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Abstract In this paper, shunting inhibitory cellular neural networks(SICNNs)
with time-varying delays in leakage terms on time scales are investigated. With
the aid of the existence of the exponential dichotomy of linear dynamic equa-
tions on time scales, fixed point theorem and the theory of calculus on time
scales, we establish some sufficient conditions to ensure the existence and ex-
ponential stability of almost automorphic solutions for the model. An example
with its numerical simulations is given to illustrate the feasibility and effec-
tiveness of the theoretical findings.
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1. Introduction

Since the classical research of Roska and Chua [42], cellular neural networks with
delay play an important role in variety of areas such as signal processing, pattern
recognition, chemical processes, nuclear reactors, biological systems, static image
processing, associative memories, optimization problems and so on [14–16,56]. Thus
many authors pay much attention to the dynamical properties of networks and many
excellent findings have been reported. We refer the readers to [7,9,11,18,22,24–
28,31,41,43,45–47,49–55].
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Recently, some scholars pointed out that in the negative feedback terms of neural
networks, there often exists a leakage delay [5,20,36,57]. Generally speaking, the
leakage delay has important effect on the stability of neural networks. Various
studies show that it is difficult for us to handle the dynamical behavior of neural
networks with leakage delay. Therefore, it is meaningful to consider neural networks
with time delays in leakage terms [33].

In 1990, Hilger [21] proposed the theory of time scales. Many scholars [19, 29, 30,
34, 35, 57, 59] suggested that one could investigate continuous time and discrete time
neural networks in a unity way [33] by applying the theory of time scales. Thus
it is significant to investigate the dynamical behaviors of neural networks on time
scales.

In real word, almost periodicity is universal than periodicity. Moreover, almost
automorphic functions, which were introduced by Bochner, are much more general
than almost periodic functions. Almost automorphic solutions in the context of
differential equations were studied by several authors. We refer the readers to
[1–4,12,13,17,20,21,38–40,48]. However, to the best of our knowledge, there are
very few papers published on the almost automorphic solutions of cellular neural
networks with time-varying leakage delays on time scales.

Inspired by the discussion above, in this paper, we consider the following shunt-
ing inhibitory cellular neural networks with time-varying leakage delays on time
scales

x∆ij(t) = −aij(t)xij(t−ηij(t))+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)f(xkl(t−τ(t)))xij(t)+Lij(t), (1.1)

where T is an almost periodic time scale, Cij denotes the cell at the (i, j) position
of the lattice, the r-neighborhood Nr(i, j) of Cij is

Nr(i, j) = {Ckl : max(|k − i|, |l − i|) ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n}.

xij is the activity of the cell Cij , Lij(t) is the external put to Cij , the func-
tion aij(t) > 0 stands for the passive decay rate of the cell activity, Ckl

ij ≥ 0
is the connection or coupling strength of postsynaptic activity of the cell trans-
mitted to the cell Cij , and the activity function f(xkl) is a continuous function
representing the output or firing rate of the cell Ckl, ηi(t) ≥ 0 and τ(t) ≥ 0 de-
note the leakage delay and transmission delay, t − ηi(t) ∈ T, t − τ(t) ∈ T for all
t ∈ T,i = 1, 2, · · · ,m, j = 1, 2, · · · , n

In this paper, we will apply the existence of the exponential dichotomy of linear
dynamic equations on time scales, fixed point theorem and the theory of calcu-
lus on time scales to investigate the existence and exponential stability of almost
automorphic solutions for model (1.1).

For convenience, we denote by [a, b]T = {t|t ∈ [a, b]∩T},Λ = {11, 12, · · · , 1n, 21,
22, · · · ,mn}. For an almost automorphic function f : T → R, f+ = supt∈T |f(t)|,
f− = inft∈T |f(t)|.We denote by R the set of real numbers, by R+ the set of positive
real numbers and by X a real Banach space with the norm ||.||. The initial conditions
associated with system(1.1) are of the form:

xij(s) = φij(s), s ∈ (−θ, 0]T, (1.2)

where θ = max{maxij∈Λ η
+
ij , τ

+}, φij ∈ C1([−θ, 0]T,R) and i = 1, 2, · · · ,m, j =
1, 2, · · · , n.
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The remainder of the paper is organized as follows. In Section 2, we introduce
some lemmas and definitions on almost automorphic solutions of system (1.1). In
Section 3, we present some sufficient conditions for the existence of almost auto-
morphic solutions of (1.1). Some sufficient conditions on the global exponential
stability of almost automorphic solutions of (1.1) are established in Section 4. An
example is given to illustrate the effectiveness of the obtained findings in Section 5.
A brief conclusion is drawn in Section 6.

