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Abstract In this paper, we are concerned with the eigenvalue problem of a
class of p-Laplacian fractional differential equations involving integral bound-
ary conditions. New criteria are established for the existence of positive solu-
tions of the problem under some superlinear and suberlinear conditions. The
results of the existence of at least one, two and the nonexistence of positive
solutions are also obtained by using the fixed point theory. Finally, several
examples are provided to illustrate the obtained results.
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1. Introduction

Fractional differential equations appear in various fields such as physics, chemistry,
and engineering. The theory of fractional differential equations has become an
important aspect of differential equations, see [11,14,15]. Boundary value problem
(BVP) of fractional differential equations has been investigated in the past years
by many authors, see [7–10, 12, 13, 21] for example. In particular, in [7–10, 13], Jia,
Liu and Jin considered the existence of solutions for fractional differential equations
with integral boundary conditions, where the existence results were established by
means of fixed point theory and the method of upper and lower solutions. On the
other hand, some developments on the topic involving the p-Laplacian operators
and complex boundary value conditions have also been reported in recent years, see
[2,16,17,20,22]. As for the eigenvalue problems of fractional differential equations,
there are also a few results, see [1, 4–6, 18, 19, 22, 23] among others. In [22], the
existence of positive solutions for the eigenvalue problem{

−Dβ
t

(
ϕp(D

α
t x)
)
(t) = λf(t, x(t)), t ∈ (0, 1),

x(0) = 0, Dα
t x(t) = 0, x(1) =

∫ 1

0
x(s)dA(s),
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was investigated by using the method of upper and lower solutions and Schauder
fixed point theorem. Here Dβ

t and Dα
t are standard Riemann-Liouville derivatives

with 1 < α ≤ 2, 0 < β ≤ 1. A is a function of bounded variation and
∫ 1

0
x(s)dA(s)

denotes the Riemann-Stieltjes integral of x with respect to A, the p-Laplacian op-
erator ϕp is defined as ϕp(s) = |s|p−2s, p > 1, f(t, x) : (0, 1)× (0,+∞) → [0,+∞)
is continuous and may be singular at t = 0, t = 1 and x = 0.

In [6], the authors studied the existence of positive solutions for eigenvalue prob-
lem of nonlinear fractional differential equation with generalized p-Laplacian oper-
ator D

β
0+

(
φ
(
Dα

0+u(t)
))

= λf
(
u(t)

)
, t ∈ (0, 1),

u(0) = u′(0) = u′(1) = 0, φ(Dα
0+u(0)) =

(
φ
(
Dα

0+u(1)
))′

= 0,

where 2 < α ≤ 3, 1 < β ≤ 2 are real numbers, φ is a generalized p-Laplacian
operator, λ > 0 is a parameter, and f : (0,+∞) → (0,+∞) is continuous. By
using the properties of Green function and Guo-Krasnosel’skii fixed-point theorem
on cones, several existence results of at least one or two positive solutions in terms of
different eigenvalue interval were obtained. Moreover, the nonexistence of positive
solutions in term of the parameter λ was also considered there.

While in [19], the author considered the existence, multiplicity, and nonexistence
of positive solutions for the system

(Φ(u′))′ + λh(t)f(u) = 0, 0 < t < 1,

with one of the following three sets of the boundary conditions:
u(0) = u(1) = 0,

u′(0) = u(1) = 0,

u(0) = u′(1) = 0,

where u = (u1, · · ·, un), Φ(u′) = (ϕ(u′1), · · ·, ϕ(u′n)), h(t) = diag[h1(t), · · ·, hn(t)],
and f(u) = (f1(u1, · · ·, un), · · ·, fn(u1, · · ·, un)). For this n-dimensional system, the
author introduced the superlinearity and sublinearity of f(u) with respect to ϕ and
got the results by using Krasnosel’skii’s fixed point theorem on a cone.

However, as far as we know, there are few papers studying the eigenvalue
problem for the p-Laplacian fractional differential equations involving the integral
boundary condition. Inspired by the above work, in this paper, we will explore
the eigenvalue problem for the following p-Laplacian fractional differential equation
involving integral boundary conditions
−CDβ

0+

(
ϕp(

CDα
0+u)

)
(t) = λf(t, u(t)), t ∈ (0, 1),

u(0) =

∫ 1

0

g1(s)u(s)ds, u(1) =

∫ 1

0

g2(s)u(s)ds, u′′(0) =

∫ 1

0

g3(s)u(s)ds,

CDα
0+u(t) |t=0= 0,

(1.1)

where CDβ
0+ and CDα

0+ are the standard Caputo derivatives with 2 < α ≤ 3, 0 <
β ≤ 1. The p-Laplacian operator ϕp is defined as ϕp(s) = |s|p−2s, p > 1, f(t, u) :
[0, 1] × [0,+∞) → (0,+∞) is continuous, gi(s) ∈ C[0, 1](i = 1, 2, 3), J = [0, 1],
λ > 0 is a parameter.
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By applying the properties of Green function and Guo-Krasnosel’skii fixed-point
theorem on cones, we shall establish several new existence and nonexistence results
for positive solutions in terms of different value of the parameter λ. Moreover, the
existence of two positive solutions on the BVP (1.1) will be considered here as well.

Note that the order of the equation (1.1) is higher than that in [22], and also,
compared to [5, 6, 19], our equation is inhomogeneous and there are some integral
boundary value conditions. Hence the BVP (1.1) is more general than those consid-
ered in papers [5, 6, 19, 22]. As a result, the problem studied here is more complex
and the computation becomes more difficult. Clearly, the obtained results in this
paper extends directly the existing results appearing in Ref. [6, 19,22].

This paper is organized as follows. In Section 2, we shall introduce some defini-
tions of fractional integral and differential operators, we will also establish in this
section some basic lemmas for the later discussion. Then, in Section 3, we inves-
tigate the existence of positive solutions for BVP (1.1). In Section 4, we explore
the nonexistence of positive solutions for BVP (1.1) and obtain two nonexistence
theorems. Finally, as applications, some examples are presented in Section 5 to
illustrate the main results.

