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THRESHOLD DYNAMICS OF THE
STOCHASTIC EPIDEMIC MODEL WITH
JUMP-DIFFUSION INFECTION FORCE∗

Dianli Zhao1,† and Sanling Yuan2

Abstract This paper formulates a stochastic SIR epidemic model by sup-
posing that the infection force is perturbed by Brown motion and Lévy jumps.
The globally positive and bounded solution is proved firstly by constructing
the suitable Lyapunov function. Then, a stochastic basic reproduction num-
ber RL

0 is derived, which is less than that for the deterministic model and the
stochastic model driven by Brown motion. Analytical results show that the
disease will die out if RL

0 < 1, and RL
0 > 1 is the necessary and sufficien-

t condition for persistence of the disease. Theoretical results and numerical
simulations indicate that the effects of Lévy jumps may lead to extinction of
the disease while the deterministic model and the stochastic model driven by
Brown motion both predict persistence. Additionally, the method developed
in this paper can be used to investigate a class of related stochastic models
driven by Lévy noise.
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1. Introduction

To study dynamics of the epidemics, one of most popular epidemic models is the
SIR model in [7] taking forms

Ṡ =µN − µS − βSI,
İ =βSI − (µ+ δ + γ)I,

Ṙ =γI − µR,

(1.1)

where S, I and R denote the numbers of the susceptible, the infective and the
recovered subpopulations. N is total population size, µ is the natural death rates,
δ is the additional death rate induced by the infectious, γ is the recovery rate of
infectious individuals.

In reality, the parameters in the population model are, more or less, perturbed
by environmental noises [13]. Many scholars have tried to introduce noises into the
underlying deterministic models and then studied effects of the noise on dynamics
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of the epidemics, see [3–5, 8, 9, 12, 14–17] for example. By supposing that the noise
mainly has effects on the contact rate like

β → β + σḂ(t),

Tornatore etc [15] formulated the stochastic SIR epidemic model as follows
dS(t) =(µN − µS(t)− βS(t)I(t))dt− S(t)I(t)σdB(t),

dI(t) = (βS(t)− (µ+ δ + γ))I(t)) dt+ S(t)I(t)σdB(t),

dR(t) =(γI(t)− µR(t))dt.

(1.2)

The authors studied the existence of the positive solution and showed the threshold
value by simulation. Sequently, Ji etc [5] proved the threshold of this stochastic
SIR model when the noise is small. In [4], Gray et al. established and studied the
dynamics of a stochastic SIS model. Zhao etc [16] show threshold for stochastic SIRS
epidemic model with saturated incidence. Zhou etc study the global stability of a
discrete multigroup SIR model with nonlinear incidence rate and a reaction-diffusion
waterborne pathogen model respectively in [18, 19]. In [17], Zheng etc proposed
a new way of investigating the asymptotic behaviour of a stochastic SIS system
with multiplicative noise based on the solution of Langevin equation and Ornstein-
Uhlenbeck process. More stochastic epidemic models can be found in [3,8,9,14] and
cited therein.

Jumps is frequently observed in the epidemic systems since the population may
suffer sudden environmental shocks. Bhadra etc [2] applied a stochastic differential
model driven by Lévy noise to study Malaria in Northwest India. For more about
theoretical applications of the jump process to population models, one can refer
to [1, 10, 11] and related references. To make system more realistic, we extend the
system from additive noise on the Brown motion to the Brown motion with Lévy
jumps J(t) =

∫ t
0

∫
Z
h(u)Ñ(ds, du), and mainly consider its effects on the infection

force parameter β such that

β → β + σḂ(t) + J̇(t).

Based on model (1.1), the studied model in this paper is formulated as that
dS(t) =(µN − µS(t)− βS(t)I(t))dt− S(t−)I(t−)[σdB(t) +

∫
Z

h(u)Ñ(dt, du)],

dI(t) = (βS(t)− (µ+ δ + γ))I(t)) dt+ S(t−)I(t−)[σdB(t) +

∫
Z

h(u)Ñ(dt, du)],

dR(t) =(γI(t)− µR(t))dt.
(1.3)

σ is a constant. h(u) is continuous. B(t) denotes the Brownian motion. Ñ(dt, du) =
N(dt, du) − π(du)dt is compensating martingale where N(t) is Poisson random
measure, independent of B(t), with the characteristic measure π(du) such that
π(Z) <∞ for the measurable subset Z. Suppose that (Ω,F ,P) is a suitable filtered
probability space. Note that the dynamic of R has no effect on the transmission
dynamics, we have only to study the following model

dS(t) =(µN − µS(t)− βS(t)I(t))dt− S(t−)I(t−)[σdB(t) +

∫
Z

h(u)Ñ(dt, du)],

dI(t) = (βS(t)− (µ+ δ + γ))I(t)) dt+ S(t−)I(t−)[σdB(t) +

∫
Z

h(u)Ñ(dt, du)].

