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EFFECTIVE CONSTRUCTION OF
POINCARÉ–BENDIXSON REGIONS∗

Armengol Gasull1, Héctor Giacomini2 and Maite Grau3,†

Abstract This paper deals with the problem of location and existence of limit
cycles for real planar polynomial differential systems. We provide a method to
construct Poincaré–Bendixson regions by using transversal curves, that enables
us to prove the existence of a limit cycle that has been numerically detected.
We apply our results to several known systems, like the Brusselator one or
some Liénard systems, to prove the existence of the limit cycles and to locate
them very precisely in the phase space. Our method, combined with some
other classical tools can be applied to obtain sharp bounds for the bifurcation
values of a saddle-node bifurcation of limit cycles, as we do for the Rychkov
system.
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1. Introduction

We consider real planar polynomial differential systems of the form

ẋ = dx/dt = P (x, y), ẏ = dy/dt = Q(x, y), (1.1)

where P (x, y) and Q(x, y) are real polynomials. We denote by X = (P,Q) the
vector field associated to (1.1) and z = (x, y). So, (1.1) can be written as ż = X(z).

When dealing with system (1.1) one of the main problems is to determine the
number and location of its limit cycles. Recall that a limit cycle is an isolated
periodic orbit of the system. For a given vector field, when it is not very near of
a bifurcation, the limit cycles can usually be detected by numerical methods. A
bifurcation is a qualitative change in the behaviour of a vector field as a parameter
of the system is varied. This phenomenon can involve a change in the stability
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1Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193
Bellaterra, Barcelona, Catalonia, Spain
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3Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69;
25001 Lleida, Catalonia, Spain
∗The first author is partially supported by Spanish Government with the grant
MTM2013-40998-P and by Generalitat de Catalunya Government with the
grant 2014SGR568. The second and third authors are partially supported by
a MINECO/FEDER grant number MTM2014-53703-P and by an AGAUR
(Generalitat de Catalunya) grant number 2014SGR1204.

http://dx.doi.org/10.11948/2017094


1550 A. Gasull, H. Giacomini & M. Grau

of a limit cycle or the creation or destruction of one or more limit cycles. If a
periodic orbit is stable (unstable), then forward (backward) numerical integration
of a trajectory with an initial condition in its basin of attraction will converge to
the periodic orbit as t→∞ (t→ −∞).

Once for a given vector field a limit cycle is numerically detected there are several
methods to prove its existence. Some of them are based on Fixed Point theorems,
as for instance the Newton–Kantorovich Theorem ( [12,17]). Other procedures use
computer assisted proofs ( [10,21,24]) or the well-known Harmonic Balance method
( [6,18,22]). The effective application of any of these methods is in general a difficult
task.

In this work we present a new procedure to prove the existence of a limit cycle
once it is numerically detected. The method is based on the Poincaré–Bendixson
theorem, see for instance [5, 15] and also Theorem 1.1. This theorem can be very
useful to prove the existence of a limit cycle and to give a region where it is lo-
cated. However, this result is hardly found in applications due to the difficulty
of constructing the boundaries of a Poincaré–Bendixson region. Our aim in this
work is to give a constructive procedure for finding transversal curves which de-
fine Poincaré–Bendixson regions and thus, to prove the existence of limit cycles
that have been numerically detected. We remark that our method also locates, as
precisely as wanted, the whole limit cycle in the phase plane.

Consider a smooth and non-empty curve C in R2. Let C = {z(s) = (x(s), y(s)) :
s ∈ I} be a class C1 parametrization of C, where I is a real interval. It is said that
C is regular if z′(s) 6= (0, 0) for all s ∈ I. Given z = (x, y) we set z⊥ = (y,−x)
and (x1, y1) · (x2, y2) = x1x2 + y1y2. A contact point with the flow given by (1.1)
is a point z(s) such that the tangent vector to C at this point, z′(s) is parallel to
X(z(s)).

As usual, we will say that a curve C is transversal with respect to the flow given
by (1.1) if the scalar product

X(z(s)) · (z′(s))⊥ = P (z(s)) y′(s)−Q (z(s))x′(s)

does not change sign and vanishes only on finitely many contact points. When the
above scalar product does not vanish we will say that the curve is strictly transversal.
Notice that intuitively, these definitions mean that the flow of system (1.1) “crosses
C in the same direction” on all its points.

A C1 closed plane curve C is a regular parameterized curve z : [a, b] −→ R2 such
that z and its derivative coincide at a and b. The curve is said to be simple if it has
no self-intersections, that is if s1, s2 ∈ [a, b) and s1 6= s2, then z(s1) 6= z(s2). For
further information about these classical concepts, see for instance [3].

A transversal section of system (1.1) is an arc of a curve without contact points.
Given a limit cycle Γ there always exist a transversal section Σ which can be pa-
rameterized by r ∈ (−ρ, ρ) with ρ > 0 and r = 0 corresponding to a common point
between Γ and Σ. Given r ∈ (−ρ, ρ), we consider the flow of system (1.1) with
initial point the one corresponding to r and we follow this flow for positive values
of t. It can be shown, see for instance [15], that for ρ small enough, the flow cuts
Σ again at some point corresponding to the parameter P(r). The map r −→ P(r)
is called the Poincaré map associated to the limit cycle Γ of system (1.1). It is
clear that P(0) = 0. If P ′(0) 6= 1, the limit cycle Γ is said to be hyperbolic. If the
expansion of P(r) around r = 0 is of the form P(r) = r + aµr

µ + O(rµ+1) with
aµ 6= 0 and µ ≥ 2, we say that Γ is a multiple limit cycle of multiplicity µ. A
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classical result, see for instance [15], states that if Γ = {γ(t) : t ∈ [0, T )}, where γ(t)
is the parametrization of the limit cycle in the time variable t of system (1.1) and
T > 0 is the period of Γ, that is, the lowest positive value for which γ(0) = γ(T ),
and γ(0) = Γ ∩ Σ, then

P ′(0) = exp

{∫ T

0

divX (γ(t)) dt

}
,

where

divX(x, y) =
∂P

∂x
(x, y) +

∂Q

∂y
(x, y)

is the divergence of X. Hence

k :=

∫ T

0

divX (γ(t)) dt 6= 0

is the condition for a limit cycle Γ to be hyperbolic. It is clear that if k > 0 (resp.
k < 0), then Γ is an unstable (resp. stable) limit cycle. If Γ is a multiple limit cycle
of multiplicity µ and µ is odd, then Γ is unstable if aµ > 0 and stable if aµ < 0. If
µ is even, then the limit cycle Γ is said to be semi-stable. For the definitions and
related results, see for instance [5, 15,23].

