that (X, ||| x) embeds continuously
into (X, | - [..).
We introduce the following notations:

Y. = @?ZlXj and Zy = @;’;ka, for k> 2,
J¥ ={ueX:Ju)<a}, for acR.
Notice that

(X0 llx) = (X)) = 3G >0, st lulls < Cilluflx,Vu € X,
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dimYy < oo =360, >0, s.t. HUHX < F)kHuH*,Vu €Y.

Assume there exist constants p > 0 and ¢ > 2, and numbers p, ,d; > 0 such that

(pk/ak)q pk(pk/ek)

> p, 2.1
p? p+ Cedip, " 21)
and define
Br:={ueY,:|ul| <p.} and Np:={ueZ: ||u||2,'£ lllx - [l =p}
lull% * lullx + di - [Jull«

In this following, we introduce a sign-changing critical point theorem.

Theorem 2.3 ( [?]). Let J € C*(X,R) be an even functional. Assume that there
exist p,p,,dx > 0 and q > 2 such that (2.1) holds. Assume also that there exists
€0 > 0 such that (A ) and the following conditions are satisfied:

(B1) ap:= uzlalgk J(u) <0 and by, := uez\irilﬁjao J(u) = 400, as k — oo.
(Bs) Npx(J% C X\ (PFUP:-), Vee(0,e0), where ag := max J(u).
u€ By,

Then, for k large enough there exists a sequence {uy }n C V(X \ (P U P)) such
that

Jup)—0 in  X* as  n— oo,
and
J(uy) — ¢ := inf max J(u) > by, Ve e (0,e0),
YET, wey(Bi) N(X\(PF U P))
where

Iy = {'y € C(Bg,X) : v is odd,v|sp, = id, seug J(v(w) < ag
u€By,

and y(PFUPT) C (PFUPD)}.

If in addition J satisfies the (PS). condition for any ¢ > 0, then it possesses a
sequence {ug} of sigh-changing critical points such that J(uy) — 0o, as k — oo.

3. Proof of the main theorems

Now X = {u € H'(RY) ¢ [on V(z)uPdr < oo}, for u € X fixed, we consider
the functional

~ 1

I,(v) = f/ |Vo|?dx + l/ V(z)v?dx — f(z,uw)vdz, veX. (3.1)
2 RN 2 RN RN

By (f1) and (f2), for any € > 0, there exists C. > 0 such that
|f(z,t)] < elt| + C|t|P~!, V(x,t) € RN xR, (3.2)

and
|F(x,t)] <elt|® + C.|t|P, V(z,t) € RN xR, (3.3)
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It is easy to prove that I, is of class C, coercive, bounded below, weakly lower
semicontinuous and strictly convex in X. Therefore, by Theorem 1.1 in [?], I,
admits a unique global minimizer in X which is the unique solution to the problem

—Av+V(z)v = f(z,u), ueX. (3.4)

Now, we may introduce an auxiliary operator A : X — X: for u € X, Au € X is
the unique solution of (3.4). Then the set of fixed points of A coincide with the set
K of critical points of J.

Furthermore, the operator A has the following important properties.

Lemma 3.1. Under the assumption (f1) and (f2),
(1) A is continuous and maps bounded sets to bounded sets.
(2) For anyu e X, J'(u) =u— Au.
(8) There exists g9 > 0 such that A(PF) C P£, Ve € (0,&).

Proof. (1) Let {u,} C X be such that u, — u in X. For any w € X, by the
definition of A, we have

V(Au,)Vwdz + V(z)(Aup)wdz = [z, up)wdz, (3.5)
RN RN RN
and
V(Au)Vwdzx + / V(z)(Au)wdz = f(z,v)wdz. (3.6)
RN RN RN

Let v, = Au,, and v = Au. Taking w = v, —v € X in (3.5) and (3.6), we obtain

Jow =0l = [ (7600 = F@w)] - (0~ v} (37)
RN
Furthermore, because v,, = Au,, is the solution of (3.4), one has
—Avy, + V(z)v, = f(z,uy).
Thus
/ |V, |?da +/ V(z)vide = f(z,un)v, de,
RN RN RN

ie.