2. Preliminaries

In this section, we first collect some preliminaries on fractional order integral, deriva-
tive, the Green functions, and completely continuous operators. We then prove
several lemmas here which will be utilized in our later discussion.

We start by the definitions of fractional order integrals.

Definition 2.1 (See [15]). Let α > 0. For a function u : (0,+∞) → R, the
Riemann-Liouville fractional integral operator of order α of u is defined by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided the integral exists.

Definition 2.2 (See [15]). The Caputo derivative of order α for a function u :
(0,+∞)→ R is given by

CDα
0+u(t) =

1

Γ(n− α)

∫ t

0

u(n)(s)

(t− s)α+1−n ds,

provided the right side is pointwise defined on (0, +∞), where n = [α] + 1 and
n− 1 < α < n.

It was shown in [15] that

Lemma 2.1. For α > 0 and u ∈ ACn(J). Then

IαC0+ Dα
0+u(t) = u(t) + c0 + c1t+ · · ·+ cn−1t

n−1, ck ∈ R, k = 0, 1, 2, · · · , n− 1,

where n is the smallest integer greater than or equal to α.

In order to get the expressions of solutions of the BVP (1.1), we need to prove
the following lemma on the Green function of the linear BVP associated to (1.1).
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Lemma 2.2. For any y ∈ C[0, 1], the boundary value problem
CDα

0+u(t) + y(t) = 0, t ∈ (0, 1),

u(0) =

∫ 1

0

g1(s)u(s)ds, u(1) =

∫ 1

0

g2(s)u(s)ds, u′′(0) =

∫ 1

0

g3(s)u(s)ds
(2.1)

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds+

∫ 1

0

Φ(t, s)u(s)ds,

where

G(t, s) =
1

Γ(α)

{
t(1− s)α−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

t(1− s)α−1, 0 ≤ t ≤ s ≤ 1,
(2.2)

and

Φ(t, s) = (1− t)g1(s) + tg2(s) +
1

2
(t2 − t)g3(s). (2.3)

Proof. From Lemma 2.1, we have

u(t) = −Iα0+y(t) + c0 + c1t+ c2t
2,

that is,

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+ c0 + c1t+ c2t
2.

Using the boundary value conditions in (2.1), we can determine that

c0 =

∫ 1

0

g1(s)u(s)ds,

c1 =
1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds+ u(1)− u(0)− c2

=
1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds+

∫ 1

0

g2(s)u(s)ds (2.4)

−
∫ 1

0

g1(s)u(s)ds− 1

2

∫ 1

0

g3(s)u(s)ds,

and

c2 =
1

2

∫ 1

0

g3(s)u(s)ds.

Hence,

u(t) =− 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ 1

0

t(1− s)α−1y(s)ds

+

∫ 1

0

(1− t)g1(s)u(s)ds+

∫ 1

0

tg2(s)u(s)ds+
1

2

∫ 1

0

(t2 − t)g3(s)u(s)ds

=
1

Γ(α)

∫ t

0

(
t(1− s)α−1 − (t− s)α−1

)
y(s)ds+

1

Γ(α)

∫ 1

t

t(1− s)α−1y(s)ds

+

∫ 1

0

(1− t)g1(s)u(s)ds+

∫ 1

0

tg2(s)u(s)ds+
1

2

∫ 1

0

(t2 − t)g3(s)u(s)ds
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=

∫ 1

0

G(t, s)y(s)ds+

∫ 1

0

Φ(t, s)u(s)ds. (2.5)

Throughout this paper, we always assume the following hypothesis holds:
(H0) 0 < m = min{Φ(t, s) : (t, s) ∈ J × J} ≤ Φ(t, s) ≤ M = max{Φ(t, s) :

(t, s) ∈ J × J} < 1.

Lemma 2.3. Suppose (H0) holds. Let G and Φ be defined by (2.2) and (2.3).
Then,

(i) for any t, s ∈ (0, 1), G(t, s) > 0 is continuous;

(ii) for any s ∈ [0, 1], max
t∈J

G(t, s) ≤ 1
Γ(α) (1 − s)α−1, and for any s ∈ [0, 1], there

exists ε ∈ (0, 1
2 ) such that

min
t∈[ε,1−ε]

G(t, s) ≥ ρ

Γ(α)
(1− s)α−1,

where ρ = min
t∈[ε,1−ε]

q(t) = min{ε−εα−1, (1−ε)−(1−ε)α−1} with q(t) = t−tα−1;

(iii) Φ(t, s) ∈ C([0, 1]× [0, 1], [0,+∞)) is continuous.

Proof. Assertion (i) follows readily from the expression of G(t, s).
(ii) By the expression of G(t, s), we can easily get

max
t∈J

G(t, s) ≤ 1

Γ(α)
(1− s)α−1.

We then show that min
t∈[ε,1−ε]

G(t, s) ≥ ρ
Γ(α) (1−s)α−1, for any s ∈ [0, 1]. In fact, when

t < s, for t ∈ [ε, 1− ε], we see

G(t, s) =
t(1− s)α−1

Γ(α)
≥ ε(1− s)α−1

Γ(α)
>
ρ(1− s)α−1

Γ(α)
.

If 0 ≤ s ≤ t ≤ 1 and t ∈ [ε, 1− ε], then s ∈ [0, 1− ε], and we have

G(t, s) =
t(1− s)α−1 − (t− s)α−1

Γ(α)

=
(1− s)α−1

Γ(α)

(
t− (1− 1− t

1− s
)α−1

)
≥ (1− s)α−1

Γ(α)
(t− tα−1).

Denoted q(t) = t− tα−1, then q is a concave function. Let

ρ = min
t∈[ε,1−ε]

q(t) = min
ε∈(0, 12 )

{ε− εα−1, (1− ε)− (1− ε)α−1},

then we have that
G(t, s) ≥ ρ

Γ(α)
(1− s)α−1.