The Poincaré–Bendixson theorem, which can be found for instance in [5, Sec.
1.7] or in [15, Sec. 3.7], has as a corollary the following result which motivates the
definition of Poincaré–Bendixson region. See also Theorem 4.7 of [25, Chap. 1].

Theorem 1.1 (Poincaré-Bendixson annular Criterion). Suppose that R is a finite
region of the plane R2 lying between two C1 simple disjoint closed curves C1 and
C2. If

(i) the curves C1 and C2 are transversal for system (1.1) and the flow crosses
them towards the interior of R, and

(ii) R contains no critical points.

Then, system (1.1) has an odd number of limit cycles (counted with multiplicity)
lying inside R.

In such a case, we say that R is a Poincaré–Bendixson annular region for sys-
tem (1.1).

As we have already stated our aim is to find transversal curves which define
Poincaré–Bendixson annular regions and thus, to prove the existence of limit cycles,
as well as to locate them. In the paper [7] we dealt with the same problem and
we described a way to provide transversal conics which give rise to a Poincaré–
Bendixson annular region. In this previous paper we treated several examples for
which we numerically knew the existence of a limit cycle, but we did not use this
information. Besides, we could not ensure the existence of the transversal conics.
In the present work we give an answer to the following question: if one numerically
knows the existence of a hyperbolic limit cycle, can one analytically prove the
existence of such limit cycle? In section 3 we describe a method which answers this
question in an affirmative way.

The following theorem is the main result of this paper and it gives the theoretical
basis of the method described in section 3. We prove:
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Theorem 1.2. Let Γ = {(γ(t) : t ∈ [0, T ]} be a T -periodic hyperbolic limit cycle
of (1.1), parameterized by the time t. Define

z̃ε(t) = γ(t) + εũ(t)(γ′(t))⊥,

where

ũ(t) =
1

||γ′(t)||2
exp

{∫ t

0

divX (γ(s)) ds− κ t
}

(1.2)

and κ = k
T = 1

T

∫ T
0

divX(γ(t)) dt. Then, the curve {z̃ε(t) : t ∈ [0, T ]} is T -periodic
and, for |ε| > 0 small enough, it is strictly transversal to the flow associated to
system (1.1).

The proof of this result is given in section 2. Note that in its statement ũ(t) > 0
for all t and κ 6= 0 because Γ is hyperbolic.

Notice that as a consequence of the above result, the curve z̃ε(t) is a transversal
oval close to the limit cycle Γ for |ε| > 0 small enough, which is inside or outside it
depending on the sign of ε.

The effective method for obtaining explicit Poincaré–Bendixson annular regions
consists on following steps:

• Step 1: Find numerically the limit cycle.

• Step 2: Fix ε and use step 1 and Theorem 1.2 to find a numerical transversal
curve.

• Step 3: Check numerically if the proposed curve is transversal. If yes, con-
tinue; if not, choose a smaller |ε|, with the same sign, and return to step
2.

• Step 4: Fix m ∈ N and approach, by interpolation, the curve given in step 2
by a couple of trigonometric polynomials of degree m.

• Step 5: Convert the above trigonometric polynomials to trigonometric poly-
nomials with rational coefficients, close enough to the original ones.

• Step 6: Check analytically, with algebraic tools, if the curve given in step 5
is transversal. If yes, one of the boundaries of a Poincaré–Bendixson annular
region is found and we have to start again the algorithm, with ε of different
sign, to find the other boundary. If not, we have to choose a bigger m and
return to step 4.

As an illustration of the effectiveness of our approach we apply it to locate the
limit cycles in two celebrated planar differential systems, the van der Pol oscillator
and the Brusselator system, see sections 4.1 and 4.2, respectively. As we will see,
the van der Pol limit cycle is “easier” to be treated than the one of the Brusselator
system. In section 4.3 we give an explanation for the different level of difficulty
for studying both limit cycles. We prove that the different level of difficulty is
hidden in the sizes of the respective Fourier coefficients of the two limit cycles, see
Theorem 4.1. This theorem also shows that our approach for detecting strictly
transversal closed curves always works in finitely many steps.

Finally, to show the applicability of the method to detect bifurcation values, we
use it to find a sharp interval for the bifurcation value for a saddle-node bifurcation
of limit cycles for the Rychkov system. Recall that a saddle-node bifurcation of
limit cycles occurs when a stable limit cycle and an unstable limit cycle coalesce
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and become a double semi-stable limit cycle. A saddle-node bifurcation of limit
cycles corresponds to an elementary catastrophe of fold type.

In 1975 Rychkov( [16]) proved that the system

ẋ = y −
(
x5 − µx3 + δx

)
, ẏ = −x,

with δ, µ ∈ R, has at most 2 limit cycles. Moreover, it is known that it has 2 limit
cycles if and only if δ > 0 and 0 < δ < ∆(µ), for some unknown function ∆. For
the value δ = ∆(µ) the system has a double limit cycle and, varying δ, it presents a
saddle-node bifurcation of limit cycles. This system is also studied by Alsholm( [1])
and Odani( [13]). In particular Odani proved that ∆(µ) > µ2/5.