Jonl? = [ Flavua)o, do

By (3.2) with ¢ = 1, the Hoélder inequality and the Sobolev embedding theorem,
one has

lonll® < llunllz - oallz + Cllun 5™ - [lvall,

< Cillunllz - lvall + Callun =" - [lvall.

Therefore,
[on]l < Cullunllz + Collunllp ™.
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By u, — uwin X, we obtain that {v,—v} is bounded in X. Consider any subsequence
of {v,}, we still denotes as {v,}. Since the embedding X — LI(RY) is compact
for all ¢ € [2,2*), we can assume that

Up — U = ug in X,
vn(2) —v(z) = up(x) ae. xRN,
vp—v —uy in LERY),

and
U, —U — Uug in LP(RN).

By the Lemma A.1 in [?], up to a subsequence, there exists ga, ha € L2(RY), g,, h,, €
LP(RY) such that
[vn () — v(z)| < ho(x), a.e. z € RY,

[un(2)] < g2(z), ae. xRN,
[on () — v(z)| < hp(z), ae. z € RY,
lun(z)| < gp(z), a.e. z € RY

and
up(z) = u(x), a.e. xRV,

By (3.2) with € = 1, we have
|[7@sun) = F@w)] - (00— 0)|
(

< Jun(@)] - Jon(2) = v(@)] + Clua (@)[P7" - o () = v(@)| + [u(@)] - [va(2) — v(@)]
+Clu(@)[P~" - Jvn () — v(2)|
< g2(2)ha(2) + Cgp ™ (2)hy() + |u(z)| - ha(z) + Clu(@)[P~ hy(x) € L' (RY).

Hence, by the Lebesgue domained convergence theorem, we get
/ [f(x,un) - f(m,u)] - (vp, —v)dx — 0.
RN

Consequently, || Au,, — Aul| — 0. This shows that A is continuous on X.
Moreover, for any u € X, taking w = Au € X in (3.6), we obtain

Au)|?d Aul?dz = - Audzx.
/]RN |V (Au)| x—|—/RNV(x)| u|“dx /RNf(x,u) udx

By (3.2), using the Holder inequality, the Sobolev embedding theorem, we obtain
[ Aull < O+ [Juf|P~2)|Jul,

where C' > 0 is constant. This shows that Au is bounded in X whenever u is
bounded in X.
(2) For any u,w € X, using again (3.6), we have

(J'(u),w) = /RN VuVwdx + /RN V(x)uwdz — /RN flz, w)wdz
= V(u — Au)Vwdz + V(z)(u — Au)wdz

RN RN
= (u — Au,w).
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Hence
J (u) =u— Au.

(3) Set u € X and v = Au € X. We denote w™ = max{0,w} and w~ =
min{0, w}, for any w € X. Taking w = v" in (3.6) and using the Holder inequality,
we obtain

[v 17 < ellatllz - o llz + Cellu™ 157 - lo* ], (3.8)

Since ||zt < ||z — w|g, for all z € X,w € —P and 2 < ¢ < 2*, it follows from the
Sobolev embedding theorem that there is a constant C; = C1(g) > 0 such that

|utl, < Cidist(u,—P).
Moreover, one can easily verify that
dist(v,—P) < |lvt].
Consequently, by (3.8) and the Sobolev embedding theorem, we have
dist(v,—P)|[v™ || < [lv* |2 < Cs [Edz’st(u, _P) + C.dist(u, —P)p‘l} o],

where Cy > 0. Therefore,

dist(v,—P) < Cy [sdist(u, —P) + C.dist(u, —P)pfl].
Similarly, we can prove that

dist(v,+P) < Cs [adist(u, +P) + C.dist(u, +P)p_1} .