2. Preliminary results

In this section, we will give some definitions and lemmas.

Definition 2.1. ([6]) Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators σ, ρ : T → T and the graininess µ : T → R
are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} and µ(t) = σ(t)− t.

Lemma 2.1. ([6]) Let p, q : T → R be two regressive functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(t, s) =

1
ep(s,t)

= e⊖p(s, t);

(iii) ep(t, s)ep(s, r) = ep(t, r)
(iv) (ep(t, s))

∆ = p(t)ep(t, s).

Lemma 2.2. ([6]) Let f, g be ∆-differentiable functions on T, then
(i) (ν1f + ν2g)

∆ = ν1f
∆ + ν2g

∆, for any constants ν1, ν2;
(ii) (fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

Lemma 2.3. ([6]) Let p(t) ≥ 0 for t ≥ s, then ep(t, s) ≥ 1.

Definition 2.2. ([6]) A function p : T → R is called regressive if 1 + µ(t)p(t) ̸= 0
for all t ∈ Tk; p : T → R is called positively regressive if 1 + µ(t)p(t) > 0 for
all t ∈ Tk. The set of all regressive and rd-continuous functions p : T → R will
be denoted by R = R(T,R) and the set of all positively regressive functions and
rd-continuous functions will be denoted by R+ = R+(T,R).

Lemma 2.4. ([6]) If p ∈ R+, then
(i) ep(t, s) > 0, for all t, s ∈ T;
(ii) if p(t) ≤ q(t) for all t ≥ s, then ep(t, s) ≤ eq(t, s) for all t ≥ s.

Lemma 2.5. ([6]) If p ∈ R and a, b, c ∈ T, then

[ep(c, .)]
∆ = −p[ep(c, .)]σ

and ∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

Lemma 2.6. ([6]) Let a ∈ Tk, b ∈ T and f : T × Tk → R is continuous at (t, t)
where t ∈ Tk with t > a. Also assume that f∆(t) is rd-continuous on [a, σ(t)].
Suppose that for each ε > 0, there exists a neighborhood U of ϵ ∈ [a, σ(t)] such that

|f(σ(t), ϵ)− f(s, ϵ)− f∆(t, ϵ)(σ(t)− s)| ≤ ε|σ(t)− s|, for all s ∈ U,
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where f∆ denotes the derivative of f with respect to the first variable. Then
(i) g(t) :=

∫ t

a
f(t, ϵ)∆ϵ implies g∆(t) :=

∫ t

a
f∆(t, ϵ)∆ϵ+ f(σ(t), t);

(ii) h(t) :=
∫ b

t
f(t, ϵ)∆ϵ implies h∆(t) :=

∫ b

t
f∆(t, ϵ)∆ϵ− f(σ(t), t).

Definition 2.3. ([23,32,38]) A time scale T is called an almost periodic time scale
if

Π := {ϵ ∈ R : t± ϵ ∈ T, ∀t ∈ T} ̸= {0}.

Definition 2.4. ([38]) Let T be an almost periodic time scale.
(i) A function f(t) : T → X is said to be almost automorphic, if for any se-
quence {sn}∞n=1 ⊂ Π, there is a subsequence {ϵn}∞n=1 ⊂ {sn}∞n=1 such that g(t) =
limn→∞ f(t + ϵn) is well defined for each t ∈ T and limn→∞ g(t − ϵn) = f(t) for
each t ∈ T. Denote by AA(T,X) the set of all such functions;
(ii) A continuous function f : T×X → X is said to be almost automorphic, if f(t, x)
is almost automorphic in t ∈ T uniformly in x ∈ B, where B is any bounded subset
of X. Denote by AA(T× X,X) the set of all such functions.

Lemma 2.7. ([38]) Let f, g ∈ AA(T,X). Then we have the following
(i) f + g ∈ AA(T,X);
(ii) α ∈ AA(T,X) for any constant α ∈ R;
(iii) if φ : X → Y is a continuous function, then the composite function φ◦f : T → Y
is almost automorphic.

Lemma 2.8. ([33,38]) Let f ∈ AA(T×X,X) and f satisfies the Lipschitz condition
in x ∈ X uniformly in t ∈ T. If φ ∈ AA(T,X), then f(t, φ(t)) is almost automorphic.