(1.4)
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The main aim of this paper is to investigate the effect of Lévy noise on the
dynamics of this system, and further to derive the threshold value which can easily
determine the extinction and persistence of the disease.

Remark 1.1. As far as Lévy noise is concerned, many results can be found in [1,2,6,
10,11] and cited therein. In these literatures, some studied models are formulated by
supposing that the death rate is perturbed by the Lévy noise with constant intensity;
the other models, established by different method, have similar forms with pertur-
bations: S(t−)[σdB(t) +

∫
Z
h(u)Ñ(dt, du)] and I(t−)[σdB(t) +

∫
Z
h(u)Ñ(dt, du)].

These kinds of models can be studied by using the famous Ito formula to sepa-
rate the state variable from the noise term. However, when the contact rate is
perturbed by the Lévy noise, we have model (1.3), where the noise term has the
form: S(t−)I(t−)[σdB(t) +

∫
Z
h(u)Ñ(dt, du)]. This means the method established

previously can not be used directly to study model (1.3). That is also the main
difficulty to be conquered in this paper. To the best of our knowledge, there are
few literatures concerning the dynamics of the epidemic models when the infection
force is perturbed by the jump process. The model is new, and the given method
in this paper can be used to study a class of related models.

Before statement of the main results, we firstly make an assumption and prove
one useful lemma.
Assumption A. 1 +h(u)N > 0, h(u) ≤ K and

∫
Z

[log(1 + h(u)N)]
2
π(du) ≤ K for

some constant K.

Lemma 1.1. Let g(λx) = log(1 + λx) − λx where λ,C are constants such that
0 < x ≤ C and λC > −1. Then

(i) 0 ≥ g(λx) ≥ g(λC);

(ii) |g(λx)− g(λC)| ≤ λ2C(C−x)
1+λC .

Proof. Compute the derivative dg(λx)
dt = λ

1+λx − λ = −λ2x
1+λx , then

dg(λx)

dt
≤ 0 if x ≥ 0,

and
dg(λx)

dt
≥ 0 if x < 0.

Clearly, 0 ≥ g(λx) ≥ g(λC) hold. By using Lagrange’s Mean Value theorem, there
is a ξ ∈ [x,C] such that

|g(λx)− g(λC)| = | λ
2ξ

1 + λξ
|(C − x).

Notice that if λ < 0
λ2ξ

1 + λξ
≤ λ2C

1 + λξ
≤ λ2C

1 + λC

and if λ ≥ 0
λ2ξ

1 + λξ
= λ(1− 1

1 + λξ
) ≤ λ2C

1 + λC
,

then the desired result is proved. The proof is complete.
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The left of this paper is organized as follows. Section 2 focuses on existence of the
global positive and bounded solution. In Section 3, we present sufficient conditions
for the extinction and persistence of the disease, where a stochastic threshold is
identified. Section 4 shows existence of the sufficient and necessary condition for
persistence in mean of the disease. Finally, Section 5 illustrates the obtained results
with computer simulations, and then gives the conclusions in Section 6.

2. Globally positive and bounded solution

Since S(t) and I(t) are the numbers of the susceptible and the infective subpopula-
tions, from the view of biological significance, it is of interest to study the existence
of the positive solutions. The following theorem shows that the solution of (1.4)
will not explode at a finite time and lies in a positive invariant set.

Theorem 2.1. Assume that Assumption A holds. Then for any initial value
(S(0), I(0)) ∈ (0, N ] × (0, N ], model (1.4) has a globally unique positive solution
(S(t), I(t)) ∈ (0, N ]× (0, N ] on [0,∞) with probability 1.