Hence
dist(v,£P) < C4 [sdist(u, +P) + C.dist(u, iP)”*l} ,

where Cy = max{Cs,C5}. Now, we can choose £y > 0 small enough such that, for
all € € (0,¢0),

dist(v, £P) < idist(u,£P) whenever dist(u,+P) <e.
It then follows that A(PF) C PE, Ve € (0,&). O

Lemma 3.2 (sce [?], Lemma 3.4). There exists a locally Lipschitz continuous op-
erator B: E 2 X\K — X (B odd when J is even) such that

(1) (J'(u),u— Bu) > i||u — Aul]?, for any u € E.
(2) 3|lu— Bul| < |lu — Aul| < 2||u — Bul|, for any u € E.
(3) B(PXNE) C P* for any e € (0,e0), where gy is obtained in Lemma 3.1(3).

Remark 3.1. Lemma 3.1 and Lemma 3.2 imply that
1
(J'(u),u = Bu) 2 gl — Bul?,

and
|7 (u)]| < 2||lu— Bul|.

Lemma 3.3. Let p1 < p2 and a > 0. Then there exists 8 > 0 such that |u— Bul|| >
B if u € X is such that J(u) € [p1, p2] and ||J (uv)] > a.
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Proof. Otherwise, there exists a sequence {u,} C X such that J(u,) € [p1, p2],
|7 (un)]] > @ and ||u, — Buy| — 0. By remark 3.1, we conclude ||J'(u,)|| — 0.
This is a contradiction. O

Lemma 3.4. Assuming that (V'), (f1), (f2) and (fs) hold, then the functional J
satisfies the (PS). condition at any positive level c.

Proof. Let {u,} C X be a sequence such that sup |J(u,)| < co and J'(u,) — 0

in X* as n — 0o. By (f2), for 0 <e1 < %(% — %)Vo, there exists dg > 0 such that

Lt (e, t) — Fla0)| <eut?, i <60,
1

By (f1), for 0o < |t| < a (« is the constant appearing in condition (f5)), one has

‘%tf(x,t) - F(m,t)‘ < C(% n ap_g)t?

Thus,

’ltf(x,t) - F(m,t)‘ <et? + C(i + aP*Q)tQ, Y[t] < a.
[ do

Since lim V/(z) = +o0, there exists py > 0 such that

|z| =400

(1 - l)V(:c) > C(% +ap_2), Y|z| > po.

1
4\2 pu

Combining with 0 < g1 < i(% - i)VO, one has

1 1 1
- — — Vix uidz—i—/ —un f(x,u,) — F(z,uy,)|dz
3 ) L V@ e L) = o)

(
2(% — %) x V(m)uidm — /|un(z)§a [elui + 0(5—10 + ap_Q)ui] dx

:%(% a %) /RN V(z)uldx — /u e eruldr + %(% _ %) /RN V(w)u i
- /Iun(x)ga C(% + ap_2>u,21dac
1,1 1 111
§ /|u"<$)|<a 55 E)VO —afulde+ (5 - ﬁ> /RN V(@)udz
- C(% +a2)a?|B,,|

>1(5 - %) /R V@pde O3 + ) B | (3.9)

where B, := {z € RN : |z| < po}, |B,,| :=meas(B,,).
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Consequently, by (f5) and (3.9), we have

J(un) — %u/(un),um

+/un(m)|§a [lf(xaun)un—F(x,un)} dx

1
>(3-7) [ Vuldes 3 (5-75) [ Viendde—c(5 +a)a? By
RIS S

Hence, {u,} is bounded in X. Consequently, up to a subsequence, we have u, — u
in X, u, — uin LI(RY) for 2 < ¢ < 2* and u,(v) — u(z) for almost all x € RV,
Using a standard argument, one has J'(u) = 0. Notice that

on(1) = (J' (up) — J'(u), up — u)
= ||y — ul|* — T, un) — flz,u)| - (u, —u)dz.
=l =l = [ [0 = Fla)] - (= )

Consequently, by (3.2) and the Holder inequality, we have
lun —ull* < ellunllz - lun = ullz + Cellunllp™ - [lun — ull,
Tefulla - lun — ulls + CellulZ - flu — ully + 0n(1) = 0.
Hence u,, —» u in X. L]

Lemma 3.5. Assuming that (V') and (f1)-(f1) hold. Then the functional J satisfies
the (PS). condition at any positive level c.