Definition 2.5. ([32,58]) Let x ∈ Rn and A(t) be a n× n matrix-valued function
on T, the linear system

x∆(t) = A(t)x(t), t ∈ T (2.1)

is said to admit an exponential dichotomy on T if there exist positive constants
ki, αi, i = 1, 2, projection P and the fundamental solution matrix X(t) of (2.1)
satisfying

|X(t)PX−1(s)| ≤ k1e⊖α1(t, s), s, t ∈ T, t ≥ s

and
|X(t)(I − P )X−1(s)| ≤ k2e⊖α2(t, s), s, t ∈ T, t ≤ s,

where |.| is a matrix norm on T, that is, if A = (aij)n×n, then we can take |A| =
(
∑n

i=1

∑n
j=1 |aij |2)

1
2 .

Lemma 2.9. ([38]) If A(t) ∈ AA(T,Rn×n) such that {A−1(t)}t∈T and {((I +
µ(t))A(t))−1}t∈T are bounded. Moreover, if g ∈ AA(T,Rn) and (2.1) admits an
exponential dichotomy, then the following system

x∆(t) = A(t)x(t) + g(t) (2.2)

has a solution x(t) ∈ AA(T,Rn) and x(t) is expressed as follows

x(t) =

∫ t

−∞
X(t)PX−1(σ(s))g(s)∆s−

∫ +∞

t

X(t)(I − P )X−1(σ(s))g(s)∆s,

where X(t) is the fundamental solution matrix of (2.1), I denotes the n×n-identity
matrix.
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Lemma 2.10. ([32]) Let ci > 0 and −ci(t) ∈ R+,∀t ∈ T. If min1≤i≤n{inft∈T ci(t)} =
m > 0, then the linear system

x∆(t) = diag(−c1(t),−c2(t), · · · ,−cn(t))x(t) (2.3)

admits an exponential dichotomy on T.

Definition 2.6. ([33]) Let x∗(t) = (x∗1(t), x
∗
2(t), · · · , x∗nt))T be an almost au-

tomorphic solution of (1.1) with initial value φ∗(t) = (φ∗
1(t), φ

∗
2(t), · · · , φ∗

n(t))
T .

If there exist positive constants λ with ⊖λ ∈ R+ and M > 1 such that an ar-
bitrary solution x(t) = (x1(t), x2(t), · · · , xnt))T of (1.1) with initial value φ(t) =
(φ1(t), φ2(t), · · · , φn(t))

T satisfies

||x− x∗|| ≤M ||φ− φ∗||e⊖λ(t, t0), t0 ∈ [−τ,∞)T, t ≥ t0.

Then the solution x∗(t) is said to be globally exponentially stable.

3. Existence of almost automorphic solutions

In this section, we will establish sufficient conditions on the existence of almost
automorphic solutions of (1.1). Let X∗ = {f ∈ C1(T,R)|f ∈ AA(T,Rm+n)} with
the norm ||f ||X∗ = f+. Then X∗ is a Banach space. Let φ0(t) = (φ0

11(t), φ
0
12(t),

· · · , φ0
mn(t))

T , where φ0
ij(t) =

∫ t

−∞ e−aij (t, σ(s)Lij(s)∆s, ij ∈ Λ and L is a constant
satisfying

L ≥ max{||φ0||X∗ , |f(0)|}.

Throughout this paper, we assume that

(H1) aij ∈ C(T,R+) with −aij ∈ R+ and inft∈T{1−µ(t)aij(t)} = ā > 0, Ckl
ij , Lij ∈

C(T,R), τ ∈ C(T,R+) are almost automorphic, where ij ∈ Λ.

(H2) f ∈ C(R,R) and there exists a constant L > 0 such that for any u, v ∈ R,

|f(u)− f(v)| ≤ Lf |u− v|.

(H3) For ij ∈ Λ,

max
ij∈Λ

{
ϱij

a−ij

}
≤ 1

2
,max
ij∈Λ

{
ςij

a−ij

}
≤ 1,

where

ϱij = a+ijη
+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
(2LfL+ |f(0)|),

ςij = a+ijη
+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
2LfL.

Theorem 3.1. If (H1)–(H3) are satisfied. Then there exists a unique almost
automorphic solution of (1.1) in X0 = {φ ∈ X∗|||φ− φ0||X∗ ≤ L}.

Proof. Let φ ∈ X∗. Consider the system as follows:

x∆ij(t) = −aij(t)xij(t) + Γij(t, φ) + Lij(t), ij ∈ Λ, (3.1)
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where

Γij(t, φ) = aij(t)

∫ t

t−ηij(t)

φ∆
ij(s)∆s+

∑
Ckl∈Nr(i,j)

Ckl
ij (t)f(φkl(t− τ(t)))φij(t), ij ∈ Λ.

