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Abstract In this paper, a delayed predator-prey system with Holling type
III functional response incorporating a prey refuge and selective harvesting
is considered. By analyzing the corresponding characteristic equations, the
conditions for the local stability and existence of Hopf bifurcation for the sys-
tem are obtained, respectively. By utilizing normal form method and center
manifold theorem, the explicit formulas which determine the direction of Hopf
bifurcation and the stability of bifurcating period solutions are derived. Fi-
nally, numerical simulations supporting the theoretical analysis are given.
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1. Introduction

In recent years, predator-prey system as the fundamental structure in population
dynamics that has attracted much attention by researchers [1,3,10,12–14,19,20]. In
these works, there are many factors which affect dynamical properties of predator-
prey system such as time delay, functional response, stage structure, harvesting
and prey refuge, etc., especially the joint effect of above factors. In [10], Li et al.
considered a delayed predator-prey model with Holling type III functional response
and stage structure for the prey:

ẋ1(t) = ax2(t)− r1x1(t)− bx1(t),

ẋ2(t) = bx1(t)− r2x2(t)− b1x
2
2(t)−

a1x
2
2(t)y(t)

1 +mx2
2(t)

, (1.1)

ẏ(t) =
a2x

2
2(t− τ)y(t− τ)

1 +mx2
2(t− τ)

− ry(t),

where x1(t), x2(t) represent the densities of the immature prey and the mature
prey at time t, respectively; y(t) represents the density of the predator at time t.
All the parameters in system (1.1) are assumed positive. a is the birth rate of the
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immature prey, b denotes the rate of immature prey becoming mature prey, b1 is
the intraspecific competition coefficient of the mature prey, r1 and r2 are the death
rates of the immature and the mature prey, respectively. r is the death rate of
the predator, a1 is the capturing rate, a2

a1
is the conversion rate of the predator, m

is the half capturing saturation constant, and τ denotes a time delay due to the
gestation of the predator. In [10], Li et al. was concerned with the combined effect
of stage structure for the prey, Holling type III functional response and time delay
in a predator-prey model.

Recently, the qualitative analysis of predator-prey systems incorporating a prey
refuge has been developed by many scholars [5, 8, 11, 16, 18, 21]. It is well known
that the refuge applied by prey has a stabilizing effect on the considered interactions
and prey extinction can be prevented by the addition refuges. In [16], Sharma and
Samanta studied a predator-prey Leslie-Gower model with disease in prey incorpo-
rating a prey refuge, they analyzed the existence of various equilibrium points and
stability of the system at those equilibrium points.

In addition, the harvesting has an important impact on the dynamics of the
systems [2, 4, 9, 22, 23]. In a harvesting system, the aim is to determine how much
we can harvest without altering dangerously the harvested population. Gupta et
al. [4] and Yuan et al. [22] described predator-prey models with harvesting for prey
and discussed the related systems’ dynamical behaviors.

In this paper, based on the above discussions and motivated by the work of
Li et al. [10], we consider the following predator-prey system with intraspecific
competition of the immature prey, a prey refuge, selective harvesting and two delays:

ẋ1(t) = ax2(t)− r1x1(t)− bx1(t)− cx2
1(t),

ẋ2(t) = bx1(t)− r2x2(t)− b1x2(t)x2(t− τ1)−
a1(1−m)2x2

2(t)y(t)

1 + r(1−m)2x2
2(t)

, (1.2)

ẏ(t) =
a2(1−m)2x2

2(t− τ2)y(t− τ2)

1 + r(1−m)2x2
2(t− τ2)

− r3y(t)− qEy(t− τ2),

where x1(t), x2(t) represent the densities of the immature prey and the mature
prey at time t, y(t) represents the density of the predator at time t, respectively.
The parameters a, b, a1, a2, b1, r1 and r2 are defined as in system (1.1). c is the
intraspecific competition of the immature prey, r is the half capturing saturation
constant, m is a constant number of prey using refuges, which protects m of prey
from predation. r3 is the death rate of the predator, q is the catch-ability coefficient
of the predator species, E is the harvesting effort, τ1 is the feedback delay of the
mature prey, and τ2 is a constant representing the assumption that the harvesting
begins to occur after a certain age or size.