Proof. Let {u,} C X be (PS). sequence of J, ie., {J(un)} is bounded and
J'(up) — 0 as n — oo. If {u,} is unbounded in X, then, without loss of the
generality, we may assume that ||u,| — +oo. Consequently, we can assume that
Uy, # 0 for all n.

Set w,, = HZTH Then, up to a subsequence, there exists w € X such that

wy, — w in X,
wy, — w in LY(RY) for 2 < g < 2%,
wy(z) — w(z) a.e. on RV,

Case 1: w = 0. By (3.3) and the Sobolev embedding theorem, one has

1
=J n) = 5 2 Wn, 2 F(x,twy)d
B(t) (twy,) 215 [|w || /]RN (z, tw, )dzx

1
> % — 5t2/ [w,|?dx — Cstp/ |wp [Pdx
2 RN RN

1
> 5752 — Chet? — Oy, C.tP
>0
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for small € > 0 and ¢t > 0. Moreover, by (f3) and Fatou Lemma imply that

Bt) = J(twy) = %t? - / Fla, twy)dz

1 F(x,tw,
=] - / Mwidw}
2 RN tzw%
— —o0
as t — 4+0o0. Hence §(+) has a positive maximum. Let ¢,, € [0, 1] be such that

(tnwn) Jnax, (twn)

By (f1) we know that % is increasing on (0, +00) and decreasing on (—o0,0) in

t. Hence, for any ¢ € (0, 1], one has

1
J(twy,) = 51?2 - /RN F(z,twy,)dx

1 F(x,twy,)

== - M wld
[2 /RN (twp)2 " x}
1

> 2 [f f/ F(x,wn)dz}
2 RN

= t2J(w,),

and hence

J(tpw,) > 2T (wy,).
(w)_tgl[oaﬁ] (wn)

Notice that lim J(w,) = %, one has J(w,) > 0 for large n. Hence, for large n,
n—oo

1
J(tpwy) > tren[gﬁ 2 J(wy) = J(wy) = 5 + o, (1).

But, on the other hand,
1 !
J(tnwy) = J(tywy) — §<J (tnwp), trwny)
1
= / btnwnf(x,tnwn) — F(z,tnwn)} = 0,(1),
RN

a contradiction.
Case 2: w # 0. By (f3), there exists p; > 0 such that

F(x,t) >0 forall xRN and [t| > p;.
By (3.3), one has
|F(z,t)| < C1t? for all z € RY and |t| < p;.

Consequently,
F(z,t) > —C1t?, Y(z,t) € RV x R.
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Hence
/ F(xvun)dx >7c’1 f{xE]RN:w(x)ZO} U%d:l?
(eeRNw(x)=0) |[unl® [[un 1
—Cillun]3 _ —CiCollunl®
> =-C,C
lunll> = luall? e

which implies that

F(x,up)

lim inf dx > —C1Cy > —o0.

=0 J{zeRN :w(z)=0} [l |2

Moreover, set Q := {z € RY : w(z) # 0}. Then |u,(z)| — +oo for each x € Q. By
(fs) and Fatou Lemma, one has

/L(x’u;)dx:/ L(j’un)wi(x)dx%Jroo
o llunll o up(v)

as n — co. Therefore, the boundedness of {J(u,)} implies that

1 F(x,up)
n(1 - > — 2d
0”*2—/RN lu2

F(z,up F(z,uy
-/ Bl gy [ P g,
{zeRN:w(z)=0} ||u7l|| {zeRN:w(x)#£0} HunH

Let n — oo, we obtain % > 400, a contradiction.