Proof. Since the coefficients are local Lipschitz continuous, then there exists a
unique continuous positive solution of (1.4) for t ∈ [0, τe), where τe be the explosion
time (see e.g. [12]). To show this solution is global, it need to prove τe = ∞ a.s.
Let m̄ ∈ N be sufficiently large such that 1

m̄ ≤ S(0) ∧ I (0) and S(0) + I (0) ≤
N − 1

m . Here and in the sequel a ∧ b = min {a, b}. For any integer m > m̄, define
the stopping time τm = inf

{
t ∈ [0, τe) : S (t) ∧ I (t) ≤ 1

m or S (t) + I (t) ≥ N − 1
m

}
where throughout this paper we set inf∅ =∞ (as usual ∅ denotes the empty set).
Clearly, τm is increasing as m → ∞. Set τ∞ = lim

m→∞
τm, then τ∞ ≤ τe a.s. If

τ∞ =∞, then τe =∞ a.s. Suppose that τ∞ =∞ a.s. does not hold, then there are
constants T > 0 and ε ∈ (0, 1) such that P (τm ≤ T ) ≥ ε. For all 0 ≤ t ≤ τm ∧ T ,
we define a C2-function V : R2

+ → R+ by

V (S, I) = S − 1− lnS + I − 1− ln I +
1

N − (S + I)
.

By using the generalized Itô formula to (1.4), we get that

d
(
e−µtV (S (t) , I (t))

)
=
[
e−µtL (V (S (t) , I (t)))− µe−µtV (S (t) , I (t))

]
dt− e−µtσ (I (t) + S (t))dB (t)

− e−µt
∫
Z

log
{(

1 + h (u) I
(
t−
)) (

1 + h (u)S
(
t−
))}

Ñ (dt, du)

where by (i) of Lemma 1.1 and x− 1− lnx ≥ 0 for x > 0

LV (S (t) , I (t))− µV (S (t) , I (t))

= (Λ− µS (t)− (µ+ δ + γ) I (t))−
(

Λ

S (t)
− µ− βI (t)− σ2

2
(I (t))

2

)
−
∫
Z

g (h (u) I (t))π (du)−
(
βS (t)− (µ+ δ + γ)− σ2

2
(S (t))

2

)
−
∫
Z

g (h (u)S (t))π (du) +
µ (N − (S (t) + I (t)))− (γ + δ) I (t)

(N − (S (t) + I (t)))
2
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− µV (S (t) , I (t))

≤Λ + µ+ βN + σ2N2 + (µ+ δ + γ)− 2

∫
Z

g (h (u)N)π (du) := H.

By (i) of Lemma 1.1 and Assumption A,

0 ≤− 2

∫
Z

g (h (u)N)π (du)

≤
∫
Z

[
(log (h (u)N))

2
+ (h (u)N)

2
]
π (du) + 2π (Z) <∞,

then H <∞ and hence

EV (S (τm ∧ T ) , I (τm ∧ T )) ≤V (S (0) , I (0)) eµT + E

∫ τm∧T

0

eµ(T−s)Hds

≤ (V (S (0) , I (0)) + TH) eµT .

(2.1)

For all ω ∈ {τm ≤ T}, min {S (τm) , I (τm)} = 1
m or S (τm) + I (τm) = N − 1

m holds,
which leads to

EV (S (τm ∧ T ) , I (τm ∧ T )) ≥E
[
I{τm≤T}V (S (τm) , I (τm))

]
≥
[(

1

m
− 1 + lnm

)
∧m

]
ε,

(2.2)

where I{τm≤T} is an indicator function. By letting m → ∞, from (2.1) and (2.2)
we get the contradiction

∞ > V (S (0) , I (0)) eµT + THeµT =∞.

Therefore τe =∞ a.s. The proof is complete.

Remark 2.1. Obviously, (N, 0) is a trivial solution of (1.4). In the following, we
always set S(0) > 0, I(0) > 0 and S(0) + I(0) < N . From Theorem 2.1, a positive
invariant set of (1.4) can be defined as

Γ = {(S, I) : S > 0, I > 0, S + I < N a.s.} .

Then

lim
t→∞

1

t
[S (t) + I (t)− S (0)− I (0)] = 0 a.s.