Therefore, min
t∈[ε,1−ε]

G(t, s) ≥ ρ
Γ(α) (1− s)α−1 for any s ∈ [0, 1].
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(iii) According to the definition of Φ(t, s) and (H0), we see Φ(t, s) ∈ C([0, 1]×
[0, 1], [0,+∞)) is continuous as desired.

Let X = C(J) be the Banach space of all continuous functions from J to R with
the norm ‖u‖ = max

t∈J
|u(t)|, P = {u ∈ X : u(t) ≥ 0, t ∈ J}, then P is a cone in X.

We now define an operator A : C(J)→ C(J) as

Au(t) =

∫ 1

0

Φ(t, s)u(s)ds. (2.6)

Then we have that

Lemma 2.4. Let (H0) hold, the operator A has the following properties:

(i) A is a bounded linear operator;

(ii) A(P ) ⊂ P ;

(iii) the operator A is reversible;

(iv) ‖(I −A)−1‖ ≤ 1
1−M .

Proof. By (H0), it is obvious that (i) and (ii) hold. Since M < 1, ‖Au‖ ≤
M‖u‖ < ‖u‖, we get ‖A‖ ≤ M < 1 and (iii) follows. To prove (iv), let v(t) =
u(t)−Au(t), then v ∈ C[0, 1], and

u(t) = (I −A)−1v(t), for t ∈ [0, 1].

From the definition of the operator A, we have that

u(t) = v(t) +

∫ 1

0

Φ(t, s)u(s)ds.

Put u0(t) = u(t), um(t) = v(t) +
∫ 1

0
Φ(t, s)um−1(s)ds, m = 1, 2, · · · , and denote

Φ1(t, s) = Φ(t, s). Then we can apply the method of iteration to get that

u(t) = v(t) +

∫ 1

0

R(t, s)v(s)ds,

with

R(t, s) =
∞∑
j=1

Φj(t, s),Φj(t, s) =

∫ 1

0

Φ(t, τ)Φj−1(τ, s)dτ, j = 2, 3, · · · .

Because 0 ≤ Φ(t, s) < M < 1, we deduce that

0 ≤ R(t, s) =

∞∑
j=1

Φj(t, s) < M +M2 + · · ·+Mn + · · · = M

1−M
. (2.7)

Since (I −A)−1v(t) = u(t), it yields that

|(I −A)−1v(t)| ≤ |v(t)|+ M

1−M

∣∣∣∣ ∫ 1

0

v(s)ds

∣∣∣∣ ≤ ‖v‖+
M

1−M
‖v‖ =

‖v‖
1−M

,

or

‖(I −A)−1v(t)‖ = max
t∈[0,1]

|(I −A)−1v(t)| ≤ ‖v‖
1−M

,
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which implies

‖(I −A)−1‖ ≤ 1

1−M
.

Assertion (iv) is proved.
With Lemma 2.2 and Lemma 2.4, we can verify the following lemma readily.

Lemma 2.5. If (H0) holds, u ∈ C(J), CDα
0+u ∈ C(J), then the boundary value

problem−(CDα
0+u)(t) = f(t, u(t)), t ∈ (0, 1),

u(0) =

∫ 1

0

g1(s)u(s)ds, u(1) =

∫ 1

0

g2(s)u(s)ds, u′′(0) =

∫ 1

0

g3(s)u(s)ds
(2.8)

is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds+

∫ 1

0

Φ(t, s)u(s)ds

=

∫ 1

0

H(t, s)f(s, u(s))ds,

where

H(t, s) = G(t, s) +

∫ 1

0

R(t, τ)G(τ, s)dτ. (2.9)

Proof. Define an nonlinear operator K : C(J)→ C(J) as

Ku(t) =

∫ 1

0

G(t, s)f(s, u(s))ds. (2.10)

Then from (2.6) and (2.10), the BVP (2.8) is equivalent to

u(t) = Ku(t) +Au(t).

By Lemma 2.4, we can get

(I −A)−1Ku(t) = u(t),

that is

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, u(τ))dτds

=

∫ 1

0

G(t, s)f(s, u(s))ds+

∫ 1

0

( ∫ 1

0

R(t, τ)G(τ, s)dτ
)
f(s, u(s))ds

=

∫ 1

0

H(t, s)f(s, u(s))ds.

Lemma 2.6. Suppose (H0) holds, and R and H are defined by (2.7) and (2.9).
Then the functions R and H have the following properties:

(i) for any t, s ∈ [0, 1], H(t, s) ≥ 0 is continuous;
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(ii) for any t, s ∈ [0, 1], m
1−m ≤ R(t, s) ≤ M

1−M ;

(iii) for any t, s ∈ [0, 1], ρm(1−2ε)
Γ(α)(1−m) (1− s)α−1 ≤ H(t, s) ≤ 1

Γ(α)(1−M) (1− s)α−1.

Proof. (i) follows from the expression of H, and (ii) from (2.7). Using (H0),
(2.7), (2.9) and Lemma 2.3, we have

H(t, s) = G(t, s) +

∫ 1

0

R(t, τ)G(τ, s)dτ

≥
∫ 1−ε

ε

R(t, τ)G(τ, s)dτ

≥ ρm

Γ(α)(1−m)

∫ 1−ε

ε

(1− s)α−1dτ

=
ρm

Γ(α)(1−m)
(1− s)α−1(1− 2ε),

and

H(t, s) = G(t, s) +

∫ 1

0

R(t, τ)G(τ, s)dτ

≤ (1− s)α−1

Γ(α)
+

M

1−M

∫ 1

0

(1− s)α−1

Γ(α)
dτ

=
(1− s)α−1

Γ(α)(1−M)
,

thus,

ρm

Γ(α)(1−m)
(1− 2ε)(1− s)α−1 ≤ H(t, s) ≤ 1

Γ(α)(1−M)
(1− s)α−1.

