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ON THE MAXIMUM NUMBER OF PERIODIC
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METHOD∗
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Abstract In this paper, we prove smoothness of bifurcation function for a
piecewise smooth periodic equation, and then use the bifurcation function to-
gether with its smoothness to study the maximum number of periodic solutions
of the piecewise smooth periodic equation by the first order average.
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1. Introduction and main result

As we know, the average method is an important tool to study the periodic solutions
of periodic equations with a small parameter. Recently, the method has been devel-
oped from smooth differential equations to piecewise smooth differential equations,
see [5, 6]. The results obtained for piecewise smooth differential equations concern
the existence of multiple periodic solutions, which can be used to find a lower bound
for the maximum number of periodic solutions for piecewise smooth differential e-
quations. The results can then be applied to obtain a lower bound for the maximum
number of limit cycles for some piecewise smooth systems on the plane by the first
order average, see [1,3,4,7,8]. One can apply theorems obtained in [2] to study the
maximum number of limit cycles for piecewise smooth near-Hamiltonian systems
on the plane.

We note that the averaging theory obtained in [5,6] does not tell any information
on upper bound of the maximum number. Then a problem arises: can we obtain the
maximum number of periodic solutions or an upper bound of it for piecewise smooth
differential equations by the first order average? If the answer is positive, then it
can be applied to obtain an upper bound of the maximum number of limit cycles for
certain piecewise smooth systems on the plane studied in [1, 4, 7, 8]. In this paper,
we study the problem of the maximum number. We first establish the smoothness
of bifurcation function for piecewise smooth periodic differential equations. Then
based on the smoothness of the bifurcation function we obtain an upper bound of
the maximum number of periodic solutions bifurcating from a period annular under
some sufficient conditions in the scalar case. To state our main result, we first
present our assumptions in the following.
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(H1) There exist an open interval J , a positive constant T and k − 1 Cr functions
h1(x), . . . , hk−1(x) defined on J , satisfying

0 < h1(x) < · · · < hk−1(x) < T, x ∈ J, k ≥ 2, r ≥ 1.

(H2) Set h0(x) = 0 and hk(x) = T . Introduce k regions as follows

Dj = {(t, x)| hj−1(x) ≤ t < hj(x), x ∈ J}, j = 1, . . . , k.

For all j = 1, . . . , k there exist ε0 > 0, k Cr functions Fj(t, x, ε, δ) defined for
all (t, x) ∈ U(D̄j) and |ε| < ε0 and δ ∈ V with V a compact set of Rn, where
D̄j denotes the closure of the set Dj , and U(D̄j) an open set containing D̄j .

Clearly

[0, T )× J =
⋃k

j=1
Dj .

Now we introduce our differential equation of the form

dx

dt
= εF (t, x, ε, δ), t ∈ R, x ∈ J, (1.1)

where |ε| < ε0, δ ∈ V and the function F satisfies the following conditions:

(H3) F is periodic in t with period T , that is, F (t+ T, x, ε, δ) = F (t, x, ε, δ) for all
t ∈ R and x ∈ J , and satisfies

F (t, x, ε, δ) =



F1(t, x, ε, δ), (t, x) ∈ D1,

F2(t, x, ε, δ), (t, x) ∈ D2,
...

...

Fk(t, x, ε, δ), (t, x) ∈ Dk.

We can call the equation (1.1) a k-piecewise Cr smooth periodic equation. Note
that F may not be continuous on the switch lines l1, · · · , lk−1, where

lj = {(t, x)| t = hj(x), x ∈ J}, j = 0, . . . , k.

Let

f(x, δ) =

∫ T

0

F (t, x, 0, δ)dt =

k∑
j=1

∫ hj(x)

hj−1(x)

Fj(t, x, 0, δ)dt, x ∈ J. (1.2)

It is easy to see that f is a Cr function under the assumptions (H1)-(H3). The
main result of the paper can be stated as follows.

Theorem 1.1. Consider the periodic equation (1.1). Suppose it satisfies the as-
sumptions (H1), (H2) and (H3). If there exists an integer m, 1 ≤ m ≤ r, such
that the function f defined in (1.2) has at most m zeros in x ∈ J for all δ ∈ V ,
multiplicity taken into account, then for any closed interval I ⊂ J , there exists
ε1 = ε1(I) > 0, such that for 0 < |ε| < ε1, δ ∈ V the periodic equation (1.1) has at
most m T -periodic solutions with the property that the range of each of them is a
subset of I.
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The conclusion of Theorem 1.1 can be restated simply that the period annular
of the unperturbed system

dx

dt
= 0, x ∈ J

generates at most m periodic solutions by the first order average.
We present a proof to the theorem above in the next section.

2. Proof of the main result

First of all, let us define a unique solution of the equation (1.1) with the initial
condition x(0) = x0 for x0 ∈ J in a natural way.