(3.2)
It follows from Lemma 2.10 that the linear system

x∆ij(t) = −aij(t)xij(t), ij ∈ Λ, (3.3)

admits an exponential dichotomy on T. Thus, in view of Lemma 2.9, we derive that
system (3.1) has exactly one almost automorphic solution as follows

xφij(t) =

∫ t

−∞
e−aij (t, σ(s))[Γij(s, φ) + Lij(s)]∆s, ij ∈ Λ. (3.4)

For φ ∈ X∗, then
||φ||X∗ ≤ ||φ− φ0||X∗ + ||φ0||X∗ ≤ 2L. (3.5)

Define an operator as follows

Φ : X∗ → X∗, (φ11, φ12, · · · , φmn)
T → (xφ11, x

φ
12, · · · , xφmn)

T . (3.6)

First we show that for any φ ∈ X∗, we have Φφ ∈ X∗. Note that, for ij ∈ Λ, we
have

|Γij(s, φ)| =
∣∣∣aij(s) ∫ s

s−ηij(s)

φ∆
ij(ϑ)∆ϑ+

∑
Ckl∈Nr(i,j)

Ckl
ij (s)f(φkl(s− τ(s)))φij(s)

∣∣∣
≤ a+ijη

+
ij ||φ||X∗+

∑
Ckl∈Nr(i,j)

Ckl
ij

+
(|f(φkl(s− τ(s)))− f(0)|+|f(0)|)|φij(s)|

≤ a+ijη
+
ij ||φ||X∗+

∑
Ckl∈Nr(i,j)

Ckl
ij

+
(Lf ||φ||X∗ + |f(0)|)||φ||X∗

=

[
a+ijη

+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
(Lf ||φ||X∗ + |f(0)|)

]
||φ||X∗

≤

[
a+ijη

+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
(2LfL+ |f(0)|)

]
2L. (3.7)

Thus we get

|(Φ(φ− φ0))ij(t)| =
∣∣∣ ∫ t

−∞
e−aij (t, σ(s))Γij(s, φ)∆s

∣∣∣
≤
∫ t

−∞
e−aij (t, σ(s))|Γij(s, φ)|∆s

≤ 2L

∫ t

−∞
e−a−

ij
(t, σ(s))

[
a+ijη

+
ij

+
∑

Ckl∈Nr(i,j)

Ckl
ij

+
(2LfL+ |f(0)|)

]
∆s

≤ 2Lϱij

a−ij
, ij ∈ Λ. (3.8)
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It follows from (H3) that

||Φ(φ− φ0)||X∗ ≤ max
ij∈Λ

{
ϱij

a−ij

}
≤ L, (3.9)

which implies that Φ(φ) ∈ X∗. Next, we show that Φ is a contraction. For any
φ = (φ11, φ12, · · · , φn)

T , ψ = (ψ11, ψ12, · · · , ψmn)
T ∈ X∗, for ij ∈ Λ, we denote

Υij(s, φ, ψ) = aij(s)

∫ s

s−ηij(s)

(φ∆
ij(s)− ψ∆

ij (s))∆s+
∑

Ckl∈Nr(i,j)

Ckl
ij (s)

×[f(φkl(s− τ(s)))φij(s)− f(ψkl(s− τ(s)))ψij(s)]. (3.10)

Then

|(Φφ− Φψ)ij(t)| =
∣∣∣ ∫ t

−∞
e−aij (t, σ(s))Υij(s, φ, ψ)∆s

∣∣∣
≤
∫ t

−∞
e−aij (t, σ(s))|Υij(s, φ, ψ)|∆s

≤
∫ t

−∞
e−aij (t, σ(s))

[
a+ijη

+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
2LfL

]
∆s||φ− ψ||X∗

≤ ςij

a−ij
||φ− ψ||X∗ , ij ∈ Λ. (3.11)

In view of (H3), we get that ||Φφ−Φφ|| < ||φ−ψ||. Then Φ is a contraction. Thus
Φ has a fixed point in X0, i.e., (1.1) has a unique almost automorphic solution in
X0. The proof of Theorem 3.1 is completed. □

4. Exponential stability of almost automorphic so-
lutions

In this section, we will obtain the exponential stability of the almost automorphic
solutions of system (1.1).

Theorem 4.1. If (H1)–(H3) are fulfilled. Then the almost automorphic solution
of system (1.1) is globally exponentially stable.