So we get (iii).

Let q > 1 satisfy the relation 1
q + 1

p = 1, then ϕ−1
p = ϕq, where p, ϕp are from

(1.1). Next we consider the associated linear p-Laplacian fractional differential
equations involving integral boundary conditions

CDβ
0+

(
ϕp(

CDα
0+u)

)
(t) + y(t) = 0, t ∈ (0, 1),

u(0) =

∫ 1

0

g1(s)u(s)ds, u(1) =

∫ 1

0

g2(s)u(s)ds, u′′(0) =

∫ 1

0

g3(s)u(s)ds,

CDα
0+u(t) |t=0= 0,

(2.11)

where y ∈ C[0, 1] and y ≥ 0. For convenience, let b = (Γ(β))−1, then we have the
following lemma.

Lemma 2.7. The associated linear p-Laplacian fractional differential equations
(2.11) has the unique solution

u(t) =

∫ 1

0

H(t, s)ϕq
( ∫ s

0

b(s− τ)β−1y(τ)dτ
)
ds, t ∈ [0, 1]. (2.12)
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Proof. In fact, let w =CDα
0+u, v = ϕp(w). Then the solution of the initial value

problem {
CDβ

0+v(t) + y(t) = 0, t ∈ (0, 1),

v(0) = 0,
(2.13)

is given by v(t) = −Iβ0+y(t)+c0, t ∈ [0, 1]. Since v(0) = 0, 0 < β ≤ 1, we get c0 = 0,
and consequently,

v(t) = −Iβ0+y(t), t ∈ [0, 1]. (2.14)

Noting that CDα
0+u = w, w = ϕq(v), we derive from (2.13) that the solution of the

BVP (2.11) satisfies
CDα

0+u(t) = ϕq
(
− Iβ0+y(t)

)
, t ∈ (0, 1),

u(0) =

∫ 1

0

g1(s)u(s)ds, u(1) =

∫ 1

0

g2(s)u(s)ds, u′′(0) =

∫ 1

0

g3(s)u(s)ds.
(2.15)

Since y(t) ≥ 0, we have ϕq
(
− Iβ0+y(t)

)
= −ϕq

(
Iβ0+y(t)

)
. Thus by Lemma 2.5, the

solution of the BVP (2.15) can be written as

u(t) = −
∫ 1

0

H(t, s)
(
− ϕq

(
Iβ0+y(s)

))
ds,

which implies (2.12).
By Lemma 2.7, we have immediately that

Lemma 2.8. If (H0) holds and u ∈ C(J), CDα
0+u ∈ C(J), then the boundary value

problem
−CDβ

0+

(
ϕp(

CDα
0+u)

)
(t) = λf(t, u(t)), t ∈ (0, 1),

u(0) =

∫ 1

0

g1(s)u(s)ds, u(1) =

∫ 1

0

g2(s)u(s)ds, u′′(0) =

∫ 1

0

g3(s)u(s)ds,

CDα
0+u(t) |t=0= 0,

(2.16)

is equivalent to the integral equation

u(t) =

∫ 1

0

H(t, s)ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds, t ∈ [0, 1].

In the light of Lemma 2.6 and Lemma 2.3, we can now introduce a cone P0 in
X. Let

P0 = {u ∈ P : u(t) ≥ σ‖u‖, t ∈ J},

then P0 ⊂ X is a reproducing cone, with σ = ρm(1−M)
1−m (1− 2ε). Clearly, 0 < σ < 1.

Define now an operator Tλ : X → X as

Tλu(t) =

∫ 1

0

H(t, s)ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds.

Then one has that

Lemma 2.9. Assume (H0) holds, then Tλ : P0 → P0 is completely continuous.
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Proof. We prove this assertion by the well-known Arzela-Ascoli theorem. First,
from Lemma 2.6, we have

Tλu(t) =

∫ 1

0

H(t, s)ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds

≥ ρm(1− 2ε)

Γ(α)(1−m)

∫ 1

0

(1− s)α−1ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds,

and

Tλu(t) ≤ 1

Γ(α)(1−M)

∫ 1

0

(1− s)α−1ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds.

Then,

Tλu(t) ≥ ρm(1−M)

1−m
(1− 2ε)‖Tλu‖ = σ‖Tλu‖,

this implies
Tλ(P0) ⊂ P0.

In view of non-negativeness and continuity of H and f , Tλ : P0 → P0 is clearly
continuous. Next, let Ω ⊂ P0 be bounded, i.e., there exists a constant r > 0 such
that ‖u‖ ≤ r, for u ∈ Ω. Set L = max

0≤u≤r,0≤t≤1
|f(t, u(t))| + 1. Then for u ∈ Ω and

t ∈ J ,

|Tλu(t)| = |
∫ 1

0

H(t, s)ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds|

≤ Lq−1

Γ(α)(1−M)

∫ 1

0

(1− s)α−1ϕq
(
λ

∫ s

0

b(s− τ)β−1dτ
)
ds

=
B(α, β(q − 1) + 1)

Γ(α)(1−M)
· (λLb

β
)q−1

< +∞,

hence, Tλ(Ω) is uniformly bounded.
It remains to prove the equi-continuity of Tλ. Since H(t, s) is continuous and

hence uniformly continuous on [0, 1] × [0, 1], for any ε > 0, there exists a constant
δ > 0 such that for t1, t2 ∈ J with |t1 − t2| < δ imply

|H(t1, s)−H(t2, s)| < ε.

Then, for all u ∈ P0,

|Tλu(t2)− Tλu(t1)| ≤
∫ 1

0

|H(t2, s)−H(t1, s)|ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds

≤ ε
∫ 1

0

ϕq(λL

∫ s

0

b(s− τ)β−1dτ)ds

=
ε

β(q − 1) + 1
· (λLb

β
)q−1,

which shows Tλ is equicontinuous on P0.
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Therefore, by Arzela-Ascoli theorem, we infer that Tλ : P0 → P0 is completely
continuous.