The initial conditions for system (1.2) take the form of

x1(0) > 0, x2(0) > 0, y(0) > 0. (1.3)

According to the fundamental theory of functional differential equations [6], the
system (1.2) has a unique solution (x1(t), x2(t), y(t)) satisfying initial conditions
(1.3). It is easy to show that all solutions of system (1.2) with initial conditions
(1.3) are defined on [0,+∞) and remain positive for all τ1 ≥ 0 and τ2 ≥ 0.

The organization of this paper is as follows. In section 2, the local stability
of the interior equilibrium and the existence of Hopf bifurcation for system (1.2)
are discussed. The formulas for determining the direction of Hopf bifurcation and
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the stability of bifurcating period solutions are derived in section 3. In section 4,
numerical simulations are carried out to illustrate the validity of the main results.
Finally, a brief conclusion is given.

2. Local stability and Hopf bifurcation

It is obvious that system (1.2) has a unique interior equilibrium E∗(x∗
1, x

∗
2, y

∗),
where

x∗
1 =

−(r1 + b) +
√
(r1 + b)2 + 4acx∗

2

2c
,

x∗
2 =

√
r3 + qE

(1−m)2(a2 − rr3 − rqE)
,

y∗ =
(bx∗

1 − r2x
∗
2 − b1(x

∗
2)

2)(1 + r(1−m)2(x∗
2)

2)

a1(1−m)2(x∗
2)

2
,

if the following conditions satisfied:

(H1) : a2 − rr3 − rqE > 0, bx∗
1 > r2x

∗
2 + b1(x

∗
2)

2.

In this section, we only investigate the local stability of linearized system at
the interior equilibrium and the existence of Hopf bifurcations for the system (1.2).
Since the biological meaning of the interior equilibrium imply that immature prey,
mature prey and predator all exist.

Let x̄1(t) = x1(t)−x∗
1, x̄2(t) = x2(t)−x∗

2, ȳ(t) = y(t)− y∗and still denote x̄1(t),
x̄2(t), ȳ(t), respectively. Using Taylor expansion to expand the system (1.2) at the
interior equilibrium E∗(x∗

1, x
∗
2, y

∗), we have

ẋ1(t) =a11x1(t) + a12x2(t) +
∑

i+j≥2

f
(ij)
1 xi

1(t)x
j
2(t),

ẋ2(t) =a21x1(t) + a22x2(t) + a23y(t) + b22x2(t− τ1)

+
∑

i+j+k+l≥2

f
(ijkl)
2 xi

1(t)x
j
2(t)y

k(t)xl
2(t− τ1), (2.1)

ẏ(t) =a33y(t) + b32x2(t− τ2) + b33y(t− τ2)

+
∑

i+j+k≥2

f
(ijk)
3 yi(t)xj

2(t− τ2)y
k(t− τ2),

where

a11 = −r1 − b− 2cx∗
1, a12 = a, a21 = b, a22 = −r2 − b1x

∗
2 −

2a1(1−m)2x∗
2y

∗

(1 + r(1−m)2(x∗
2)

2)2
,

a23 = − a1(1−m)2(x∗
2)

2

1 + r(1−m)2(x∗
2)

2
, a33 = −r3, b22 = −b1x

∗
2, b32 =

2a2(1−m)2x∗
2y

∗

(1 + r(1−m)2(x∗
2)

2)2
,

b33 = r3,

f
(ij)
1 =

1

i!j!

∂i+jf1

∂xi
1(t)∂x

j
2(t)

|(x∗
1, x

∗
2, y

∗) ,
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f
(ijkl)
2 =

1

i!j!k!l!

∂i+j+k+lf2

∂xi
1(t)∂x

j
2(t)∂y

k(t)xl
2(t− τ1)

|(x∗
1, x

∗
2, y

∗) ,

f
(ijk)
3 =

1

i!j!k!

∂i+j+kf3

∂yi(t)∂xj
2(t− τ2)yk(t− τ2)

|(x∗
1, x

∗
2, y

∗) ,

f1 = ax2(t)− r1x1(t)− bx1(t)− cx2
1(t),

f2 = bx1(t)− r2x2(t)− b1x2(t)x2(t− τ1)−
a1(1−m)2x2

2(t)y(t)

1 + r(1−m)2x2
2(t)

,

f3 =
a2(1−m)2x2

2(t− τ2)y(t− τ2)

1 + r(1−m)2x2
2(t− τ2)

− r3y(t)− qEy(t− τ2).