We believe that it is an interesting challenge to develop methods for finding
sharp estimations of ∆(µ). Here we will fix our attention on δ∗ := ∆(1). Notice
that Odani’s result implies that δ∗ > 1/5 = 0.2. We prove:

Theorem 1.3. Let δ = δ∗ be the value for which the Rychkov system

ẋ = y −
(
x5 − x3 + δx

)
, ẏ = −x (1.3)

has a semi-stable limit cycle. Then 0.224<δ∗< 0.2249654.

The lower bound for δ∗ is proved by using the tools introduced in this work.
The upper bound is proved by constructing a polynomial function in (x, y) of very
high degree such that its total derivative with respect to the vector field does not
change sign. This method is proposed and already developed for general classical
Liénard systems by Cherkas( [2]) and also by Giacomini-Neukirch ( [8, 9]).

2. Proof of Theorem 1.2 and a corollary

Proof. [Proof of Theorem 1.2] To prove that the curve z̃ε(t) is T -periodic simply
notice that γ(t) is T -periodic and that the function ũ(t) is T -periodic as well, due
to its definition (1.2), because for any real integrable T -periodic function h, the new
function

H(t) =

∫ t

0

h(s) ds− t

T

∫ T

0

h(s) ds

is also T -periodic.
Now, we show that the curve z̃ε(t), for |ε| > 0 small enough, is strictly transversal

to system (1.1). This follows once we prove that

X(z̃ε(t)) · (z̃′ε(t))⊥ = κE(t) ε+O(ε2), (2.1)

where we have introduced, to simplify notation,

E(t) := exp

{∫ t

0

divX (γ(s)) ds− κ t
}
> 0.

Let us prove (2.1). We drop the dependence on t to simplify notation. Since
z̃ε = γ + εũγ′⊥, we have that z̃⊥ε = γ⊥ − εũγ′. Then

X(z̃ε) = X(γ + εũγ′⊥) = X(γ) + εũDX(γ)γ′⊥ +O(ε2)

= γ′ + εũDX(γ)γ′⊥ +O(ε2),

z̃′⊥ε = γ′⊥ − εũ′γ′ − εũγ′′.
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Hence X(z̃ε) · z̃′⊥ε = γ′ · γ′⊥ + τε+O(ε2) = τε+O(ε2), where

τ = −ũ′γ′ · γ′ − ũγ′ · γ′′ + ũDX(γ)γ′⊥ · γ′⊥.

To simplify τ , note that

E ′ = (divX (γ)− κ) E , ũ =
E
||γ′||2

=
E

γ′ · γ′
,

ũ′ =

(
divX (γ)− κ− 2

γ′ · γ′′

γ′ · γ′

)
ũ.

Therefore,

τ =
((
κ− divX (γ)

)
γ′ · γ′ + 2γ′ · γ′′ − γ′ · γ′′ +DX(γ)γ′⊥ · γ′⊥

)
ũ.

Using that γ′ = X(γ) we have that γ′′ = DX(γ)γ′. Thus,

τ =
((
κ− divX (γ)

)
γ′ · γ′ +DX(γ)γ′ · γ′ +DX(γ)γ′⊥ · γ′⊥

)
ũ.

Finally, we use the following simple and nice formula(
Av
)
· v +

(
Av⊥) · v⊥ = trace(A) v · v,

where A is a 2× 2 matrix and v is a vector. Hence,

τ =
((
κ− divX (γ)

)
γ′ · γ′ + divX(γ)γ′ · γ′

)
ũ = κ ũγ′ · γ′ = κ E ,

as we wanted to prove.

In fact, in the above proof, to show the transversality it is not used the specific
value of κ. We only have used that it is a nonzero constant. Hence, the following
result holds:

Corollary 2.1. Given an orbit {γ(t) : t ∈ (0, t1)} of system (1), parameterized by
the time t, and a nonzero constant K, then for |ε| > 0 small enough, the curve

ẑK,ε(t) = γ(t) + εûK(t)(γ′(t))⊥,

where

ûK(t) =
1

||γ′(t)||2
exp

{∫ s

0

divX (γ(s)) ds−Kt,
}

is strictly transversal to the flow given by system (1.1).

The proof goes as in the proof of Theorem 1.2, showing that

X(ûK,ε(t)) · (û′K,ε(t))⊥ = KEK(t)ε+O(ε2),

where

EK(t) := exp

{∫ t

0

divX (γ(s)) ds−Kt
}
> 0.

Hence, for |ε| > 0 small enough, the sign of K ε determines how the flow of system
(1.1) crosses the piece of curve ẑK,ε.

This corollary can be useful to construct curves without contact to a piece Γ
of solution of (1.1), not closed, which are “parallel” to it and such the flow crosses
them either towards Γ or in the opposite direction, as desired.
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3. Description of the method

3.1. First step: the “numerical” limit cycle

Assume that system (1.1) has a hyperbolic limit cycle Γ. To simplify the notation,
we also assume that the segment Σ := {(x0, 0) : α < x0 < β} is a transversal section,
0 ≤ α < β. Given a point (x0, 0) ∈ Σ, we can numerically compute the solution
ϕ(t;x0) with initial condition ϕ(0;x0) = (x0, 0). We denote the scalar components
of the function ϕ = (ϕ1, ϕ2).

We can also numerically compute the value T (x0) > 0 for which

ϕ(T (x0);x0) ∈ Σ

and T (x0) is the lowest one with this property.
We look for a zero of the displacement map

P(x0)− x0 = ϕ1(T (x0);x0)− x0,

and we can find the zero x∗0 of this map with as much precision as the computer al-
lows. Thus, we have numerically computed the limit cycle {ϕ(t;x∗0) : t ∈ [0, T (x∗0)]}
and its period T (x∗0).

From now on, even though we do not have analytic but numerical expressions,
we denote the limit cycle by γ(t) and its period by T .

3.2. Second step: the numerical transversal curve

We can numerically compute

κ =
1

T

∫ T

0

divX (γ(t)) dt

and a tabulation of the function ũ(t) given in (1.2). As we will see, we even do not
need to care about the method used to get this approximation (for instance it can
be spline interpolation) because from a point on, our method starts again and only
does analytic computations.