Finally, for convenience, we introduce here the following notations to be used in
the subsequent sections.

f0 = lim sup
u→0+

sup
t∈J

f(t, u)

ϕp(u)
, f∞ = lim inf

u→+∞
inf
t∈J

f(t,u)
ϕp(u) ,

f0 = lim inf
u→0+

inf
t∈J

f(t,u)
ϕp(u) , f∞ = lim sup

u→+∞
sup
t∈J

f(t,u)
ϕp(u) ,

A1 = 1
Γ(α)(1−M)B(α, β(q − 1) + 1)(Γ(β + 1))1−q,

A2 = ρm(1−2ε)σ
Γ(α)(1−m)B(α, β(q − 1) + 1)(Γ(β + 1))1−q,

A3 = ρm(1−2ε)
Γ(α)(1−m)B(α, β(q − 1) + 1)(Γ(β + 1))1−q.

It is easy to see that, from (H0) and the definition of ρ in Lemma 2.3 there holds
for ε ∈ (0, 1

2 ),

A1

A3
=

1−m
ρm(1− 2ε)(1−M)

> 1. (2.17)

3. Existence of positive solutions

In this section, we study the existence of positive solutions for BVP (1.1), by ap-
plying fixed point theorem on a cone. We will obtain sufficient conditions for the
problem having at least one positive solution and two positive solutions, respective-
ly.

We will employ the following well known fixed point principle founded in [3] to
prove the existence results of positive solutions.

Lemma 3.1. Let X be a Banach space and let P0 ⊂ X be a cone in X. Assume Ω1,
Ω2 are bounded open subsets of X with θ ∈ Ω1, Ω1 ⊂ Ω2, and let T : P0∩(Ω2\Ω1)→
P0 be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, for any u ∈ P0 ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, for any u ∈ P0 ∩ ∂Ω2,
or

(ii) ‖Tu‖ ≥ ‖u‖, for any u ∈ P0 ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, for any u ∈ P0 ∩ ∂Ω2,
then T has a fixed point in P0 ∩ (Ω2\Ω1).

We first present the result of the existence of at least one positive solution in
the following theorem under the conditions on f0 and f∞.

Theorem 3.1. Suppose (H0) holds. If there exist ξ, N > 0 such that f0 < ξ,
f∞ > N . Then for each λ satisfying

1

Ap−1
2 N

≤ λ ≤ 1

Ap−1
1 ξ

, (3.1)

the BVP (1.1) has at least one positive solution.
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Proof. Let λ satisfy (3.1). By the definition of f0 < ξ, there exists r1 > 0 such
that

f(t, u) ≤ ξϕp(u), for t ∈ [0, 1] and u ∈ (0, r1]. (3.2)

Put
Ω1 = {u ∈ X : ‖u‖ ≤ r1}.

If u ∈ P0 with ‖u‖ = r1, from (3.1) and (3.2), it follows that

‖Tλu‖ ≤
∫ 1

0

(1− s)α−1

Γ(α)(1−M)
ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds

≤ 1

Γ(α)(1−M)

∫ 1

0

(1− s)α−1ϕq
(
λ

∫ s

0

b(s− τ)β−1ξϕp(r1)dτ
)
ds

≤ λq−1ξq−1B(α, β(q − 1) + 1)

Γ(α)(1−M)
(
b

β
)q−1 · r1

≤ λq−1ξq−1A1r1

≤ r1 = ‖u‖.

Hence,
‖Tλu‖ ≤ ‖u‖, for u ∈ P0 ∩ ∂Ω1. (3.3)

By the definition of f∞, there exists r̄ > 0 such that

f(t, u) ≥ Nϕp(u), for t ∈ [0, 1] and u ∈ [r̄,+∞). (3.4)

Let r2 >
1
σ r̄ and r2 = max{2r1,

1
σ r̄} and take

Ω2 = {u ∈ X : ‖u‖ ≤ r2}.

Thus, for any u ∈ P0 ∩ ∂Ω2, we have u ∈ P0 and ‖u‖ = r2, so

u(t) ≥ σ‖u‖ = σr2 > r̄.

Then, by (3.1) and (3.4), we compute that

‖Tλu‖ ≥ |Tλu| ≥
∫ 1

0

H(t, s)ϕq
(
λ

∫ s

0

b(s− τ)β−1Nϕp(u(τ))dτ
)
ds

≥ ρm(1− 2ε)

Γ(α)(1−m)

∫ 1

0

(1− s)α−1ϕq
(
λ

∫ s

0

b(s− τ)β−1Nϕp(σ‖u‖)dτ
)
ds

≥ λq−1Nq−1 ρm(1− 2ε)σ

Γ(α)(1−m)
(
b

β
)q−1B(α, β(q − 1) + 1) · r2

≥ λq−1Nq−1 ·A2 · r2

≥ r2 = ‖u‖.

Therefore,
‖Tλu‖ ≥ ‖u‖, for u ∈ P0 ∩ ∂Ω2. (3.5)

By (3.3), (3.5) and Lemma 3.1, we conclude Tλ has a fixed point u ∈ P0 ∩ (Ω2 \Ω1)
with r1 ≤ ‖u‖ ≤ r2, and clearly u is a positive solution for the BVP (1.1).

Similarly, employing conditions for f0 and f∞, we can obtain that
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Theorem 3.2. Suppose (H0) holds. If there exist ξ, N > 0 such that f0 > N ,
f∞ < ξ hold. Then for each

1

Ap−1
2 N

≤ λ ≤ 1

Ap−1
1 ξ

, (3.6)

the BVP (1.1) has at least one positive solution.

Proof. Let λ satisfy (3.6). By the definition of f0, we see that there exists r1 > 0
such that

f(t, u) ≥ Nϕp(u), for t ∈ [0, 1] and u ∈ (0, r1].