Proof. By Theorem 3.1, we know that (1.1) has an almost automorphic solution
x(t) = (x11(t), x12(t), · · · , xmn(t))

T with initial condition φ(t) = (φ11(t), φ12(t), · · · ,
φmn(t))

T . Suppose that y(t) = (y11(t), y12(t), · · · , ymn(t))
T is an arbitrary solu-

tion of (1.1) with initial condition ψ(t) = (ψ11(t), ψ12(t), · · · , ψmn(t))
T . Denote

u(t) = (u11(t), u12(t), · · · , umn(t))
T , where uij(t) = yij(t) − xij(t), ij ∈ Λ. Then it

follows from (1.1) that

u∆ij(t) = −aij(t)uij(t− ηij(t)) +
∑

Ckl∈Nr(i,j)

Ckl
ij (t)[f(ykl(t− τ(t)))yij(t)

−f(xkl(t− τ(t)))xij(t)], ij ∈ Λ. (4.1)

The initial condition of (4.1) is

ϕij(s) = φij(s)− ψij(s), s ∈ [−θ, 0]T, ij ∈ Λ. (4.2)
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Rewrite (4.1) as the form

u∆ij(t) = −aij(t)uij(t) + aij(t)

∫ t

t−ηij(t)

u∆ij(s)∆s

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)[f(ykl(t− τ(t)))yij(t)

− f(xkl(t− τ(t)))xij(t)], ij ∈ Λ. (4.3)

It follows from (4.3) that for ij ∈ Λ and t ≥ t0, t0 ∈ [−θ, 0]T,

uij(t) =uij(t0)e−aij (t, t0) +

∫ t

t0

e−aij (t, σ(s))

{
aij(s)

∫ s

s−ηij(s)

u∆ij(ϑ)∆ϑ

+
∑

Ckl∈Nr(i,j)

Ckl
ij (s)[f(ykl(s−τ(s)))yij(s)−f(xkl(s−τ(s)))xij(s)]

}
∆s, (4.4)

where ij ∈ Λ. Define Πij(ω) and Γij(ω) as follows

Πij(ω) = a−ij − ω − eω sups∈T µ(s)

[
a+ijη

+
ije

ωη+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
Lfe

ωτ+

]
, (4.5)

Γij(ω) = a−ij − ω −
(
a+ije

ω sups∈T µ(s) + a−ij − ω
)

×

[
a+ijη

+
ije

ωη+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
Lfe

ωτ+

]
, (4.6)

where ij ∈ Λ. By (H3), we get

Πij(0) = a−ij −

[
a+ijη

+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
Lf

]
> 0, (4.7)

Γij(0) = a−ij −
(
a+ij + a−ij

) [
a+ijη

+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
Lf

]
> 0. (4.8)

Since Πij(ω) and Γij(ω) are continuous on [0,+∞) and limω→+∞ Πij(ω) = −∞,
limω→+∞ Γij(ω) = −∞, then there exist ωij , ω

∗
ij > 0 such that Πij(ωij) = 0,

Γij(ω
∗
ij) = 0 and Πij(ω) > 0 for ω ∈ (0, ωij), Γij(ω) > 0 for ω ∈ (0, ω∗

i ), ij ∈ Λ.
By choosing a positive constant ω0 = min{ω11, ω12, · · · , ωmn, ω

∗
11, ω

∗
12, · · · , ω∗

mn},
we get Πij(ω0) ≥ 0 and Γij(ω0) ≥ 0, ij ∈ Λ. Thus we can choose a positive constant
0 < ξ < min{ω0,minij∈Λ{a−ij}} such that

Πij(ξ) > 0,Γij(ξ) > 0, ij ∈ Λ,

which implies that

eξ sups∈T µ(s)

a−ij − ξ

[
a+ijη

+
ije

ωη+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
Lfe

ωτ+

]
< 1 (4.9)
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and [
1 +

a+ije
ξ sups∈T µ(s)

a−ij − ξ

][
a+ijη

+
ije

ωη+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
Lfe

ωτ+

]
< 1, (4.10)

where ij ∈ Λ. Let

M = max
ij∈Λ

{
a−ij

a+ijη
+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
Lf

}
. (4.11)

By (H3), we know that M > 1. Then we get

1

M
<
eξ sups∈T µ(s)

a−ij − ξ

[
a+ijη

+
ij +

∑
Ckl∈Nr(i,j)

Ckl
ij

+
Lf

]
. (4.12)