Next, we fix a value of ε and we construct

z̃ε(t) = γ(t) + εũ(t)γ′(t)⊥.

We numerically check whether the above curve is transversal to system (1.1). If
not, we take a smaller value of |ε|.

We take an odd natural number n and, from these computations, we get a list
of n points of the curve z̃ε(t). For instance these points are the ones corresponding
to times t = i/T, i = 0, 1, . . . n− 1.

3.3. Third step: a first explicit transversal curve

From the previous step we have a list of n points of the curve z̃ε(t). Since we have
chosen n odd, we define m = (n− 1)/2. We consider the expressions

w̃
(m)
1 (θ) = c̃0,0 +

m∑
i=1

c̃i,0 cos(iθ) + c̃0,i sin(iθ),

w̃
(m)
2 (θ) = d̃0,0 +

m∑
i=1

d̃i,0 cos(iθ) + d̃0,i sin(iθ),

(3.1)
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with undefined coefficients c̃i,j , d̃i,j . We have 2(2m+ 1) unknowns.

We impose that the curve w̃(m)(θ) = (w̃
(m)
1 (θ), w̃

(m)
2 (θ)) passes through the list

of n points when θ = 2πi/n for i = 0, 1, 2, . . . , n− 1. We also have 2n = 2(2m+ 1)
conditions.

We obtain a curve
{
w̃(m)(θ) : θ ∈ [0, 2π]

}
, which approximates the numerical

transversal curve {z̃ε(t) : t ∈ [0, T ]} .

3.4. Fourth step: a curve with rational coefficients

We take rational approximations of the coefficients in the expressions of w̃(m)(θ).
These rational approximations are taken with a certain precision. In case this
precision is not sharp enough, it can be sharpened after the fifth step. We obtain a
new closed curve

{
w(m)(θ) : θ ∈ [0, 2π]

}
, whose coefficients are rational. That is,

w
(m)
1 (θ) = c0,0 +

m∑
i=1

ci,0 cos(iθ) + c0,i sin(iθ),

w
(m)
2 (θ) = d0,0 +

m∑
i=1

di,0 cos(iθ) + d0,i sin(iθ),

(3.2)

where ci,j and di,j are rational numbers which are approximations of the corre-

sponding c̃i,j and d̃i,j .

3.5. Fifth step: a transversal curve

We have constructed a closed curve {w(m)(θ) : θ ∈ [0, 2π]}, whose coefficients are
rational. We know that this curve is transversal to system (1.1) if

f(θ) = X(w(m)(θ)) · (w(m))′(θ)⊥

does not change sign for all θ ∈ [0, 2π]. To prove so, we expand f(θ) in powers of
cos θ, sin θ and we change cos θ by u and sin θ by v. Then we take the resultant
of this expression with u2 + v2 − 1 with respect to v, see for instance [19]. If this
resultant, R(u), which is a polynomial in u, has no real roots for u ∈ [−1, 1] we
know that the first polynomial has no common real solutions with u2 + v2 = 1 and
as a consequence f(θ) does not vanish. To prove that R(u) has no real roots in
[−1, 1] one can compute for instance the Sturm sequence of R and apply the Sturm
theorem, see for instance [17].

Recall that we have taken the coefficients of w(θ) rational. We remark that if
all the coefficients of the vector field X(x, y) which define the system (1.1) are also
rational, the computations needed to ensure that f(θ) does not change sign are
much simpler.

If the obtained curve is not transversal, we take the rational approximations of
the fourth step with a higher precision. Another option is to repeat from the third
step in order to obtain a list of n = 2m + 1 points of the curve w̃(m)(t) with a
higher n.

3.6. Sixth step: a Poincaré–Bendixson annular region

We repeat the above five steps process with an ε of different sign in order to obtain
an inner transversal curve and an outer transversal curve to the limit cycle. In this
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way, we have a Poincaré–Bendixson annular region which analytically shows the
existence of at least one limit cycle in its interior. We can take smaller values of ε
which will make this region narrower. Thus, we locate the limit cycle.

4. Examples

We present a couple of examples for which a Poincaré–Bendixson region can be
constructed by using the method described above.

4.1. Example 1: the van der Pol system

We start with the celebrated van der Pol system

ẋ = y − ε
(
x3

3
− x
)
, ẏ = −x, (4.1)

with ε > 0.

The origin is the only finite critical point of the system and it is a repulsive point
(a focus when 0 < ε < 2 and a node when ε ≥ 2). It is known, see for instance [15],
that system (4.1) has a unique stable and hyperbolic limit cycle for all ε > 0 which
bifurcates from the circle of radius 2 when ε = 0 and which disappears into a slow-
fast periodic limit set when ε → +∞. The semi-axis Σ := {(x0, 0) : x0 > 0} is a
transversal section for the limit cycle.

-2 -1 1 2

-2

-1

1

2

Figure 1. The transversal curves are represented in blue and the (numerical) limit cycle in dashed
green, for the van der Pol system (4.1) with ε = 1.

We consider the van der Pol system with ε = 1. The limit cycle crosses the
transversal section Σ at x∗0 ∼ 1.91928 and it has period T ∼ 6.6632866. We have
numerically computed the limit cycle and from this approximation we have obtained
the described values of x∗0 and T .

By our method we obtain an inner transversal curve and an outer transversal
curve win(θ) and wex(θ) with θ ∈ [0, 2π], which provide a Poincaré–Bendixson
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annular region. The inner transversal curve cuts Σ at ∼ 1.89331 and the outer
transversal curve at ∼ 1.94543, see Figure 1.