Summing up the above arguments we know that {u,} C X is bounded.

Now, we prove that the sequence {u,} possesses a convergent subsequence in
X. Indeed, since {u,} is bounded in X, up to a subsequence, there exists u € X
such that

Up — u in X,
up — uin LY(RY) for 2 < g < 2%,
un(x) = u(z) a.e. on RV,
Using a standard argument, one has J'(u) = 0. Notice that
on(1) = (J' (up) — J'(u), up, — u)
[ / [/ (@) = f(,0)] - (o~ w)da
RN
= ||up — ul|* + on(1).
Hence u,, —» u in X. O

Lemma 3.6. For g € [2,2%], there exists k, > 0 such that for any e >0
ullg < kqe, Vue P () Pr.
Proof. For any u € X, this follows from the fact that

+ . . .
[u=y = wlenng [u—wly < Cy wlenng |[u —w|| = Cydist(u, ¥P),

where C, > 0 is the Sobolev constant in the continuous embedding X < LZ(RY)
for all ¢ € [2,2%]. O
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Lemma 3.7. Under the condition (f1) and (f2), for € > 0 small enough, we have

J(u) > =% Vue@P;ﬂan.

N

Proof. Let u € 9P (OP- . It is clear that
[u®]| > dist(u, FP) =¢, Ve > 0.

Using Lemma 3.6, by (f1) and (f2), for small § > 0, there exists Cs > 0 such that

V

1
J(w) = S llull® = dllullz = Cslull}
1 2
15

v

for € > 0 small enough. O
Consider the eigenvalue problem

/ (Vqup + V(x)ugp) dx = /\/ updz, Vo € X.
RN RN
For real number ), if there exists 0 # u € X such that
/ (Vquo + V(x)ugo) dx = )\/ updz, Vo € X,
RN RN

then A is called an eigenvalue of the operator L = —A + V. By the assumption (V)
and the compactness of the embedding X — L?(R"), we know that the spectrum
O'(L) = {)\1,)\2,'" ,)\j,"-} of L with

and A\; — oo (see page 62 in [?]). It is well known that each A;(j > 2) has finite
multiplicity, the principle eigenvalue \; is simple with positive eigenfunction e, and
the eigenfunctions e; corresponding to \;(j > 2) are sign-changing. Let X; be the
eigenspace associated to A;. We set k& > 2

V=@ X;  and  Zp =65, X

Note that any element of Z;\{0} is sign-changing.

We define
ul|P .
N, = {u € 7y : ” ||129 + ||U|| _‘LU”p = p}v
lull® - Jlull + B, - lullp
where
p. = 567, Ce is obtained in (3.3). (3.10)
Br = sup ||lullp and o> 0. (3.11)
21

Lemma 3.8. Under the conditions (f1) and (f2),

lim inf J(u) = 4o0.

k—o00 u€E Ny,
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Proof. By the definition of Ny, we have

[l

Jul2 ="

Yu € Ny.

For any u € Ny, for ¢ > 0 small enough, by (3.3) and (3.10), the Sobolev embedding
theorem, we have

1
J(u) 2 3 [lull® = eCllul® - Celull}

1
> 2lul? = Celjull?

1 l[ullp
= Jlull? (5 = Ceqt)
4 7 ul?
Lo
> gHuH . (3.12)
Furthermore, for any u € Ny, one has
0<p= [[ullp [[aal| - [lellp
[l Jlull + 8 llull,
[[ullp
< &+ [lullp

= ul?
< B llull”=2 + Bellul
< (80 + Be) (lull”=2 + Jul ).

Hence,
p

By, + B

From Lemma 3.8 in [?], we know that S, — 0, as k& — oco. By (3.13), we have
lu]| = +o0. By (3.12), one has

lullP=2 + [lu]) >

> 0. (3.13)

lim
k—o00

lim inf J(u) = +o0.

k—00 u€ N

This completes the proof of Lemma 3.8. O

Lemma 3.9. For any o > 0, we have
do () := dist(Ng ﬂ J% P) >0,

where P = (+P)J(—P).