So, if u ∈ P0 with ‖u‖ = r1, then as in the proof of Theorem 3.1, if we take

Ω1 = {u ∈ X : ‖u‖ ≤ r1},

then,
‖Tλu‖ ≥ ‖u‖, for u ∈ P0 ∩ ∂Ω1. (3.7)

By the definition of f∞, there exists r2 > 0 such that

f(t, u) ≤ ξϕp(u), for t ∈ [0, 1] and u ∈ [r2,+∞).

So, if we choose
Ω2 = {u ∈ X : ‖u‖ ≤ r2},

then similar to that in the proofs of Theorem 3.1 we can show that, for u ∈ P0 with
‖u‖ = r2,

‖Tλu‖ ≤ ‖u‖, for u ∈ P0 ∩ ∂Ω2. (3.8)

By (3.7), (3.8) and Lemma 3.1 again, we deduce that Tλ has a fixed point u ∈
P0 ∩ (Ω2 \Ω1) with r1 ≤ ‖u‖ ≤ r2, and clearly u is a positive solution for the BVP
(1.1).

The following theorem plays an important role in proving of the subsequent two
theorems in this part.

Theorem 3.3. Suppose (H0) holds. If there exist r2, r1 > 0 with r2 >
A1

A3
· r1 (> r1

by (2.17)) such that

λ min
σr1≤u≤r1, 0≤t≤1

f(t, u(t)) ≥ ϕp(
r1

A3
), and λ max

0≤u≤r2, 0≤t≤1
f(t, u(t)) ≤ ϕp(

r2

A1
),

then the BVP (1.1) has at least one positive solution u ∈ P0 with r1 ≤ ‖u‖ ≤ r2.

Proof. Put Ω1 = {u ∈ X : ‖u‖ ≤ r1}. Then for u ∈ P0 ∩ ∂Ω1, we have

Tλu(t) =

∫ 1

0

H(t, s)ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds

≥ ρm(1− 2ε)

Γ(α)(1−m)

∫ 1

0

(1− s)α−1

· ϕq
(
λ

∫ s

0

b(s− τ)β−1 min
σr1≤u≤r1, 0≤τ≤1

f(τ, u(τ))dτ
)
ds

≥ ϕq
(
λ min
σr1≤u≤r1, 0≤τ≤1

f(τ, u(τ))
) ρm(1− 2ε)

Γ(α)(1−m)
B(α, β(q − 1) + 1)(

b

β
)q−1
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= ϕq
(
λ min
σr1≤u≤r1, 0≤τ≤1

f(τ, u(τ))
)
·A3

≥ r1 = ‖u‖,

that is,

‖Tλu‖ ≥ ‖u‖, for u ∈ P0 ∩ ∂Ω1. (3.9)

On the other hand, let Ω2 = {u ∈ X : ‖u‖ ≤ r2}, then for u ∈ P0 ∩ ∂Ω2, we see
that

Tλu(t) =

∫ 1

0

H(t, s)ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, u(τ))dτ
)
ds

≤ 1

Γ(α)(1−M)

∫ 1

0

(1− s)α−1

· ϕq
(
λ

∫ s

0

b(s− τ)β−1 max
0≤u≤r2, 0≤τ≤1

f(τ, u(τ))dτ
)
ds

≤ ϕq
(
λ max

0≤u≤r2, 0≤τ≤1
f(τ, u(τ))

)B(α, β(q − 1) + 1)

Γ(α)(1−M)
(
b

β
)q−1

= ϕq
(
λ max

0≤u≤r2, 0≤τ≤1
f(τ, u(τ))

)
·A1

≤ r2 = ‖u‖.

So,

‖Tλu‖ ≤ ‖u‖, for u ∈ P0 ∩ ∂Ω2. (3.10)

Thus, from (3.9), (3.10) and Lemma 3.1, it follows that BVP (1.1) has at least
one positive solution u ∈ P0 with r1 ≤ ‖u‖ ≤ r2.

With the help of Theorem 3.3, we will discuss in the sequel the existence of at
least two positive solutions for the BVP (1.1).

Theorem 3.4. Suppose (H0) holds, let λ1 = sup
r>0

ϕp(r)
ϕp(A1) max

0≤u≤r, 0≤t≤1
f(t,u) . If f0 =

+∞ and f∞ = +∞, then the BVP (1.1) has at least two positive solutions for each
λ ∈ (0, λ1).

Proof. Define

x(r) =
ϕp(r)

ϕp(A1) max
0≤u≤r, 0≤t≤1

f(t, u)
.

In view of the continuity of f , f0 = +∞ and f∞ = +∞, we know that x(r) :
(0,+∞)→ (0,+∞) is continuous and

lim
r→0+

x(r) = lim
r→+∞

x(r) = 0.

So there exists r0 ∈ (0,+∞) such that

x(r0) = sup
r>0

x(r) = λ1.

Therefore, for λ ∈ (0, λ1), there exist constants a1, a2 (0 < a1 < r0 < a2 < +∞)
with

x(a1) = x(a2) = λ.
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Hence,

λf(t, u(t)) ≤ ϕp(
a1

A1
), for t ∈ [0, 1], u ∈ [0, a1], (3.11)

λf(t, u(t)) ≤ ϕp(
a2

A1
), for t ∈ [0, 1], u ∈ [0, a2]. (3.12)

On the other hand, as f0 = +∞ and f∞ = +∞, there exists constants b1,
b2 (0 < b1 < a1 < r0 < a2 < b2 < +∞) such that

f(t, u)

ϕp(u)
≥ 1

λϕp(A3)
, for t ∈ [0, 1], u ∈ (0, b1] ∪ [σb2,+∞),

and so

λ min
σb1≤u≤b1, 0≤t≤1

f(t, u(t)) ≥ ϕp(
b1
A3

), (3.13)

λ min
σb2≤u≤b2, 0≤t≤1

f(t, u(t)) ≥ ϕp(
b2
A3

). (3.14)

By (3.11), (3.12), (3.13) and (3.14), and applying Theorem 3.3 and Lemma
3.1, we can deduce that the BVP (1.1) has at least two positive solutions for each
λ ∈ (0, λ1), and b1 < u1 < a1, a2 < u2 < b2.