The inner transversal curve is obtained with ε = 0.05 and m = 12. By the
numerical computations, we obtain the following list of n = 2m+ 1 = 25 points:

{
(1.89451, 0.0056435), (1.76278,−0.488101), (1.59066,−0.939363),

(1.38198,−1.33813), (1.12999,−1.67325), (0.819552,−1.92987),

(0.424859,−2.08912), (−0.093381,−2.12507), (−0.747354,−2.00013),

(−1.39679,−1.69586), (−1.80051,−1.27605), (−1.9537,−0.788939),

(−1.93903,−0.264387), (−1.83453, 0.245845), (−1.68122, 0.719683),

(−1.49111, 1.14594), (−1.26215, 1.51447), (−0.98337, 1.81246),

(−0.634949, 2.02302), (−0.183705, 2.12466), (0.40691, 2.08508),

(1.08983, 1.86873), (1.63579, 1.49426), (1.90318, 1.04111),

(1.96187, 0.527263)
}
.

These points are represented in Figure 2. Applying our method, we find a curve
of the form (3.1) with m = 12, which passes through these points, see Figure 2.

-2 -1 1 2

-2

-1

1

2

Figure 2. Points of the transversal curve to the limit cycle and the approximated transversal curve to
the limit cycle of the van der Pol equation with ε = 1, numerically computed.

For an a priori chosen precision we replace the coefficients in the above curve by
rational numbers. In this particular case we obtain:

w1,in(θ) =
1

213892
+

18566

9395
cos(θ) +

cos(2θ)

117817
− 1973

35647
cos(3θ)

− cos(4θ)

84836
− 337

9801
cos(5θ)− cos(6θ)

19746
+

53

5756
cos(7θ)
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− cos(8θ)

420042
− cos(9θ)

4738
+

3 cos(10θ)

11954
− cos(11θ)

776
+

cos(12θ)

5488

+
1097

13625
sin(θ)− sin(2θ)

103485
− 2003

9487
sin(3θ)− sin(4θ)

46332

+
1317

54185
sin(5θ) +

sin(6θ)

85313
+

103

24125
sin(7θ) +

sin(8θ)

8809

− 29

8781
sin(9θ) +

sin(10θ)

18036
+

3 sin(11θ)

7760
− 7 sin(12θ)

12512
,

w2,in(θ) =− 1

287689
+

1207 cos(θ)

18761
+

cos(2θ)

180371
− 721 cos(3θ)

11644

+
cos(4θ)

46468
+

116 cos(5θ)

18697
− cos(6θ)

85239
− 27 cos(7θ)

11035

− cos(8θ)

9627
− 13 cos(9θ)

9450
− cos(10θ)

19827
+

7 cos(11θ)

12142

+
cos(12θ)

2425
− 22778 sin(θ)

10867
+

sin(2θ)

106711
+

295 sin(3θ)

14827

− sin(4θ)

98567
+

35 sin(5θ)

25042
− sin(6θ)

20630
− 21 sin(7θ)

7234
+

sin(8θ)

3180308

+
21 sin(9θ)

14432
+

2 sin(10θ)

9397
+

7 sin(11θ)

9435
+

sin(12θ)

5087
.

We know that the curve is transversal to the system if the trigonometric poly-
nomial

f(θ) := X(win(θ)) · w′in(θ)⊥

does not change sign for all θ ∈ [0, 2π]. Since the polynomial P (x, y) in the system
is of degree 3 and the components of win(θ) are of degree 12, we have that the
trigonometric polynomial f(θ) is of degree 48. As we explained in the description
of the method, we expand f(θ) in powers of cos θ, sin θ and we change cos θ by u
and sin θ by v, in order to get a polynomial f̃(u, v) which is of degree 48. Then we
take the resultant of f̃(u, v) with u2 + v2 − 1 with respect to v. This resultant is
a polynomial in u of degree 96. Finally we prove that this polynomial has no real
roots for u ∈ [−1, 1] by computing its Sturm’s sequence.

To obtain the outer transversal curve, we choose ε = −0.05 and m = 12 and
we repeat the process. See Figure 1 for a representation of the inner and the outer
transversal curves together with the limit cycle.

4.2. Example 2: the Brusselator system

We consider the system

ẋ = a− (b+ 1)x+ x2y, ẏ = bx− x2y, (4.2)

with a, b > 0. This system has a unique singular point at (a, b/a). The semi-axis
Σ := {(x0, b/a) : x0 > a} is transversal to the flow. If we take a = 1 and b = 3, the
system exhibits a hyperbolic stable limit cycle which cuts Σ at x∗0 ∼ 2.30354344
and has period T ∼ 7.15691986. We have numerically computed the limit cycle
and the values of x∗0 and T have been obtained from this approximation. By our
method we obtain an inner transversal curve and an outer transversal curve, win(θ)
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and wex(θ) with θ ∈ [0, 2π], which provide a Poincaré–Bendixson annular region.
The inner transversal curve cuts Σ at ∼ 2.2981 and the outer transversal curve at
∼ 2.3091, see Figure 3.

1.0 1.5 2.0 2.5 3.0 3.5

2

3

4

Figure 3. The transversal curves are represented in blue and the (numerical) limit cycle in dashed green
for the Brusselator system with a = 1, b = 3. The three curves are almost indistinguishable.

The inner curve is obtained with ε = 0.05 and the outer curve is obtained with
ε = −0.05, and both of them with m = 140. We have not been able to find a
transversal curve with a lower value of m.

We also have considered system (4.2) with a = 1 and when b decreases. In this
case the limit cycle shrinks until arriving to a weak focus point when b = 2 (Hopf
bifurcation). We have studied the number of points (2m+ 1) needed to construct a
transversal curve with our method giving an approximation of the limit cycle with
similar accuracy. When b = 2.5 with ε = 0.02 we need to consider m = 55 and
when b = 2.2 with ε = 0.007 we need m = 30.

4.3. Comparison between the van der Pol and the Brusselator
limit cycles

Recall that by using our approach we find closed transversal curves {w(m)(θ) : θ ∈
[0, 2π]} parameterized by the angle θ given by trigonometric polynomials of degree
m with rational coefficients, see (3.1). In this section we convert these curves into
T -periodic ones simply by considering

W (m)(t) = w(m)

(
2π

T
t

)
. (4.3)

As we have seen, in the van der Pol system with ε = 1, which is

ẋ = y −
(
x3/3− x

)
, ẏ = −x, (4.4)

we can find a transversal curve with ε = 0.05 and m = 12. On the other hand, for
the Brusselator system with a = 1 and b = 3, which is

ẋ = 1− 4x+ x2y, ẏ = 3x− x2y, (4.5)
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we can find a transversal curve taking ε = 0.05 only with m = 140 or higher. The
aim of this section is to understand why the number of points to be taken, that is
the value of m, is so different.