Moreover, we have that e⊖ξ(t, t0) > 1, where t ∈ [−θ, t0]T. Then

||u||X∗ ≤Me⊖ξ(t, t0)||φ− ψ||X∗ , for all t ∈ [−θ, t0]T. (4.13)

We claim that

||u||X∗ ≤Me⊖ξ(t, t0)||φ− ψ||X∗ , for all t ∈ [−t0,+∞]T. (4.14)

To prove this (4.14), we show that for any p > 1, the following inequality holds

||u||X∗ ≤ pMe⊖ξ(t, t0)||φ− ψ||X∗ , for all t ∈ [−t0,+∞]T, (4.15)

which implies that for ij ∈ Λ,

|uij(t)| ≤ pMe⊖ξ(t, t0)||φ− ψ||X∗ , for all t ∈ [−t0,+∞]T. (4.16)

By way of contradiction, assume that (4.15) does not hold.

We assume that (4.16) is not true. Then there exist t1 ∈ (t0,+∞)T and ij1 ∈ Λ
such that

|uij1(t1)|≥pMe⊖ξ(t1, t0)||φ−ψ||X∗ , |uij1(t)|<pMe⊖ξ(t, t0)||φ−ψ||X∗ , ∀ t ∈ [−t0, t1]T,

|uk(t)| < pMe⊖ξ(t, t0)||φ−ψ||X∗ , for k ̸= ij1, k ∈ Λ, t ∈ [−t0, t1]T,

Therefore, there exists a constant γ1 ≥ 1 such that

|uij1(t1)|=γ1pMe⊖ξ(t1, t0)||φ−ψ||X∗ , |uij1(t)|<γ1pMe⊖ξ(t, t0)||φ−ψ||X∗ , ∀t∈ [−t0, t1]T.

|uk(t)| < γ1pMe⊖ξ(t, t0)||φ−ψ||X∗ , for k ∈ Λ, k ̸= ij1, t ∈ [−t0, t1]T,
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By (4.4), for ij ∈ Λ we get

|uij1(t1)| =

∣∣∣∣∣uij1(t0)e−aij1
(t1, t0) +

∫ t1

t0

e−aij1
(t1, σ(s))

{
aij1(s)

∫ s

s−ηij1 (s)

u∆ij1(ϑ)∆ϑ

+
∑

Ckl∈Nr(i,j)

Ckl
ij1

(s)[f(ykl(s− τ(s)))yij1(s)−f(xkl(s− τ(s)))xij1(s)]

}
∆s

∣∣∣∣∣
≤ e−aij1

(t1, t0)||φ− ψ||X∗ + γ1pMe⊖ξ(t1, t0)||φ− ψ||X∗

×

∣∣∣∣∣
∫ t1

t0

e−aij1
(t1, σ(s))eξ(t1, σ(s))

{
a+ij1

∫ s

s−ηij1 (s)

eξ(σ(s), ϑ)∆ϑ

+
∑

Ckl∈Nr(i,j)

Ckl
ij1

+
Lfeξ(σ(s), s− τij1(s))

}
∆s

∣∣∣∣∣
≤ e−aij1

(t1, t0)||φ− ψ||X∗ + γ1pMe⊖ξ(t1, t0)||φ− ψ||X∗

×

∣∣∣∣∣
∫ t1

t0

e−aij1⊕ξ(t1, σ(s))

{
a+ij1η

+
ij1
eξ(σ(s), s− ηij1(s))

+
∑

Ckl∈Nr(i,j)

Ckl
ij1

+
Lfeξ(σ(s), s− τij1(s))

}
∆s

∣∣∣∣∣
≤ e−aij1

(t1, t0)||φ− ψ||X∗ + γ1pMe⊖ξ(t1, t0)||φ− ψ||X∗

×

∣∣∣∣∣
∫ t1

t0

e−aij1⊕ξ(t1, σ(s))

{
a+ij1η

+
ij1
eξ(η

+
ij1

+supt∈T µ(s))

+
∑

Ckl∈Nr(i,j)

Ckl
ij1

+
Lfe

ξ(τ+
ij1

+supt∈T µ(s))

}
∆s

∣∣∣∣∣
= γ1pMe⊖ξ(t1, t0)||φ− ψ||X∗

{
1

γ1pM
e−aij1⊕ξ(t1, t0) + eξ supt∈T µ(s)

×

[
a+ij1η

+
ij1
eξη

+
ij1 +

∑
Ckl∈Nr(i,j)

Ckl
ij1

+
Lfe

ξτ+
ij1

]