Then we can get the linearized system of system (2.1) as following:

ẋ1(t) = a11x1(t) + a12x2(t),

ẋ2(t) = a21x1(t) + a22x2(t) + a23y(t) + b22x2(t− τ1), (2.2)

ẏ(t) = a33y(t) + b32x2(t− τ2) + b33y(t− τ2).

Therefore, the corresponding characteristic equation of system (2.2) is given by

λ3 +m2λ
2 +m1λ+m0 + (n2λ

2 + n1λ+ n0)e
−λτ1

+ (p2λ
2 + p1λ+ p0)e

−λτ2 + (q1λ+ q0)e
−λ(τ1+τ2) = 0, (2.3)

where

m0 = a33(a12a21 − a11a22),m1 = a11a22 + a11a33 + a22a33 − a12a21,

m2 = −(a11 + a22 + a33), n0 = −a11a33b22, n1 = (a11 + a33)b22, n2 = −b22,

p0 = −a11a22b33 + a11a23b32 + a12a21b33, p1 = a22b33 + a11b33 − a23b32, p2 = −b33,

q0 = −a11b22b33, q1 = b22b33.

In order to investigate the distribution of roots of the transcendental equation
(2.3), we use the corollary 2.4 of Ruan and Wei [15]. Due to system (1.2) has two
time delays, that is, τ1 and τ2, so we consider the following different cases.

Case 1: τ1 = τ2 = 0, the characteristic equation (2.3) reduces to

λ3 +m12λ
2 +m11λ+m10 = 0, (2.4)

where m10 = m0 + n0 + p0 + q0,m11 = m1 + n1 + p1 + q1,m12 = m2 + n2 + p2.
It is not difficult to verify that m10 > 0,m12 > 0 , thus, all the roots of Eq.(2.4)

have negative real parts if the following condition holds:

(H11) : m11m12 > m10.

Namely, the equilibrium E∗(x∗
1, x

∗
2, y

∗) is locally asymptotically stable when the
condition (H11) satisfies.

Case 2: τ1 > 0, τ2 = 0. On substituting τ2 = 0, Eq. (2.3) reduces to

λ3 +m22λ
2 +m21λ+m20 + (n22λ

2 + n21λ+ n20)e
−λτ1 = 0, (2.5)

where m20 = m0+p0,m21 = m1+p1,m22 = m2+p2, n20 = n0+q0, n21 = n1, n22 =
n2.
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For ω1 > 0, suppose iω1 being a root of Eq.(2.5), and separate real and imaginary
parts, we get

n21ω1 sinω1τ1 + (n20 − n22ω
2
1) cosω1τ1 = m22ω

2
1 −m20,

n21ω1 cosω1τ1 − (n20 − n22ω
2
1) sinω1τ1 = ω3

1 −m21ω1. (2.6)

Which leads to

ω6
1 + e22ω

4
1 + e21ω

2
1 + e20 = 0, (2.7)

where e20 = m2
20−n2

20, e21 = m2
21−n2

21−2m20m22+2n20n22, e22 = m2
22−n2

22−2m21.
Let ω2

1 = v1, then Eq.(2.7) becomes

v31 + e22v
2
1 + e21v1 + e20 = 0. (2.8)

Denote

f1(v1) = v31 + e22v
2
1 + e21v1 + e20. (2.9)

Since f1(0) = e20, lim
v1→+∞

f1(v1) = +∞, and from Eq.(2.9), we have

f ′
1(v1) = 3v21 + 2e22v1 + e21. (2.10)

After discussion about the roots of Eq.(2.10) is similar to that in [17], we have
the following lemma.

Lemma 2.1. For the polynomial equation (2.8), we have the following results:

(i) If (H21) e20 ≥ 0,∆ = e222−3e21 ≤ 0 holds, then Eq.(2.8) has no positive root;

(ii) If (H22) e20 ≥ 0,∆ = e222 − 3e21 > 0, v∗1 = −e21+
√
∆

3 > 0 and f1(v
∗
1) ≤ 0 or

(H23) e20 < 0 holds, then Eq.(2.8) has positive root.