Taking a point (0, x0) ∈ l0, consider the solution of the equation

dx

dt
= εF1(t, x, ε, δ)

satisfying x(0) = x0, denoted by x1(t, 0, x0, ε, δ). Since F1 ∈ Cr, we have x1 ∈ Cr.
Also, one can see that

x1(t, 0, x0, ε, δ) = x0 + εx̄1(t, x0, ε, δ), t ∈ [0, T ], (2.1)

where x̄1 satisfies

dx̄1

dt
= F1(t, x0 + εx̄1, ε, δ), x̄1|t=0 = 0.

This implies further x̄1 ∈ Cr, and

x̄1(t, x0, 0, δ) =

∫ t

0

F1(t, x0, 0, δ)dt. (2.2)

By (2.1), the solution x1(t, 0, x0, ε, δ) must meet the line l1 at some point
(t1, x10). Obviously, the intersection point depends on (x0, ε, δ) and it goes to
(h(x0), x0) as ε → 0. To see the smoothness of (t1, x10) on (x0, ε, δ), introduce a
function G below

G(t, x0, ε, δ) = t− h1(x1(t, 0, x0, ε, δ)).

By our assumption and (2.1), the function G satisfies

G ∈ Cr, G(h1(x0), x0, 0, δ) = 0,
∂G

∂t
|ε=0 = 1.

Hence, by the implicity function theorem there exists a unique Cr function t =
τ1(x0, ε, δ) = h1(x0) +O(ε) such that

G(τ1(x0, ε, δ), x0, ε, δ) = 0, x0 ∈ J,

or
τ1(x0, ε, δ) = h1(x1(τ1(x0, ε, δ), 0, x0, ε, δ), x0 ∈ J.

It is clear that the intersection point (t1, x10) is given by

t1 = τ1(x0, ε, δ), x10 = x1(τ1(x0, ε, δ), 0, x0, ε, δ).
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Let g1(x0, ε, δ) = x̄1(τ1, x0, 0, δ). Then g1 ∈ Cr in (x0, ε, δ), and by (2.1) and
(2.2) we can write that

x10 = x0 + εg1(x0, ε, δ), g1 ∈ Cr,

g1(x0, 0, δ) =

∫ t10

0

F1(t, x0, 0, δ)dt, t10 = h1(x0).
(2.3)

In order to continue the definition of x1, consider the solution of the equation

dx

dt
= εF2(t, x, ε, δ)

satisfying x(t1) = x10, denoted by x2(t, t1, x10, ε, δ). Similar to (2.1) and (2.2), we
have

x2(t, t1, x10, ε, δ) = x10 + εx̄2(t, t1, x10, ε, δ), t ∈ [0, T ],

where x̄2 ∈ Cr, and

x̄2(t, t1, x10, 0, δ) =

∫ t

t1

F2(t, x10, 0, δ)dt.

As before, there exists a Cr function g2(x10, ε, δ), such that

x20 = x2(t2, t1, x10, ε, δ) = x10 + εg2(x10, ε, δ), t2 = h2(x20),

and

g2(x10, ε, δ) =

∫ t2

t1

F2(t, x10, 0, δ)dt+O(ε).

It then follows from (2.3) that

x20 = x0 + ε[g1(x0, ε, δ) + g2(x10, ε, δ)] = x0 + εḡ2(x0, ε, δ), ḡ2 ∈ Cr,

ḡ2(x0, 0, δ) =

∫ t10

0

F1(t, x0, 0, δ)dt+

∫ t20

t10

F2(t, x0, 0, δ)dt =

∫ t20

0

F (t, x0, 0, δ)dt,

(2.4)
where t20 = h2(x0).

In the same way, we have by induction

xj(t, tj−1, xj−1,0, ε, δ) = xj−1,0 + εx̄j(t, tj−1, xj−1,0, ε, δ), t ∈ [0, T ], (2.5)

where x̄j are Cr functions with

x̄j(t, tj−1, xj−1,0, 0, δ) =

∫ t

tj−1

Fj(t, xj−1,0, 0, δ)dt.

And, we have also

xj0 = xj(tj , tj−1, xj−1,0, ε, δ) = xj−1,0 + εgj(xj−1,0, ε, δ), tj = hj(xj0), (2.6)

gj(xj−1,0, ε, δ) =

∫ tj

tj−1

Fj(t, xj−1,0, 0, δ)dt+O(ε), (2.7)

where all gj are Cr functions for j = 2, . . . , k. Evidently, we have tk = T .
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Similar to (2.4), one can see from (2.4)-(2.7) that

xj0 = x0 + εḡj(x0, ε, δ), ḡj ∈ Cr,

ḡj(x0, 0, δ) =

j∑
i=1

∫ ti0

ti−1,0

Fi(t, x0, 0, δ)dt =

∫ tj0

0

F (t, x0, 0, δ)dt,
(2.8)

where
t00 = 0, tj0 = hj(x0), j = 2, . . . , k.

Then for x0 ∈ J , we define the solution of equation (1.1) satisfying x(0) = x0

for t ∈ [0, T ] as

x(t, 0, x0, ε, δ) =



x1(t, 0, x0, ε, δ), t ∈ [0, t1),

x2(t, t1, x10, ε, δ), t ∈ [t1, t2),
...