Proof. The proof is similar to the proof of Lemma 5.4 in [?]. O

Proof of Theorem 1.1.

Step 1: The existence of a positive and a negative solution.

By (3.3) and the Sobolev embedding theorem, there exist constants C; > 0 and
C5 > 0 such that

1
J(u) 2 S [lull® = eCillull* = CeCallull”.
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Consequently, there exists r > 0 (small enough) such that

1
inf J(u)> 1T2 > 0.

llull=r
For any (x,t) € RN x R, by (f5), similarly [?], one has
F(z,t) = Cift]", V[t| > a,

where C; := L. inf  F(x,t) > 0. Combining with (3.3), we have

ok z€RN |t|l=a
F(x,t) > Cy|t|" — Cot? V(x,t) € RY x R, (3.14)

for some positive constant C; and C. Thus, by (3.14) and the Sobolev embedding
theorem, one has

1
J(u) < (f + cz) ul? - 01/ Ju|“dz. (3.15)
2 RN
Hence, for fixed e € X\{0}, it is easy to prove that
J(te) - —oo as t = +00.
Therefore, we can find e1 € +P such that
llex|l > r and J(ex) < 0.

This shows that the condition (A1) of Theorem 2.1 is satisfied. By Lemma 3.1,
Lemma 3.2 and Lemma 3.3,the condition (A ) is satisfied for £ > 0 small enough.
By Lemma 3.4, J satisfies the (PS). condition at any positive level ¢. Hence, by
Theorem 2.1, J has critical point uy € £P\{0}. The strong maximum principle
implies that uy (z) is positive and u_(z) is negative. Thus, the equation (1.1) has
a positive and a negative solutions.

In the following proof, we adopt the notations of Theorem 2.2.

Step 2: The existence of a sign changing solution.

Using the the main idea of [?], we will verify the assumptions of Theorem 2.2.

Let v1,v2 € C°(RM)\{0} be such that supp(vi) () supp(va) = ,v1 < 0 and
vy > 0. we define the continuous map ¢, :A— X by ¢,(s,t) = R(sv; + tvs)
for all (s,t) €A, where R > 0 is a constant to be determined later. Obviously,
©,(0,t) € P and ¢,(s,0) € P- for all e > 0. This implies that o, (01 A) C PF
and ¢, (02 A) C P, i.e. Theorem 2.2(1) holds. Now a simple computation that

§:= min{H(l — t)vy + tualla 1 ¢ € [0, 1]} > 0.
Then |Ju|l2 > 0R for u € ¢,(0y &) and it follows from Lemma 3.6 that

500(80 A)ﬂP;ﬂPE_ =5

for R large enough and for any € > 0.
By (3.15), combining with Lemma 3.7, for R large enough and & > 0 small
enough, we obtain

¢, = sup J(u)<0<c = inf J(u).
uELpo(aOA) uGBPE*ﬂBPE’
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By Theorem 2.2, J has a sign-changing critical point.

Step 3: The existence of infinitely many high-energy solutions.

Because dimY), < o0, there exists 6, > 0 such that |ju|| < 6k||ul|, for any
u € Y. By (3.15), one has

1 iy
Jw) < (5 +Co )l = o0 Jull”,  Vu € Vi

Hence, we have J(u) — —oo on Y}, as |ju|| = +oo.
We can then choose p; > 0 large enough so that

Nk:ﬂ*]ao 7é®a

(P, /On)P i (P, /Ok)
02 P + CpBL7p,

> p

and
ar = max J(u) <0,
u€Yy
llull=pr
where ag := max J(u) > 0, o is given by (3.11) and C, is the Sobolev constant.
ue By

Combining with Lemma 3.8, the condition (Bp) of Theorem 2.3 is satisfied. By
Lemma 3.9,
So(ao) := dist(Ny,[)J%,P) > 0.