Integrating (1.4) from 0 to t gives that

µ

∫ t

0

S (s) ds+ (µ+ δ + γ)

∫ t

0

I (s) ds = µNt− [S (t) + I (t)− S (0)− I (0)] . (2.3)

3. The threshold for extinction and persistence

When dynamics of the deterministic model (1.1) are studied, the basic reproduction
number R0 = βN

µ+δ+γ is the key parameter. A stochastic basic reproduction number

RS0 = R0 − 1
µ+δ+γ

σ2

2 N
2 has been obtained in [3–5, 8, 9, 14–16], which has similar

properties as R0 in case that the noise is small. To study extinction and persistence
of (1.4), let us firstly define a new parameter

RL0 = R0 −
1

µ+ δ + γ

[
σ2

2
N2 −

∫
Z

(log (1 + h (u)N)− h (u)N)π (du)

]
.
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Lemma 3.1. (See e.g. [Lemma 3.1, [1]]). Let M(t), t ≥ 0 be a local martingale
vanishing at time 0 and define

ρM (t) :=

∫ t

0

d 〈M,M〉 (s)
(1 + s)

2 , t ≥ 0

where 〈M,M〉 (t) is Meyers angle bracket process. Then

lim
t→∞

M (t)

t
= 0 a.s. provided that lim

t→∞
ρM (t) <∞ a.s.

Theorem 3.1. Let (S(t), I(t)) be solution of (1.4) with (S(0), I(0)) ∈ Γ. Assume
that Assumption A holds.

(i) If RL0 < 1 and σ2N +
∫
Z

h2(u)N
1+h(u)N π (du) ≤ β hold, then the disease I dies out

exponentially with an exact decay rate, i.e.,

lim sup
t→∞

log
I (t)

I (0)
= (µ+ γ + δ)

(
RL0 − 1

)
< 0 a.s.

(ii) If RL0 > 1, then the disease will be persistent in mean, i.e.,

lim inf
t→∞

1

t

∫ t

0

I (s) ds ≥ µ

β

(
RL0 − 1

)
a.s.

Proof. By applying the generalized Itô formula to (1.4), we get

log I (t) = log I (0) +

∫ t

0

L log I (s)ds+M1 (t) +M2 (t) , (3.1)

where

L log I (t) = βS (t)− (µ+ δ + γ)− σ2

2
(S (t))

2
+

∫
Z

g (h (u)S (t))π (du), (3.2)

M1 (t) =

∫ t

0

σS (s)dB (s) and M2 (t) =

∫ t

0

∫
Z

log
(
1 + h (u)S

(
s−
))
Ñ (ds, du).

Since M1 (t) and M2 (t) are two martingales with the quadratic forms

〈M1,M1〉 (t) =

∫ t

0

σ2S2 (s)ds ≤ σ2N2t a.s.,

and

〈M2,M2〉 (t) =

∫ t

0

∫
Z

[log (1 + h (u)S (s))]
2
π (du) ds ≤ Kt a.s.

Due to Lemma 3.1, we have

lim
t→∞

M1 (t)

t
= 0 and lim

t→∞

M2 (t)

t
= 0 a.s. (3.3)
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By the fact that (S(t), I(t)) ∈ Γ, applying (ii) of Lemma 1.1 to (3.2) yields

L log I (t) ≤βN − (µ+ δ + γ)− σ2

2
N2 +

∫
Z

g (h (u)N)π (du)− β (N − S (t))

+
σ2

2
(N + S (t)) (N − S (t)) +

∫
Z

h2 (u)N

1 + h (u)N
π (du) (N − S (t))

≤ (µ+ δ + γ)
(
RL0 − 1

)
+

(
σ2N +

∫
Z

h2 (u)N

1 + h (u)N
π (du)− β

)
(N − S (t)) .

(3.4)

In view of the condition σ2N +
∫
Z

h2(u)N
1+h(u)N π (du) ≤ β, it follows that

L log I (t) ≤ (µ+ δ + γ)
(
RL0 − 1

)
a.s.

This, together with (3.1) and (3.3), leads to

lim
t→∞

1

t
log

I (t)

I (0)
≤ (µ+ δ + γ)

(
RL0 − 1

)
< 0 a.s. (3.5)

On the other hand, from (3.2) we have

L log I (t) = (µ+ δ + γ)
(
RL0 − 1

)
+H (t) (3.6)

where

H (t) =

(
σ2

2
(N + S (t))− β

)
(N − S (t)) +

∫
Z

(g (h (u)S (t))− g (h (u)N))π (du)

satisfying

|H (t)| ≤
(
σ2N + β

)
(N − S (t)) +

∫
Z

|g (h (u)S (t))− g (h (u)N)|π (du)

≤
(
σ2N + β +

∫
Z

h2 (u)N

1 + h (u)N
π (du)

)
(N − S (t)) .