Suppose that Eq.(2.8) has positive roots. Without loss of generality, we assume
that it has three positive roots, which are denoted by v11, v12and v13. Then Eq.(2.7)
has three positive roots ω1k =

√
v1k, k = 1, 2, 3. The corresponding critical value of

time delay τ
(j)
1k is

τ
(j)
1k =

1

ω1k
arccos

{
A24ω

4
1k +A22ω

2
1k +A20

B24ω4
1k +B22ω2

1k +B20

}
+

2πj

ω1k
, (2.11)

where A20 = −m20n20, A22 = n20m22+n20m20−n21m21, A24 = n21−m22n22, B20 =
n2
20, B22 = n2

21 − 2n20n22, B24 = n2
22.

Thus ±ω1k is a pair of purely imaginary roots of Eq.(2.5) with τ1 = τ
(j)
1k , and

let τ10 = min{τ (0)1k }, (k = 1, 2, 3 · · · ), ω10 = ω1k0
.

According to the Hopf Bifurcation Theorem [7,24], we need to verify the transver-
sality condition. Differentiating Eq.(2.5) with respect to τ1, and noticing that λ is
a function of τ1, we obtain

(
dλ

dτ1
)−1 = − 3λ2 + 2m22λ+m21

λ(λ3 +m22λ2 +m21λ+m20)
+

2n22λ+ n21

λ(n22λ2 + n21λ+ n20)
− τ1

λ
. (2.12)
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Which leads to

Re(
dλ

dτ1
)−1 =Re(− 3λ2 + 2m22λ+m21

λ(λ3 +m22λ2 +m21λ+m20)
)λ=iω10+

Re(
2n22λ+ n21

λ(n22λ2 + n21λ+ n20)
)λ=iω10

=
3ω4

10 + 2(m2
22 − n2

22 − 2m21)ω
2
10 +m2

21 − 2m20m22

(ω3
10 −m21ω10)2 + (m20 −m22ω2

10)
2

−

2n2
22ω

2
10 + n2

21 − 2n20n22

(n22ω2
10 − n20)2 + n2

21ω
2
10

.

From Eq.(2.6), we have

(ω3
10 −m21ω10)

2 + (m20 −m22ω
2
10)

2 = (n22ω
2
10 − n20)

2 + n2
21ω

2
10. (2.13)

Noting that
{

d(Reλ)
dτ1

}
λ=iω10

and
{
Re( dλ

dτ1
)−1

}
λ=iω10

have the same sign, then

sign

{
d(Reλ)

dτ1

}
λ=iω10

= sign

{
Re(

dλ

dτ1
)−1

}
λ=iω10

=
3(ω2

10)
2 + 2e22ω

2
10 + e21

n2
21ω

2
10 + (n22ω2

10 − n20)2

=
f ′
1(ω

2
10)

n2
21ω

2
10 + (n22ω2

10 − n20)2
.

(2.14)

Therefore,
{

d(Reλ)
dτ1

}
λ=iω10

̸= 0 if the following condition holds:

(H24) : f ′
1(ω

2
10) ̸= 0.

According to the above analysis, we have the following results.

Theorem 2.1. For system (1.2), τ2=0.
(i) If (H21) holds, then the interior equilibrium E∗(x∗

1, x
∗
2, y

∗) is asymptotically sta-
ble for all τ1 ≥ 0.
(ii) If (H22) or (H23) and (H24) holds, then the interior equilibrium E∗(x∗

1, x
∗
2, y

∗)
is asymptotically stable for all τ1 ∈ [0, τ10) and unstable for τ1 > τ10. Further-
more, the system (1.2) undergoes a Hopf bifurcation at the interior equilibrium
E∗(x∗

1, x
∗
2, y

∗) when τ1 = τ10.

Case 3: τ1 = 0, τ2 > 0. The calculation is very similar to case 2, we obtain the
following results.

Theorem 2.2. For system (1.2), τ1=0. The interior equilibrium E∗(x∗
1, x

∗
2, y

∗) is
asymptotically stable for all τ2 ∈ [0, τ20) and unstable for τ2 > τ20. Furthermore, the
system (1.2) undergoes a Hopf bifurcation at the interior equilibrium E∗(x∗

1, x
∗
2, y

∗)
when τ2 = τ20, where τ20 represents the minimum critical value of time delay τ2 for
the occurrence of Hopf bifurcation when τ1 = 0.