Before stating our main result we need to introduce some notations. If f is a
T -periodic continuous function,

‖f‖2 =

√
1

T

∫ T

0

f(s)2ds and ‖f‖∞ = max{|f(s)| : s ∈ [0, T ]}

denote the L2 and L∞ norms, respectively. Notice that ‖f‖2 ≤ ‖f‖∞. When f is
also a class C1 function, its C1-norm is

||f ||C1 = ||f ||∞ + ||f ′||∞.

Similarly, for any of the three norms, when we consider a T -periodic vector function
h(t) = (f(t), g(t)), we define ||h|| = ||f ||+ ||g||.

Finally, we denote by Fm(f) the Fourier polynomial of degree m associated to
f , that is,

Fm(f) =
a0

2
+

m∑
k=1

ak cos

(
2πk

T
t

)
+ bk sin

(
2πk

T
t

)
, (4.6)

where the constants ak, bk, k = 0, 1, 2, . . . are

ak =
2

T

∫ T

0

f(t) cos

(
2πk

T
t

)
dt, bk =

2

T

∫ T

0

f(t) sin

(
2πk

T
t

)
dt.

Similarly Fm(h) = (Fm(f),Fm(g)).

We collect in the next proposition some well known results of Fourier theory
adapted to our interests, see for instance [11, 20]. Some of the statements hold
without our strong hypotheses on f.

Proposition 4.1. Let f be a T -periodic C1 function. The following holds:

(i) Let p 6= Fm(f) be any trigonometric polynomial of degree m (that is of the
form (4.6) with arbitrary real coefficients). Then

||f −Fm(f)||2 < ||f − p||2.

(ii) limm→∞ ||f −Fm(f)||C1 = 0.

(iii) Plancherel’s theorem:

||f ||22 =
a2

0

4
+

1

2

∞∑
k=1

(
a2
k + b2k

)
.

(iv) A consequence of Plancherel’s theorem:

||f −Fm(f)||22 =
1

2

∞∑
k>m

(
a2
k + b2k

)
≥ 1

2

(
a2
m+1 + b2m+1

)
.



1562 A. Gasull, H. Giacomini & M. Grau

Consider the curve z̃ε(t) given in Theorem 1.2, which is strictly transversal to
the flow (1.1). The next result shows that there always exists a trigonometric curve
of the form (3.2) of degree m, high enough, and with coefficients in Q, which is
also strictly transversal to the flow (1.1). Also we prove that if the Fourier series
of a limit cycle γ has a coefficient with a “high” value, then until its corresponding
harmonic has been passed (that is, until we take m higher than the index of this
harmonic) one cannot ensure that the trigonometric curve W (m)(t) constructed in
section 3 is near enough to the curve z̃ε(t). See the definition of the curve W (m)(t)
in (4.3).

Theorem 4.1. (i) Let γ(t) = (γ1(t), γ2(t)) be a T -periodic limit cycle of system
(1.1). Let |ε| > 0 be small enough, such that the T -periodic closed curve given
in Theorem 1.1, z̃ε(t) associated to γ(t), is strictly transversal to the flow given
by (1.1). Then if m = m(ε) is high enough, there is a T -periodic trigonometric
curve of degree m and rational coefficients which is also strictly transversal to the
flow given by (1.1).

(ii) Taking |ε| smaller, if necessary, it holds that

||z̃ε −W (m)||C1 >
1√
2
||γj −Fm(γj)||2 ≥

1

2

√
a2
m+1 + b2m+1,

where j is either 1 or 2 and am+1 and bm+1 are the coefficients of the m + 1
harmonics of the Fourier series of γj(t).

Proof. (i) It is clear that if {z(s) : s ∈ [0, T ]} and {z̄(s) : s ∈ [0, T ]}} are two
T -periodic C1 closed curves, one of them is strictly transversal to the flow (1.1)
and ||z − z̄||C1 is small enough, then the other curve is strictly transversal as well.
By Proposition 4.1 (ii) it holds that for m high enough there exists a T -periodic
trigonometric polynomial curve W̃ (t), of degree m with real coefficients and such
that ||z̃ε − W̃ ||C1 is as small as desired. Taking rational approximations of its
coefficients with enough accuracy we get a new curve W (t) that proves item (i).

(ii) Fix for instance j = 1. We write W (m) = (W
(m)
1 ,W

(m)
2 ) where W

(m)
1 (t) =

w
(m)
1

(
2π
T t
)
, see (4.3). Then

||z̃ε −W (m)||C1 > ||x̃ε −W
(m)
1 ||C1 > ||x̃ε −W

(m)
1 ||∞

≥ ||x̃ε −W (m)
1 ||2 ≥ ||x̃ε −Fm(x̃ε)||2, (4.7)

where in the last inequality we have used Proposition 4.1 (i), that states that the
Fourier polynomial is the best approximation of a function, considering the norm
L2.

Since the curves z̃ε tend uniformly to γ when ε goes to zero, we have that for
|ε| small enough

||x̃ε −Fm(x̃ε)||2 >
1√
2
||γ1 −Fm(γ1)||2.

In the previous inequality we have chosen the value 1/
√

2. We could have chosen
any positive value lower than 1. Since xε tends uniformly to γ1 when ε goes to zero,
we have that the quantity ||x̃ε −Fm(x̃ε)||2 is close to the quantity ||γ1 −Fm(γ1)||2
when ε tends to zero. For |ε| small enough, one exceeds the other by a positive
constant lower than 1. If one takes a smaller value of |ε| this constant can be
reduced.
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Then, from (4.7),

||z̃ε −W (m)||C1 >
1√
2
||γ1 −Fm(γ1)||2 ≥

1

2

√
a2
m+1 + b2m+1,

where we have used Proposition 4.1 (iv). Then the theorem follows.