By taking integration, let H0 =
(
σ2N + β +

∫
Z

h2(u)N
1+h(u)N π (du)

)
µ+δ+γ
µ , from (2.3)

and (3.5) we compute that

lim
t→∞

1

t

∫ t

0

|H (s)| ds ≤ H0 lim
t→∞

1

t

∫ t

0

I (s) ds = 0. (3.7)

The proof on extinction of the disease is completed by substituting (3.6) and (3.7)
into (3.1).

Next, we prove the persistence in mean of the disease. By (3.6) and (i) of Lemma
1.1, we have

L log I (t) = (µ+ δ + γ)
(
RL0 − 1

)
+H (t)

≥ (µ+ δ + γ)
(
RL0 − 1

)
− β (N − S (t)) .

(3.8)
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By inserting (3.8) into (3.1) and then using (2.3) and (3.3), it is derived that

lim inf
t→∞

1

t

∫ t

0

I (s) ds ≥ µ

β

(
RL0 − 1

)
a.s.

The proof is complete.

Remark 3.1. In Theorem 3.1, under σ2N +
∫
Z

h2(u)N
1+h(u)N π (du) ≤ β, the disease

goes extinct if RL0 < 1. When RL0 > 1, the disease will persist in mean. In case that
the noise is small, RL0 has similar properties as R0 to the corresponding determin-
istic SIR epidemic model, thus we consider RL0 as the stochastic basic reproduction
number for (1.4). Clearly, RL0 is less than R0 and RS0 , which means that the jump
process has negative effects on prevailing of the epidemics.

Remark 3.2. Let h(u) ≡ 0, model (1.4) reduces to the stochastic SIR model stud-
ied in [5,15], Theorem 3.1 remains consistent with the previously results. However,
different from results in [5, 15], the exact decay rate for extinction is given in this
paper. In this sense, the previously known results are improved and generalized.

As a consequence of Theorem 3.1, we directly have the following corollary.

Corollary 3.1. If RL0 > 1, then the disease modeled by (1.4) with initial value
(S(0), I(0)) ∈ Γ is weakly permanent with probability one, i.e.,

lim sup
t→∞

I (t) > 0 a.s.

4. Non-persistence in mean under RL
0 = 1

In this section, we discuss the condition for non-persistence in mean of the disease.
To begin with, we firstly prove a lemma.

Lemma 4.1. Let λ be a positive constant and F (t) be a function such that lim
t→∞

F (t)
t =

0. If there is a positive function f(t) satisfying

log f (t) ≤ −λ
∫ t

0

f (s) ds+ F (t),

then lim
t→∞

1
t

∫ t
0
f (s) ds = 0.

Proof. The condition lim
t→∞

F (t)
t = 0 implies that for any ε > 0, there is a constant

T , for all t > T
|F (t)| < εt. (4.1)

Denote η (t) =
∫ t

0
f (s) ds, then

log
dη (t)

dt
≤ −λη (t) + F (t).

By using (4.1), integrating both sides of the above equation yields that

eλη(t) ≤ 1 + λ

∫ t

0

eF (s)ds ≤ 1 + λ

∫ T

0

eF (s)ds+ λ

∫ t

T

eεsds,
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and hence

η (t) ≤ 1

λ
log

(
1 + λ

∫ T

0

eF (s)ds+
λ

ε
eε(t−T )

)
.

Then

lim sup
t→∞

η (t)

t
≤ lim sup

t→∞

log
(

2λ
ε e

ε(t−T )
)

λt
= ε.

Note the fact that f(t) is positive, let ε→ 0 we get

lim
t→∞

1

t

∫ t

0

f (s) ds = 0.

The proof is complete.

Theorem 4.1. Assume that Assumption A holds. If the conditions RL0 = 1 and

σ2N +
∫
Z

h2(u)N
1+h(u)N π (du) < β hold, then the disease I is non-persistent in mean,

that is, lim
t→∞

1
t

∫ t
0
I (s) ds = 0 a.s.

Proof. Denote λ0 = β − σ2N −
∫
Z

h2(u)N
1+h(u)N π (du), then λ0 > 0 and

L log I (t) ≤ −λ0 (N − S (t)) . (4.2)

Inserting (4.2) into (3.1), by (2.3) we can show that

log I (t) ≤ −λ0 (µ+ δ + γ)

µ

∫ t

0

I (s)ds+ F (t) ,

where F (t) = S (t) + I(t) − S (0) − I(0) + log I (0) + M1 (t) + M2 (t) satisfying

lim
t→∞

F (t)
t = 0 a.s. Then by applying Lemma 4.1, we complete the proof.