Case 4: τ1 = τ2 = τ ̸= 0.
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Theorem 2.3. For system (1.2), τ1 = τ2 = τ ̸= 0. The interior equilibrium
E∗(x∗

1, x
∗
2, y

∗) is asymptotically stable for all τ ∈ [0, τ0) and unstable for τ > τ0.
Furthermore, the system (1.2) undergoes a Hopf bifurcation at the positive equilib-
rium E∗(x∗

1, x
∗
2, y

∗) when τ = τ0, where τ0 represents the minimum critical value of
time delay τ for the occurrence of Hopf bifurcation.

Case 5: τ1 > 0, τ2 ∈ [0, τ20) and τ1 ̸= τ2.
We consider Eq.(2.3) with τ2 in its stable interval, and τ1 is regarded as the

parameter. Let iω1∗(ω1∗ > 0) be the root of Eq.(2.3), then we obtain

E51 sinω1∗τ1 + E52 cosω1∗τ1 = E53,

E51 cosω1∗τ1 − E52 sinω1∗τ1 = E54, (2.15)

where

E51 = n1ω1∗ − q0 sinω1∗τ2 + q1ω1∗ cosω1∗τ2,

E52 = n0 − n2ω
2
1∗ + q0 cosω1∗τ2 + q1ω1∗ sinω1∗τ2,

E53 = m2ω
2
1∗ −m0 − p1ω1∗ sinω1∗τ2 + (p2ω

2
1∗ − p0) cosω1∗τ2,

E54 = ω3
1∗ −m1ω1∗ − p1ω1∗ cosω1∗τ2 − (p2ω

2
1∗ − p0) sinω1∗τ2.

From Eq.(2.15), we have

ω6
1∗ + e52ω

4
1∗ + e51ω

2
1∗ + e50 + (c54ω

4
1∗ + c52ω

2
1∗ + c50) cosω1∗τ2

+ (c55ω
5
1∗ + c53ω

3
1∗ + c51ω1∗) sinω1∗τ2 = 0, (2.16)

where

e50 = m2
0 + p20 − n2

0 − q20 , e51 = m2
1 + p21 − n2

1 − q21 + 2n0n2 − 2m0m2 − 2p0p2,

e52 = m2
2 + p22 − n2

2 − 2m1, c50 = 2m0p0 − 2n0q0,

c51 = 2p1m0 − 2p0m1 + 2n1q0 − 2n0q1,

c52 = 2p1m1 − 2p0m2 + 2n2q0 − 2m0p2 − 2n1q1,

c53 = 2m1p2 + 2n2q1 + 2p0 − 2p1m2, c54 = 2m2p2 − 2p1, c55 = −2p2.

In order to give the main results, we give the following assumption.
(H51): Equation (2.16) has at least finite positive root.

Suppose that (H51) holds, we denote the positive roots of Eq.(2.16) as ω
(1)
1∗

,

ω
(2)
1∗

, ω
(3)
1∗

, ω
(4)
1∗

, ω
(5)
1∗

and ω
(6)
1∗

. For every ω
(i)
1∗
(i = 1, 2, 3, 4, 5, 6), the corresponding

critical value of time delay τ
(j)
1i , j = 1, 2, 3 . . . is

τ
(j)
1i =

1

ω1∗

arccos

{
E51E54 + E52E53

E2
51 + E2

52

+ 2πj

}
ω1∗=ωi

1∗

, i = 1, 2, 3, 4, 5, 6; j = 0.1, 2 . . .

(2.17)

Let τ ′10 = min
{
τ
(0)
1i |i = 1, 2, . . . 6; j = 0, 1, 2 . . .

}
, ω′

10 is the corresponding root

of Eq.(2.16) with τ ′10.
In the following, we differentiate the two sides of Eq.(2.3) with respect to τ1 to

verify the transversality condition.
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Taking the derivative of λ with respect to τ1 in Eq.(2.3) and substituting λ =
iω′

10, we get

Re(
dλ

dτ1
)−1
λ=iω′

10
= Re(

A′ +B′i

C ′ +D′i
) =

A′C ′ +B′D′

C ′2 +D′2 , (2.18)

where

A′ =m1 − 3(ω′
10)

2 + 2n2ω
′
10 sinω

′
10τ

′
10 + n1 cosω

′
10τ

′
10

+ sinω′
10τ2(2p2ω

′
10 − p1ω

′
10τ2 − q1 sinω

′
10τ

′
10)