...

xk(t, tk−1, xk−1,0, ε, δ), t ∈ [tk−1, T ].

(2.9)

Since (1.1) is T -periodic, we can use the same way to define x(t, 0, x0, ε, δ) for
t outside the interval [0, T ]. As in the smooth case, we can define a Poincaré map
and a bifurcation function of (1.1) by

P (x0, ε, δ) = x(T, 0, x0, ε, δ)

and
d(x0, ε, δ) = P (x0, ε, δ)− x0,

respectively. By (2.8) and (2.9), we obtain

P (x0, ε, δ) = xk(T, tk−1, xk−1,0, ε, δ)

= xk0

= x0 + εḡk(x0, ε, δ),

ḡk(x0, 0, δ) =

∫ T

0

F (t, x0, 0, δ)dt = f(x0, δ), (2.10)

and
d(x0, ε, δ) = εḡk(x0, ε, δ), ḡk ∈ Cr,

where f(x0, δ) is defined by (1.2).
For the property of the bifurcation function, we have the following from the

above deduction.

Lemma 2.1. Suppose the assumptions (H1), (H2) and (H3) are satisfied. Then

(1) For any given closed interval I ⊂ J , there exists ε∗ > 0 such that the function
ḡk(x0, ε, δ) is well defined and of Cr in (x0, ε, δ) for all x0 ∈ I, |ε| < ε∗ and
δ ∈ V .

(2) The equation (1.1) has a T -periodic solution x(t) with x(0) = x0 ∈ J for
sufficiently small ε 6= 0 if and only if the initial value x0 satisfies ḡk(x0, ε, δ) =
0.
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One can see easily that we have an analogous conclusion to the above lemma
for the general case of higher dimensional equations of the form (1.1).

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let the conclusion of the theorem be not true. Then
there exist a closed interval I∗ ⊂ J and a series (εn, δn) with εn tending to zero and
δn ∈ V such that for (ε, δ) = (εn, δn) the equation (1.1) has m+ 1 different periodic
solutions xjn(t), j = 1, . . . ,m+ 1, satisfying xjn(t) ∈ I∗. Then

ḡk(xjn(0), εn, δn) = 0, xjn(0) ∈ I∗.

For definiteness, we can assume

x1n(0) < x2n(0) < · · · < xm+1,n(0).

Note that both I∗ and V are compact. We can suppose, without loss of generality,
that as n→∞

xjn(0)→ x̄j ∈ I∗, δn → δ0 ∈ V.
Clearly, we have by (2.10)

x̄1 ≤ x̄2 ≤ · · · ≤ x̄m+1, f(x̄j , δ0) = 0, j = 1, . . . ,m+ 1.

If x̄1 < x̄2 < · · · < x̄m+1, then f(x, δ0) = 0 has m + 1 zeros on J . This is
a contradiction. If x̄1 = · · · = x̄j for some 2 ≤ j ≤ m + 1, then, using Role’s

theorem repeatedly we know that ∂ḡk
∂x (x, εn, δn) has j − 1 different zeros in x on

(x1n(0), xjn(0)). In the same way, for i = 2, . . . , j − 1, ∂iḡk
∂xi (x, εn, δn) has j − 1− i

different zeros in x on (x1n(0), xjn(0)). Note that all of the zeros have the same
limit x̄1. Therefore, we have

∂if

∂xi
(x̄1, δ0) = 0, i = 0, 1, . . . , j − 1.

This means that x̄1 is a zero of f(x, δ0) with a multiplicity at least j.
In general, we can write

{x̄1, x̄2, . . . , x̄m+1} = {x∗r1 , x
∗
r2 , . . . , x

∗
rp},

where 1 ≤ rj ≤ m+ 1, j = 1, . . . , p, r1 + r2 + · · ·+ rp = m+ 1, and

x∗r1 < x∗r2 < · · · < x∗rp .

Then as before, we can prove that for j = 1, . . . , p, x∗rj is a zero of f(x, δ0) with a
multiplicity at least rj . This implies that f(x, δ0) has at least m+ 1 zeros in all on
J , taking multiplicity into account. This contradicts to our assumption. Then the
proof is finished.

We now have two remarks in order.

Remark 2.1. The Cr smoothness of the function ḡk is essential in the proof. The
smoothness of ḡk(x0, 0, δ) = f(x0, δ) is not enough to control the number of zeros of
ḡk. For example, take g(x, ε) = x2 + εf1(x, ε). If we require f1 ∈ C2 in x, then it is
easy to see that for all small ε the function g has at most two zeros in x. However,
if we only require f1 ∈ C1 in x, then for any m, we can find a suitable f1, such that
g has more than m zeros. In fact, for any odd number n > m, we can choose a C1

function f1 such that

x2 + εf1(x, ε) = x(x1/n − ε)(x1/n − 2ε) · · · (x1/n − nε).
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Remark 2.2. By the implicity function theorem, if for some δ0 ∈ V , the function
f(x, δ0) has m simple zeros, then there exists ε0 > 0 such that for 0 < |ε| < ε0,
|δ − δ0| < ε0 the equation (1.1) has m T -periodic solutions.
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