For any u € Ny () J%, v e P, we PP, one has

0<do(ag) = inf Ju—oll < [ju—w|+w" —v"|+[lw™ —v7[,
ueNE NJ"0
vEP

where v = max{v,0},v~ = min{v,0},w" € PF,w™ € P.. Hence

0 < do(ag) = dist(u, P UPS_) + 2e.
Set gg € (0, %50(%))7 one has

dist(u, PX | JP.) > do(ag) — 2 > 0, Ve € (0,&0).

This implies that the condition (Bs) of Theorem 2.3 holds. Thus, by Theorem 2.3,
we obtain that J possesses a sequence {uy} of sign-changing critical points such
that J(ug) — 0o as k — oo. O

Proof of Theorem 1.2.

Step 1: The existence of a positive and a negative solution.
By (f3) and Fatou Lemma, for any « € X\{0}, one has

J(tu)

1
7t2Hu||2—/ F(x,tu)dx
2 -

1 F(x,t
ol = [ E5e )
RN

t2q2

[
-+
[\v]
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as t — +oo. Therefore, we can find e4 € £P such that
llex|l > r and J(ey) < 0.

Similarly to the step 1 of the proof in Theorem 1.1, there exist a positive and a
negative of the problem (1.1).

Step 2: The existence of a sign changing solution.

The proof of step 2 is same to the proof of step 2 of Theorem 1.1.

By (f3), combining with Lemma 3.7, for R large enough and € > 0 small enough,
we obtain
¢, = sup J(u)<0<c = inf J(u).

u€p, (doh) uwedPF NoP-

By Theorem 2.2, J has a sign-changing critical point.

Step 3: The existence of infinitely many high-energy solutions.

Notice that, let S; = {u € X : ||u| = p}. For u € S5, by (3.3) and the Sobolev
embedding theorem, one has

T = 5ll? = [ Faude

1
> f||u|\2—5/ u2dx—CE/ |u|Pdx
2 RN RN

1
> S lull* = Crellul* = CoCeull”
1
> —p* >0
> 1P
for small ¢ > 0 and p > 0. For the finite dimensional subspace Y, we claim that

there exists a constant R > j such that J < 0 on Y}, \Bj;. In fact, if the conclusion is
false, then there exists a sequence {u, } C Yy with ||u,| — 400 such that J(u,) > 0.

Consequently,
Ly / Fla,un) g,
27 Jev unl

Let w,, = HZ—ZH, then up to a subsequence, there exists w € X such that

wy, — w in X,
wy, — w in LY(RY) for 2 < g < 2%,
wy(z) — w(z) a.e. on RV,
Case 1: w = 0. By the equivalency of all norms in Y}, there exists a constant

0, > 0 such that
lul|3 > Okllull?, Vu € Ys.

Hence
0= lim [Jw,|3 > 6k lim [Jw,|? = b,
n—oo n—o0

a contradiction.
Case 2: w # 0. In this case, by case 2 in Lemma 3.5, we have

liminf/ Mdm > —-C1Cy > —0,
{zeRN:w(z)=0}

n—o0 [[n |2
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and
F(z,uy)

dx — 400,
~/{mERN:w(;E)7EO} HU’TL”2

as n — oo. Note that

2 RN ||un || {zeRN:w(z)=0} ||u7l || {zeRN:w(x)#£0} ||u’ﬂ H

Let n — oo, by (f3), one has

> lim inf/ Mdaz + lim inf de = +o00,
{zeRN:w(z)=0}

s J
2 n—roo ||un||2 o0 JUzeRN w(z)#0} ||’LLn||2

a contradiction. Hence there exists a constant R > p such that J < 0 on Y} \ By.
We can then choose p; > 0 large enough so that

(P /O%)” Pi (P /Ok)

— >p
P2 P + CpBL 7 oy
and
ar = max J(u) <0,
u€EYy
[lull=p%

where o is given by (3.11) and C,, is the Sobolev constant. The remanent proof is
similar to the step 3 of Theorem 1.1. O
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