×
∫ t1

t0

e−aij1⊕ξ(t1, σ(s))∆s

}

≤ γ1pMe⊖ξ(t1, t0)||φ− ψ||X∗

{
1

M
e−(aij1−ξ)(t1, t0) + eξ supt∈T µ(s)

×

[(
a+ij1η

+
ij1
eξη

+
ij1 +

∑
Ckl∈Nr(i,j)

Ckl
ij1

+
Lfe

ξτ+
ij1

)

× 1

−(aij1 − ξ)

∫ t1

t0

(−(aij1 − ξ))e−(aij1−ξ)(t1, σ(s))∆s

]}

= γ1pMe⊖ξ(t1, t0)||φ− ψ||X∗

{[
1

M
− eξ supt∈T µ(s)

a−ij1 − ξ

(
a+ij1η

+
ij1
eξη

+
ij1
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+
∑

Ckl∈Nr(i,j)

Ckl
ij1

+
Lfe

ξτ+
ij1

)]
e−(aij1−ξ)(t1, t0)

+
eξ supt∈T µ(s)

a−ij1 − ξ

(
a+ij1η

+
ij1
eξη

+
ij1 +

∑
Ckl∈Nr(i,j)

Ckl
ij1

+
Lfe

ξτ+
ij1

)}
< γ1pMe⊖ξ(t1, t0)||φ− ψ||X∗ , (4.17)

which is a contradiction. Based on the discussion above, we can conclude that
(4.15) holds. Let p → 1, then (4.14) holds. We can take ⊖λ = ⊖ξ, then λ > 0 and
⊖λ ∈ R+. Then we derive

||u||X∗ ≤M ||φ− ψ||X∗e⊖λ(t, t0), t ∈ [−τ,∞)T, t ≥ t0, (4.18)

which means that the almost automorphic solution of (1.1) is globally exponentially
stable. The proof of Theorem 4.2 is completed. □
Remark 4.1. In 2007 and 2009, Cai and Xiong [8], Shao et al. [44] studied the
almost periodic solutions of system (1.1) with the leakage delay ηij(t) = 0. In 2007,
Xia et al. [51] investigated the existence and exponential stability of almost periodic
solutions for model (1.1) with the leakage delay ηij(t) = 0 and the transmission
delay τ(t) = 0. In 2009, Liu [37] considered the stability of model (1.1). In this
paper, we consider the almost automorphic solutions of (1.1), which is more general
than those models in [8,37,44,51]. Moreover, the almost automorphy has been
widely applied in the theory of ordinary differential equations(ODEs) and partial
differential equations(PDEs), the theory of neural networks, physics, mechanics and
mathematical biology. In this sense, our results complement some previous ones in
[8,37,44,51].

5. Numerical example

In this section, we will give an example to illustrate the feasibility and effectiveness of
our main results obtained in previous sections. Considering the following shunting
inhibitory cellular neural networks with time-varying delays in leakage terms on
time scales

x∆11(t) = −a11(t)x11(t− η11(t)) +
∑

Ckl∈Nr(1,1)

Ckl
11(t)f(xkl(t− τ(t)))x11(t) + L11(t),

x∆12(t) = −a12(t)xij(t− η12(t)) +
∑

Ckl∈Nr(1,2)

Ckl
12(t)f(xkl(t− τ(t)))x12(t) + L12(t),

x∆21(t) = −a21(t)x21(t− η21(t)) +
∑

Ckl∈Nr(2,1)

Ckl
21(t)f(xkl(t− τ(t)))x21(t) + L21(t),

x∆22(t) = −a22(t)x22(t− η22(t)) +
∑

Ckl∈Nr(2,2)

Ckl
22(t)f(xkl(t− τ(t)))x22(t) + L22(t),

(5.1)
where f(u) = sin 0.3u anda11(t) a12(t)

a21(t) a22(t)

 =

 0.002 + 0.001| cos
√
2t| 0.002 + 0.001| cos

√
3t|

0.003 + 0.002| cos
√
5t| 0.002 + 0.001| cos

√
3t|

 ,
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η21(t) η22(t)

 =

 0.02 sin2 t 0.02 sin2 t
0.02 sin2 t 0.02 sin2 t

 ,
C11(t) C12(t)

C21(t) C22(t)

 =

 0.00003 + 0.00001 sin
√
5t 0.00003 + 0.00001 sin

√
5t

0.00002 + 0.00001 sin
√
5t 0.00004 + 0.00002 sin

√
3t

 ,
 I11(t) I12(t)
I21(t) I22(t)