4.4. Fourier coefficients of systems (4.4) and (4.5)

From Theorem 4.1 we know that for having a good enough approximation to the
curve z̃ε(t) given in Theorem 1.2 by a trigonometric polynomial curve we need to
consider m such that the coefficients of the m harmonics of the Fourier series of
γ(t) are small enough.

Table 1. Order of magnitude of the coefficients of the m harmonics of the Fourier series of the first
component of the limit cycle of the van der Pol system. When m is even all the coefficients are zero.

m 1 3 5-7 9 11− 13 15− 17 19

Coeff. 1 10−1 10−2 10−3 10−4 10−5 10−6

Table 2. Order of magnitude of the coefficients of the m harmonics of the Fourier series of the first
component of the limit cycle of the Brusselator system.

m 0− 2 3− 8 9− 16 17− 20

Coeff. 1 10−1 10−2 10−3

Therefore the number of points n = 2m+1 used to construct our curve W (m)(t)
is strongly related with the size of the Fourier coefficients of γ(t). These coefficients
can be numerically obtained before starting our process for obtaining a Poincaré
annular region for proving the existence of a periodic orbit. In Tables 1 and 2 we
show the order of magnitude of them for the first component γ1(t) of the limit
cycles γ(t) of the van der Pol (4.4) and the Brusselator (4.5) systems. The results
for the second component are essentially the same. Notice that the modulus of the
coefficients of the harmonics in the Brusselator system descend much more slowly
than in the van der Pol system, giving a clear explanation of the harder difficulty
for finding trigonometric curves without contact for the Brusselator system.

5. The Rychkov system

The aim of this section is to prove Theorem 1.3. As we have already said in the
introduction we consider the system studied by Rychkov in 1975, see [16],

ẋ = y −
(
x5 − µx3 + δx

)
, ẏ = −x, (5.1)

with δ, µ ∈ R. The semi-axis Σ :=
{

(x0, 0) ∈ R2 : x0 > 0
}

is a transversal section.
This system is also studied in [1, 9, 13]. The following features of system (5.1) can
be found in the aforementioned references. The origin is the only finite singular
point and it is a focus. Rychkov [16] proved that it has at most two limit cycles and
that for δ < 0 there exists a unique limit cycle, which is stable. The line δ = 0 is a
curve of occurrence of Hopf bifurcations. When µ > 0 there is a curve of bifurcation
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values δ = ∆(µ) of a saddle-node bifurcation of limit cycles. Odani [13] proved that
if δ > 0 and 0 < δ < µ2/5, then the system has two limit cycles. Figure 4 represents
the bifurcation diagram of the Rychkov system (5.1) in the (δ, µ)-plane.

Figure 4. Bifurcation diagram of the Rychkov system (5.1). The curve of the saddle-node bifurcation
is qualitative.

Here we fix µ = 1 and we are interested in finding sharp bounds for δ∗ = ∆(1).
Since the Rychkov system is a semi-complete family of rotated vector fields with
respect to δ, see [4, 14,15] it holds that:

• It for δ = δ̄ the system has two limit cycles then δ̄ < δ∗. Therefore, to prove
the inequality 0.224<δ∗, it suffices to prove that the Rychkov system has two
limit cycles for δ = 0.224.

• Similarly, if for δ = δ̂ the system has no limit cycle then δ∗ < δ̂. Then, to
prove the inequality δ∗ < 0.2249654, it suffices to prove that the Rychkov
system has no limit cycle for δ = 0.2249654.

Therefore, the proof of Theorem 1.3 can be reduced to the study of the above
two given values of δ. We study each case in a different subsection.

5.1. The proof that system (1.3) has two limit cycles for δ =
0.224

Although it suffices to study the case δ = 0.224, we prefer to study also the smaller
values of δ, 0.2 and 0.22 to see how the two limit cycles evolve with the parameter.
In the three cases, the origin is a strong stable focus, the smaller limit cycle is
hyperbolic and unstable and the bigger limit cycle is hyperbolic and stable.

5.1.1. The case δ = 0.2

The limit cycles cut Σ at x0 ∼ 0.632018 and x0 ∼ 0.893787. By our method we
have been able to construct three transversal curves which provide two Poincaré–
Bendixson regions. These regions allow to locate each one of the limit cycles. The
interior transversal curve cuts Σ at x0 = 0.474059, it has been obtained from the
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unstable limit cycle taking ε = 0.1 and m = 5. The transversal curve in the middle
cuts Σ at x0 = 0.711158, it has been obtained from the unstable limit cycle taking
ε = −0.05 and m = 7. The exterior transversal curve cuts Σ at x0 = 1.00597, it
has been obtained from the stable limit cycle taking ε = −0.1 and m = 5. These
curves, together with the limit cycles are represented in Figure 5.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 5. Transversal curves are represented in blue and the limit cycles in dotted red (unstable) and
dashed green (stable) for the Rychkov system with µ = 1 and δ = 0.2.

5.1.2. The case δ = 0.22

In this case the limit cycles cut Σ at x0 ∼ 0.714276 and x0 ∼ 0.830266. The interior
transversal curve cuts Σ at x0 = 0.57421, it has been obtained from the unstable
limit cycle taking ε = 0.1 and m = 7. The transversal curve in the middle cuts Σ at
x0 = 0.74227, it has been obtained from the unstable limit cycle taking ε = −0.02
and m = 7. The exterior transversal curve cuts Σ at x0 = 0.8905, it has been
obtained from the stable limit cycle taking ε = −0.05 and m = 7.