Remark 4.1. Let σ2N +
∫
Z

h2(u)N
1+h(u)N π (du) < β hold, by combining Theorem 3.1

and Theorem 4.1, RL0 > 1 is a sufficient and necessary condition for persistence in
mean of the disease.

5. Computer simulations

In this paper, we use a Lévy jump process on the infection force to model the
abrupt environmental perturbations and consider a stochastic SIR model. In order
to illustrate the theoretical results on the effects of Lévy jumps, we numerically
simulate the solutions of stochastic model (1.4) by the famous Milstein method
with two cases where the disease does not die out under Brown perturbations.

Example 5.1. In model (1.4), set N = 1, β = 0.3, µ = 0.05, γ = 0.1, δ = 0.05, and
π(Z) = 1. The initial value is (S(0), I(0)) = (0.5, 0.1). To show the effect of the
noise on dynamic of the system, we consider the following two cases: (B1) σ = 0.1,
h(u) ≡ 0.2 and (B2) σ = 0.1, h(u) ≡ 0.6.

Compute that R0 = 1.5 > 1, then the disease modeled by the corresponding
deterministic model will persist, and the system converges to its positive equilib-
rium. In case of (B1), we have RS0 = 1.475 and RL0 = 1.386, which means that
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Figure 1. Pathes of model (1.4) in case of (B1) with step size ∆t = 0.001. The blue lines are the samples
of the corresponding deterministic model, the black lines show the pathes of model (1.4) without jumps
and the red lines represent the paths of model (1.4) with jumps.
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Figure 2. Pathes of model (1.4) in case of (B2) with step size ∆t = 0.001.

both noises are so small that the disease still persist due to (II) of Theorem 3.1.
Fig 1 confirms this. When we let the jumps size to be large as in case (B2),

σ2N +
∫
Z

h2(u)N
1+h(u)N π (du) = 0.23 ≤ 0.3 = β and RL0 = 0.825 < 1 hold. Then by (I)

of Theorem 3.1, the disease will die out. See Fig 2. By comparing the given t-
wo cases, it is easy to see that jumps have negative effects on prevailing of the
epidemics.

6. Conclusions

This paper formulates a stochastic SIR epidemic model with the infection force
driven by Lévy jumps. Existence of the globally positive and bounded solution is
proved by constructing the suitable Liaponov function. Then under assumption
that the noises are small, a modified basic reproduction number RL0 for (1.4) is
defined, which has similar properties as R0 to the underlying deterministic SIR
epidemic model. In details,
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• RL0 < 1 and σ2N +
∫
Z

h2(u)N
1+h(u)N π (du) ≤ β, then lim

t→∞
I (t) = 0 a.s.

• RL0 = 1 and σ2N +
∫
Z

h2(u)N
1+h(u)N π (du) < β, then lim

t→∞
1
t

∫ t
0
I (s) ds = 0 a.s.

• RL0 > 1, then lim inf
t→∞

1
t

∫ t
0
I (s) ds ≥ µ

β

(
RL0 − 1

)
> 0 a.s.

Apart from introduction of Lévy jumps, an exact decay rate for extinction is de-
rived which improves the known results. Let Brown noise be small such that

R0 − 1
µ+δ+γ

σ2N2

2 > 1, by [15], the disease will persist in mean. However, when

we choose the jump size to satisfy RL0 < 1 and σ2N +
∫
Z

h2(u)N
1+h(u)N π (du) ≤ β, the

disease will die out exponentially. This means that jumps can change dynamics of
the system significantly.

Remark 6.1. From the above discussions, an interesting and important open prob-
lem arises. That is, whether the disease will die out if one of the following conditions
is satisfied

(A1) RL0 < 1 and σ2N +

∫
Z

h2 (u)N

1 + h (u)N
π (du) ≤ β;

(A2) RL0 = 1 and σ2N +

∫
Z

h2 (u)N

1 + h (u)N
π (du) ≥ β.

Finally, we mention that, basic on models in [3,8,9,14,16–19], more generalized
epidemic models with jumps will be formulated by introducing jumps into the infec-
tion force. Then the analogue of the basic reproduction number for thus established
model can be obtained respectively by using the method given in this paper.
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