+ cosω′
10τ2[p2τ2(ω

′
10)

2 + p1 − p0τ2 + q1 cosω
′
10τ

′
10],

B′ =2m2ω
′
10 − n1 sinω

′
10τ

′
10 + 2n2ω

′
10 cosω

′
10τ

′
10

+ sinω′
10τ2[−p1 + p0τ2 − p2τ2(ω

′
10)

2 − q1 cosω
′
10τ

′
10]

+ cosω′
10τ2(−p1ω

′
10τ2 + 2p2ω

′
10 − q1 sinω

′
10τ

′
10),

C ′ =[n0ω
′
10 − n2(ω

′
10)

3] sinω′
10τ

′
10 − n1(ω

′
10)

2 cosω′
10τ

′
10 + sinω′

10τ2

× [q0ω
′
10 cosω

′
10τ

′
10 + q1(ω

′
10)

2 sinω′
10τ

′
10] + cosω′

10τ2

× [q0ω
′
10 sinω

′
10τ

′
10 − q1(ω

′
10)

2 cosω′
10τ

′
10],

D′ =[n0ω
′
10 − n2(ω

′
10)

3] cosω′
10τ

′
10 + n1(ω

′
10)

2 sinω′
10τ

′
10 + cosω′

10τ2

× [q1(ω
′
10)

2 sinω′
10τ

′
10 + q0ω

′
10 cosω

′
10τ

′
10] + sinω′

10τ2

× [−q0ω
′
10 sinω

′
10τ

′
10 + q1(ω

′
10)

2 cosω′
10τ

′
10].

Obviously, if the following condition holds: (H52)A′C ′ +B′D′ ̸= 0.

Then, we have
{

d(Reλ)
dτ1

}
λ=iω′

10

̸= 0. By the above analysis, we have the following

theorem.

Theorem 2.4. For system (1.2), τ1 > 0, τ2 ∈ [0, τ20) and τ1 ̸= τ2. Suppose that
the conditions (H51) and (H52) hold, then the interior equilibrium E∗(x∗

1, x
∗
2, y

∗) is
asymptotically stable for all τ1 ∈ [0, τ ′10) and unstable for τ1 > τ ′10. Furthermore, the
system (1.2) undergoes a Hopf bifurcation at the interior equilibrium E∗(x∗

1, x
∗
2, y

∗)
when τ1 = τ ′10.

3. Direction and stability of Hopf bifurcation

In the previous section, we have shown that the system (1.2) undergoes Hopf bifur-
cation for different combinations of τ1 and τ2. In this section, we shall study the
direction of Hopf bifurcation and the stability of bifurcating periodic solutions of
system (1.2) with respect to τ1 and τ2 ∈ [0, τ20). The theoretical approach we will
apply is based on the normal form theory and center manifold theorem [7]. It is
considered that system (1.2) undergoes Hopf bifurcation at τ1 = τ ′10, τ2 ∈ [0, τ20).
Without loss of generality, we assume that τ ′10 > τ ′2.

Let τ1 = τ ′10+µ, µ ∈ R, t = sτ1, x1(sτ1) = x̂1(s), x2(sτ1) = x̂2(s), y(sτ1) = ŷ(s).
Denotes x1 = x̂1, x2 = x̂2, y = ŷ and t = s, then system (1.2) can be written as a
functional differential equation (FDE) in C = C([−1, 0], R3):

u′(t) = Lµ(ut) + F (µ, ut), (3.1)
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where u(t) = (x1(t), x2(t), y(t))
T ∈ C, and ut(θ) = u(t + θ) = (x1(t + θ), x2(t +

θ), y(t+ θ))T ∈ C, and Lµ : C → R3, F : R× C → R3 are gived by

Lµ(φ) = (τ ′10 + µ)Ãφ(0) + (τ ′10 + µ)B̃φ(− τ ′2
τ ′10

) + (τ ′10 + µ)C̃φ(−1), (3.2)

and

F (µ, φ) = (τ ′10 + µ)(F1, F2, F3)
T , (3.3)

where

φ(θ) = (φ1(θ), φ2(θ), φ3(θ))
T ∈ C,

Ã =


a11 a12 0

a21 a22 a23

0 0 a33

 , B̃ =


0 0 0

0 0 0

0 b32 b33

 , C̃ =


0 0 0

0 b22 0

0 0 0

 ,

F1=a′11φ
2
1(0) + · · · ,

F2=a′21φ
2
2(0)+a′22φ2(0)φ2(−1)+a′23φ2(0)φ3(0)+a′24φ

3
2(0)+a′25φ

2
2(0)φ3(0)+· · · ,

F3=a′31φ
2
2(−

τ ′2
τ ′10

)+a′32φ2(−
τ ′2
τ ′10

)φ3(−
τ ′2
τ ′10

)+a′33φ
3
2(−

τ ′2
τ ′10

)