Theorem 3.5. Suppose (H0) holds, let λ2 = inf
r>0

ϕp(r)
ϕp(A3) min

σr≤u≤r, 0≤t≤1
f(t,u) . If f0 = 0

and f∞ = 0, then the BVP (1.1) has at least two positive solutions for each λ ∈
(λ2,+∞).

Proof. Define

x(r) =
ϕp(r)

ϕp(A3) min
σr≤u≤r, 0≤t≤1

f(t, u)
,

then x(r) : (0,+∞)→ (0,+∞) is continuous and

lim
r→0+

x(r) = lim
r→+∞

x(r) = +∞.

So there exists r0 ∈ (0,+∞) such that

x(r0) = inf
r>0

x(r) = λ2.

Then, for λ ∈ (λ2,+∞), one has d1, d2 (0 < d1 < r0 < d2 < +∞) with

x(d1) = x(d2) = λ,

thus,

λf(t, u(t)) ≥ ϕp(
d1

A3
), for t ∈ [0, 1], u ∈ [σd1, d1], (3.15)

λf(t, u(t)) ≥ ϕp(
d2

A3
), for t ∈ [0, 1], u ∈ [σd2, d2]. (3.16)

In addition, since f0 = 0, there exists c1 (0 < c1 < d1 < +∞) such that

f(t, u)

ϕp(u)
≤ 1

λϕp(A1)
, for t ∈ [0, 1], u ∈ (0, c1],
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and so
λ max

0≤u≤c1, 0≤t≤1
f(t, u(t)) ≤ ϕp(

c1
A1

). (3.17)

Analogously, because f∞ = 0, there exists a constant c2 ∈ (d2,+∞) such that

f(t, u)

ϕp(u)
≤ 1

λϕp(A1)
, for t ∈ [0, 1], u ∈ (c2,+∞).

Let M ′ = max
0≤u≤c2, 0≤t≤1

f(t, u) and ϕp(c2) ≥ λϕp(A1). Then

λ max
0≤u≤c2, 0≤t≤1

f(t, u(t)) ≤ ϕp(
c2
A1

). (3.18)

Therefore, from (3.15), (3.16), (3.17) and (3.18), together with Theorem 3.3 and
Lemma 3.1, we infer that BVP (1.1) has at least two positive solutions for each
λ ∈ (λ2,+∞) and c1 < u1 < d1, c2 < u2 < d2.

4. Nonexistence of positive solutions

In this section, we turn to consider the problem of nonexistence of positive solutions
for the BVP (1.1). The first result is that

Theorem 4.1. If f0 < +∞ and f∞ < +∞, then there exists λ0 > 0 such that for
all 0 < λ < λ0, the BVP (1.1) has no positive solution.

Proof. Since f0 < +∞ and f∞ < +∞, there exist positive constants M1, M2, r1

and r2 such that r1 < r2 and

f(t, u) ≤M1ϕp(u), for t ∈ [0, 1], u ∈ [0, r1],

f(t, u) ≤M2ϕp(u), for t ∈ [0, 1], u ∈ [r2,+∞).

Denote M = max{M1,M2, max
r1≤u≤r2, 0≤t≤1

f(t,u)
ϕp(u) }, then

f(t, u) ≤Mϕp(u), for t ∈ [0, 1], u ∈ [0,+∞).

Assume conversely that v(t) is a positive solution of the BVP (1.1). We will

show that this leads to a contradiction when 0 < λ < λ0 := M
−1

(A−1
1 )p−1. In fact,

since Tλv(t) = v(t) for t ∈ [0, 1], it yields

‖v‖ = ‖Tλv‖ ≤
1

Γ(α)(1−M)

∫ 1

0

(1− s)α−1ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, v(τ))dτ
)
ds

≤ 1

Γ(α)(1−M)

∫ 1

0

(1− s)α−1ϕq(λ

∫ s

0

b(s− τ)β−1Mϕp
(
v(τ))dτ

)
ds

≤ (λM)q−1‖v‖ ·A1

< ‖v‖,

this is a contradiction. Therefore, the BVP (1.1) has no positive solution in this
situation.

Theorem 4.2. If f0 > 0 and f∞ > 0, then there exists λ0 > 0 such that for all
λ > λ0, the BVP (1.1) has no positive solution.
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Proof. Due to f0 > 0 and f∞ > 0, there exist positive constants m1, m2, r3 and
r4 such that r3 < r4 and

f(t, u) ≥ m1ϕp(u), for t ∈ [0, 1], u ∈ [0, r3].

f(t, u) ≥ m2ϕp(u), for t ∈ [0, 1], u ∈ [r4,+∞).

Let m = min{m1,m2, min
r3≤u≤r4, 0≤t≤1

f(t,u)
ϕp(u) }, we then obtain that

f(t, u) ≥ mϕp(u), for t ∈ [0, 1], u ∈ [0,+∞).

We prove this theorem by contradiction when λ > λ0 := m−1(A−1
2 )p−1 again. If

v(t) is a positive solution of the BVP (1.1), then

‖v‖ = ‖Tλv‖ ≥
ρm(1− 2ε)

Γ(α)(1−m)

∫ 1

0

(1− s)α−1ϕq
(
λ

∫ s

0

b(s− τ)β−1f(τ, v(τ))dτ
)
ds

≥ ρm(1− 2ε)

Γ(α)(1−m)

∫ 1

0

(1− s)α−1ϕq
(
λ

∫ s

0

b(s− τ)β−1mϕp(v(τ))dτ
)
ds

≥ (λm)q−1‖v‖ ·A2

> ‖v‖,

which is impossible. Hence, the BVP (1.1) has no positive solution.

5. Examples

In order to illustrate the applications of the main results obtained in Section 3 and
4, we present some examples in this part.