5.1.3. The case δ = 0.224

For this value of δ the limit cycles cut Σ at x0 ∼ 0.748705 and x0 ∼ 0.799588.
As in the previous case, we have been able to find three transversal curves which
analytically prove the existence of the two limit cycles. The interior transversal
curve cuts Σ at x0 = 0.615043, it has been obtained from the unstable limit cycle
taking ε = 0.1 and m = 7. The transversal curve in the middle cuts Σ at x0 =
0.75939, it has been obtained from the unstable limit cycle taking ε = −0.008 and
m = 10. The exterior transversal curve cuts Σ at x0 = 0.862111, it has been
obtained from the stable limit cycle taking ε = −0.05 and m = 7. See Figure 6.

5.2. The proof that system (1.3) has no limit cycle for δ =
0.2249654

Before proving the second part of the theorem we need some preliminary results.

The first lemma recalls a classical method for proving non-existence of periodic
orbits. We state and prove it on the plane, but notice that it works in any dimension.
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-0.5 0.5

-0.5

0.5

Figure 6. Transversal curves are represented in blue and the limit cycles in dotted red (unstable) and
dashed green (stable) for the Rychkov system with µ = 1 and δ = 0.224.

Lemma 5.1. Let U be an open subset of R2 and let B : U → R be a class C1

function such that its total derivative with respect to the flow (1.1),

Ḃ(x, y) = ∇B(x, y) ·X(x, y) =
∂B(x, y)

∂x
P (x, y) +

∂B(x, y)

∂y
Q(x, y)

does not change sign on U and vanishes on a set of zero Lebesgue measure which
is not invariant by the flow of (1.1). Then the system (1.1) has not periodic orbits
totally contained in U .

Proof. Let z(t) = (x(t), y(t)) be any solution of (1.1), contained in U for t ∈
[t1, t2], t1 < t2. Then,

0 6=
∫ t2

t1

Ḃ(z(t)) dt = B(z(t2))−B(z(t1).

Hence the orbit cannot be periodic, as we wanted to prove.
The next result is an adaptation of [2, Thm. 3] to our interests. We sketch its

proof.

Proposition 5.1 ( [2]). Given a classical polynomial Liénard system

ẋ = y − F (x), ẏ = −x (5.2)

and n ∈ N, there exists a unique polynomial Bn(x, y) =
∑n
i=0Bi(x)yi such that

Bn(0, y) = yn and its total derivative with respect to (5.2) is a polynomial that does
not depend on y.

Proof. We have that

Ḃn(x, y) =
∂Bn(x, y)

∂x

(
y − F (x)

)
− x ∂Bn(x, y)

∂y

=
( n∑
i=0

B′i(x)yi
)(
y − F (x)

)
− x

n∑
i=1

i Bi(x)yi−1

= B′n(x)yn+1 +
(
B′n−1(x)− F (x)B′n(x)

)
yn
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+

n−1∑
k=1

(
B′k−1(x)− F (x)B′k(x)− (k + 1)xBk+1(x)

)
yk

− F (x)B′0(x)− xB1(x).

We impose the conditions Bn(0) = 1, Bk(0) = 0 for k = 0, 1, . . . , n − 1. Then we
can solve step by step the trivial linear differential equations given by the vanishing
of the coefficients of yn+1, yn, . . . until y. We obtain that Bn(x) ≡ 1, Bn−1(x) ≡ 0,
Bn−2(x) = nx2/2,

Bn−3(x) = n

∫ x

0

sF (s) ds, Bn−4(x) = n

∫ x

0

sF 2(s) ds+
n(n− 2)

8
x4

and so on. Finally Ḃ(x, y) = −F (x)B′0(x)− xB1(x), as we wanted to prove.

Proof. [The proof that the Rychkov system with µ = 1 and δ = 0.2249654 has
no limit cycle] Applying Proposition 5.1 to system (1.3),

ẋ = y −
(
x5 − x3 + δx

)
, ẏ = −x,

we get that

Ḃn(x, y) = xnR4(n−1)(x, δ),

where R4(n−1) is an even polynomial in x of degree 4(n − 1). For instance, taking
n = 4 we get that

B4(x, y) =y4 + 2x2y2 +
4

105
x3
(
15x4 − 21x2 + 35δ

)
y

+
1

30
x4
(
10x8 − 24x6 + 30δx4 + 15x4 − 40δx2 + 30δ2 + 30

)
and

R12(x, δ) = − 4

105

(
105x12 − 315x10 + (315δ + 315)x8

− (630δ + 105)x6 +
(
315δ2 + 315δ + 120

)
x4

−
(
315δ2 + 126

)
x2 + 35δ

(
3δ2 + 4

) )
.

The discriminant of the above polynomial with respect to x, except for some
non-zero rational constant factor, is

δ
(
3δ2 + 4

)(
4233600000δ7 − 4953312000δ6 + 59568485760δ5

− 65416468320δ4 + 256186378380δ3 − 171344748015δ2

+ 250762344740δ − 52896972996
)2

.

By using once more the Sturm’s approach we can prove that it only has one positive
zero at δ = δ4 ≈ 0.2362516 . . . . Therefore, it is not difficult to prove that if δ ≥
0.236252 then R12(x, δ) < 0. In fact, for our interests it suffices to prove that
R12(x, 0.236252) < 0 for all x ∈ R. From this fact, for δ = 0.236252, we have
Ḃ4(x, y) ≤ 0, and it vanishes only at x = 0. Then, by Lemma 5.1 we know that for
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Table 3. Upper bounds for δ∗ for the Rychkov system (1.3) with µ = 1.

n 50 100 150 200 250 300

Bound 0.2252 0.2251 0.2250 0.2249715 0.2249676 0.2249654

this value of δ the system (1.3) has no limit cycle. As a consequence we have that
δ∗ < 0.236252.

Repeating the above procedure for different values of n (even) we improve the
upper bound for δ∗. Our results are presented in Table 3.

It is remarkable that increasing n ≤ 300 we have found that there exist values δn
such that for δ > δn it holds that R4(n−1)(x, δ) < 0 and moreover that these values
seem to decrease monotonically towards δ∗. Observe also that for the case n = 300
we must prove that the even polynomial of degree 1196, R1196(x, 0.2249654), which
has rational coefficients, has no real roots.
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