 =

 0.02 + 0.02 cos
√
3t 0.03 + 0.02 cos

√
7t

0.02 + 0.02 cos
√
7t 0.01 + 0.02 cos

√
3t

 .
Let r = 1, L = 1. Then we get Lf = 0.3 anda+11 a+12

a+21 a
+
22

 =

0.003 0.003

0.005 0.003

 ,
a−11 a−12
a−21 a

−
22

 =

 0.002 0.002

0.003 0.002

 ,
 η+11 η+12
η+21 η

+
22

 =

0.02 0.02

0.02 0.02

 ,
C+

11 C
+
12

C+
21 C

+
22

 =

0.00004 0.00004

0.00005 0.00006

 .
Hence 

ϱ11 = a+11η
+
11 +

∑
Ckl∈N1(1,1)

Ckl
11

+
(2LfL+ |f(0)|) ≈ 0.000156,

ϱ12 = a+12η
+
12 +

∑
Ckl∈N1(1,2)

Ckl
12

+
(2LfL+ |f(0)|) ≈ 0.000156,

ϱ21 = a+21η
+
21 +

∑
Ckl∈N1(2,1)

Ckl
21

+
(2LfL+ |f(0)|) ≈ 0.00022,

ϱ22 = a+22η
+
22 +

∑
Ckl∈N1(2,2)

Ckl
22

+
(2LfL+ |f(0)|) ≈ 0.000204,

ς11 = a+11η
+
11 +

∑
Ckl∈N1(1,1)

Ckl
11

+
2LfL ≈ 0.000156,

ς12 = a+12η
+
12 +

∑
Ckl∈N1(1,2)

Ckl
12

+
2LfL ≈ 0.000156,

ς21 = a+21η
+
21 +

∑
Ckl∈N1(2,1)

Ckl
21

+
2LfL ≈ 0.00022,

ς22 = a+22η
+
22 +

∑
Ckl∈N1(2,2)

Ckl
22

+
2LfL ≈ 0.000204,



ϱ11

a−11
=

0.000156

0.002
= 0.0780,

ϱ12

a−12
=

0.000156

0.002
= 0.0780,

ϱ21

a−21
=

0.00022

0.003
= 0.0070,

ϱ22

a−22
=

0.000204

0.002
= 0.1020,



ς11

a−11
=

0.000156

0.002
= 0.0780,

ς12

a−12
=

0.000156

0.002
= 0.0780,

ς21

a−21
=

0.00022

0.003
= 0.0070,

ς22

a−22
=

0.000204

0.002
= 0.1020.
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Then it is easy to check that

max
1≤i,j≤2

{
ϱij

a−ij

}
= 0.1020 <

1

2
, max
1≤i,j≤2

{
ςij

a−ij

}
= 0.1020 < 1.

Thus all assumptions in Theorems 4.1 and 4.2 are fulfilled. Thus we can conclude
that (5.1) has an almost automorphic solution, which is globally exponentially sta-
ble. The results are verified by the numerical simulations in Figures 1-4 (T = R).
Figures 1-4 stand for the time history plots of t-x11, t-x12, t-x21 and t-x22, respec-
tively.
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Figure 1. Time response of state variable x11.

0 10 20 30 40 50
−80

−60

−40

−20

0

20

40

60

80

t

x 12
(t

)

Figure 2. Time response of state variable x12.
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Figure 3. Time response of state variable x21.
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Figure 4. Time response of state variable x22.

6. Conclusions

In this paper, we study a class of shunting inhibitory cellular neural networks with
time-varying delays in leakage terms on time scales. Applying the existence of the



1046 C. Xu, X. Tang & P. Li

exponential dichotomy of linear dynamic equations on time scales, fixed point theo-
rem and the theory of calculus on time scales, we establish some sufficient conditions
for the existence and exponential stability of almost automorphic solutions for the
shunting inhibitory cellular neural networks with time-varying delays in leakage
terms on time scales. It is shown that the existence and global exponential stabil-
ity of almost automorphic solutions for system (1.1) only depend on time delays
ηij(t)(ij ∈ Λ) (the delays in the leakage term) and do not depend on time delays
τ(t) which implies that the delays in the leakage term have important effect on the
existence and global exponential stability of almost automorphic solutions. To the
best of our knowledge, it is the first time to deal with the almost automorphic so-
lution for the shunting inhibitory cellular neural networks with time-varying delays
in leakage terms on time scales. The method of this paper can be applied directly
to many other related neural networks.
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