+a′34φ
2
2(−

τ ′2
τ ′10

)φ3(−
τ ′2
τ ′10

)+· · · ,

and

a′11 = −c, a′21 =
3a1r(1−m)4(x∗

2)
2y∗ − a1(1−m)2y∗

(1 + r(1−m)2(x∗
2)

2)3
, a′22 = −b1,

a′23 = − 2a1(1−m)2x∗
2

(1 + r(1−m)2(x∗
2)

2)2
, a′24 =

4a1r(1−m)4x∗
2y

∗(1− r(1−m)2(x∗
2)

2)

(1 + r(1−m)2(x∗
2)

2)4
,

a′25 =
3a1r(1−m)4(x∗

2)
2 − a1(1−m)2

(1 + r(1−m)2(x∗
2)

2)3
,

a′31 =
−3a2r(1−m)4(x∗

2)
2y∗ + a2(1−m)2y∗

(1 + r(1−m)2(x∗
2)

2)3
,

a′32 =
2a2(1−m)2x∗

2

(1 + r(1−m)2(x∗
2)

2)2
, a′33 =

4a2r(1−m)4x∗
2y

∗(r(1−m)2(x∗
2)

2 − 1)

(1 + r(1−m)2(x∗
2)

2)4
,

a′34 =
−3a2r(1−m)4(x∗

2)
2 + a2(1−m)2

(1 + r(1−m)2(x∗
2)

2)3
.

Hence, by the Riesz representation theorem, there exists a 3×3 matrix function
η(θ, µ) of bounded variation for θ ∈ [−1, 0], such that

Lµφ =

∫ 0

−1

dη(θ, µ)φ(θ), φ ∈ C. (3.4)
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In fact, we can choose

η(θ, µ) =



(τ ′10 + µ)(Ã+ B̃ + C̃), θ = 0,

(τ ′10 + µ)(B̃ + C̃), θ ∈ [− τ ′
2

τ10
, 0),

(τ10 + µ)C̃, θ ∈ (−1,− τ ′
2

τ10
),

0, θ = −1.

(3.5)

For φ ∈ C([−1, 0], R3), define

A(µ)φ =


dφ(θ)
dθ , −1 ≤ θ < 0,∫ 0

−1
dη(θ, µ)φ(θ), θ = 0,

(3.6)

and

Rµ(φ) =

0, −1 ≤ θ < 0,

F (µ, φ), θ = 0.
(3.7)

Then Eq.(3.1) can be transformed into the following operator equation

u′
t = A(µ)ut +R(µ)ut. (3.8)

For ϕ ∈ C([−1, 0], (R3)∗), where (R3)∗ is the 3-dimensional space of row vectors,
we further define the adjoint operator A∗ of A(0):

A∗ϕ(s) =

−dϕ(s)
ds , s ∈ (0, 1],∫ 0

−1
dηT (t, 0)ϕ(−t), s = 0.

(3.9)

For φ ∈ C([−1, 0], R3) and ϕ ∈ C([−1, 0], (R3)∗), define the bilinear form

⟨ϕ(s), φ(s)⟩ = ϕ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ϕ̄(ξ − θ)dη(θ)φ(ξ)dξ, (3.10)

where η(θ) = η(θ, 0), A = A(0) and A∗ are adjoint operators.

From the discussions in Section 2, we know that ±iω′
10τ

′
10 are eigenvalues of

A(0). Thus they are also the eigenvalues of A∗.