Example 5.1. Consider the boundary value problem of fractional differential e-
quation

−CD
1
2

0+

(
ϕp(

CD
5
2

0+u)
)
(t) = λ(t2 + 1)(65u− 8449

130
sinu), t ∈ (0, 1),

u(0) =

∫ 1

0

200

201
u(s)ds, u(1) =

∫ 1

0

200

201
u(s)ds, u′′(0) =

∫ 1

0

4

201
u(s)ds,

CDα
0+u(t) |t=0= 0,

(5.1)

where g1(s) = g2(s) = 200
201 , g3(s) = 4

201 , α = 5
2 , β = 1

2 , p = 2, ε = 1
4 , f(t, u(t)) =

(t2 + 1)(65u− 8449
130 sinu).

By a simple calculation, we obtain that

m =
133

134
, M =

200

201
, ρ =

3(2−
√

3)

8
, σ =

399(2−
√

3)

3216
,

Ap−1
1 =

67

2
, Ap−1

2 =
1270.49474

34304
, f0 =

1

65
< ξ =

1

64
, f∞ = 65 > N = 64.

Hence
1

Ap−1
2 N

<
1

Ap−1
1 ξ

.

Thus, by Theorem 3.1, the BVP (5.1) has a positive solution for each λ ∈ (0.42188,
1.91045).
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Example 5.2. Consider the boundary value problem of fractional differential e-
quation

−CD
1
2

0+

(
ϕp(

CD
5
2

0+u)
)
(t) = λ

et(u2(t) + u(t))(51 + sinu)

3120u(t) + 1
, t ∈ (0, 1),

u(0) =

∫ 1

0

200

201
u(s)ds, u(1) =

∫ 1

0

200

201
u(s)ds, u′′(0) =

∫ 1

0

4

201
u(s)ds,

CDα
0+u(t) |t=0= 0,

(5.2)

where g1(s) = g2(s) = 200
201 , g3(s) = 4

201 , α = 5
2 , β = 1

2 , p = 2, ε = 1
4 , f(t, u(t)) =

et(u2(t)+u(t))(51+sinu)
3120u(t)+1 .

It is easy to compute that

m =
133

134
, M =

200

201
, ρ =

3(2−
√

3)

8
, σ =

399(2−
√

3)

3216
,

Ap−1
1 =

67

2
, Ap−1

2 =
1270.49474

34304
, f0 = 51 > N = 50, f∞ =

52e

3120
< ξ =

1

20
.

So we get
1

Ap−1
2 N

<
1

Ap−1
1 ξ

.

By Theorem 3.1, the BVP (5.2) has a positive solution for each λ ∈ (0.54001, 0.59701).

Example 5.3. Consider the boundary value problem of fractional differential e-
quation

−CD
1
2

0+

(
ϕp(

CD
5
2

0+u)
)
(t) = λ

et(100u2(t) + u(t))(3 + sinu)
3

100u(t) + 1
, t ∈ (0, 1),

u(0) =

∫ 1

0

200

201
u(s)ds, u(1) =

∫ 1

0

200

201
u(s)ds, u′′(0) =

∫ 1

0

4

201
u(s)ds,

CDα
0+u(t) |t=0= 0,

(5.3)

where g1(s) = g2(s) = 200
201 , g3(s) = 4

201 , α = 5
2 , β = 1

2 , p = 2, ε = 1
4 , f(t, u(t)) =

et(100u2(t)+u(t))(3+sinu)
3

100u(t)+1
.

For this situation, we have

m =
133

134
, M =

200

201
, ρ =

3(2−
√

3)

8
, σ =

399(2−
√

3)

3216
,

Ap−1
1 =

67

2
, Ap−1

2 =
1270.49474

34304
, f0 = 3e < ξ = 10, f∞ =

40000

3
> N = 10000,

f0 = 3, f∞ =
40000e

3
,

and 3u < f(t, u) < 40000u. Hence we can conclude that
(i) By Theorem 3.1, the BVP (5.3) has a positive solution for each λ ∈ (0.00270,

0.00299).
(ii) By Theorem 4.1, the BVP (5.3) has no positive solution for all λ ∈ (0, 3

1340000e ).
(iii) By Theorem 4.2, the BVP (5.3) has no positive solution for all λ ∈

(9.00017,+∞).
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Example 5.4. Consider the boundary value problem of fractional differential e-
quation

−CD
1
2

0+

(
ϕp(

CD
5
2

0+u)
)
(t) = λ

(t+ 1)(u2(t) + u(t))(31 + sinu)

2112u(t) + 1
, t ∈ (0, 1),

u(0) =

∫ 1

0

200

201
u(s)ds, u(1) =

∫ 1

0

200

201
u(s)ds, u′′(0) =

∫ 1

0

4

201
u(s)ds,

CDα
0+u(t) |t=0= 0,

(5.4)

where g1(s) = g2(s) = 200
201 , g3(s) = 4

201 , α = 5
2 , β = 1

2 , p = 2, ε = 1
4 , f(t, u(t)) =

(t+1)(u2(t)+u(t))(31+sinu)
2112u(t)+1 .

As above we can compute for (5.4) that

m =
133

134
, M =

200

201
, ρ =

3(2−
√

3)

8
, σ =

399(2−
√

3)

3216
,

Ap−1
1 =

67

2
, Ap−1

2 =
1270.49474

34304
, f0 = 31 > N = 30, f∞ =

1

33
< ξ =

1

32
,

f0 = 62, f∞ =
1

66
,

and 1
66u < f(t, u) < 62u. Therefore, we deduce that

(i) By Theorem 3.1, the BVP (5.4) has a positive solution for each λ ∈ (0.90002,
0.95522).

(ii) By Theorem 4.1, the BVP (5.4) has no positive solution for all λ ∈ (0, 0.00048).
(iii) By Theorem 4.2, the BVP (5.4) has no positive solution for all λ ∈

(1782.03335,+∞).
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