Suppose that q(θ) = (1, q2, q3)
T eiω

′
10τ

′
10θ is the eigenvector of A(0) corresponding

to iω′
10τ

′
10 and q∗(s) = 1/ρ(1, q∗2 , q

∗
3)e

iω′
10τ

′
10s is the eigenvector of A∗ corresponding

to −iω′
10τ

′
10. By the direct calculation, we obtain

q2 =
iω′

10 − a11
a12

, q3 =
b32(iω

′
10 − a11)e

−iω′
10τ

′
2

a12(iω′
10 − a33 − b33e−iω′

10τ
′
2)
,

q∗2 = −a11 + iω′
10

a21
, q∗3 =

a23(a11 − iω′
10)

a12(a33 + b33e−iω′
10τ

′
2 + iω′

10)
. (3.11)
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Then, from Eq.(3.10), we have

⟨q∗(s), q(θ)⟩ =q̄∗(0)q(0)−
∫ 0

−1

∫ θ

ξ=0

q̄∗(ξ − θ)dη(θ)q(ξ)dξ

=
1

ρ̄
[1 + q2q̄

∗
2 + q3q̄

∗
3 −

∫ 0

−1

(1, q̄∗2 , q̄
∗
3)θe

iω′
10τ

′
10θdη(θ)(1, q2, q3)

T ]

=
1

ρ̄
[1 + q2q̄

∗
2 + q3q̄

∗
3 + b22τ

′
10q2q̄

∗
2e

−iω′
10τ

′
10

+ τ ′2e
−iω′

10τ
′
2 q̄∗3(b32q2 + b33q3)]. (3.12)

Therefore, we can choose

ρ̄ = 1 + q2q̄
∗
2 + q3q̄

∗
3 + b22τ

′
10q2q̄

∗
2e

−iω′
10τ

′
10 + τ ′2(b32q2 + b33q3)q̄

∗
3e

−iω′
10τ

′
10 , (3.13)

such that ⟨q∗(s), q(θ)⟩ = 1, ⟨q∗(s), q̄(θ)⟩ = 0.
In the remained of this section, by using the algorithms in [7] and using a

similar calculation process in [17], we can get the coefficients used in determining the
direction of Hopf bifurcation and the stability of the bifurcation periodic solutions:

g20 =
2τ ′10
ρ̄

[a′11 + q̄∗2(a
′
21q

2
2 + a′22q

2
2e

−iω′
10τ

′
10 + a′23q2q3)

+ q̄∗3(a
′
31q

2
2e

−2iω′
10τ

′
2 + a′32q2q3e

−2iω′
10τ

′
2)],

g11 =
τ ′10
ρ̄

[2a′11 + q̄∗2(2a
′
21q2q̄2 + a′22q2q̄2(e

−iω′
10τ

′
10 + eiω

′
10τ

′
10) + a′23(q2q̄3 + q̄2q3))

+ q̄∗3(2a
′
31q2q̄2 + a′32(q2q̄3 + q̄2q3))],

g02 =
2τ ′10
ρ̄

[a′11 + q̄∗2(a
′
21q̄

2
2 + a′22q̄

2
2e

iω′
10τ

′
10 + a′23q̄2q̄3)

+ q̄∗3(a
′
31q̄

2
2e

2iω′
10τ

′
2 + a′32q̄2q̄3e

2iω′
10τ

′
2)], (3.14)

g21 =
2τ ′10
ρ̄

[a′11(W
(1)
20 (0) + 2W

(1)
11 (0)) + q̄∗2(a

′
21(2q2W

(2)
11 (0) + q̄2W

(2)
20 (0))

+ a′22(q2W
(2)
11 (−1) + 1

2 q̄2W
(2)
20 (−1) + 1

2 q̄2W
(2)
20 (0)eiω

′
10τ

′
10

+ q2W
(2)
11 (0)e−iω′

10τ
′
10) + a′23(q2W

(3)
11 (0) + 1

2 q̄2W
(3)
20 (0) + q3W

(2)
11 (0)

+1
2 q̄3W

(2)
20 (0))+3a′24q

2
2 q̄2+a′25(q

2
2 q̄3+2q2q̄2q3))+q̄∗3(a

′
31(2q2W

(2)
11 (− τ ′

2

τ ′
10
)e−iω′

10τ
′
2

+ q̄2W
(2)
20 (− τ ′2

τ ′10
)eiω

′
10τ

′
2) + a′32(q2W

(3)
11 (− τ ′2

τ ′10
)e−iω′

10τ
′
2

+ 1
2 q̄2W

(3)
20 (− τ ′

2

τ ′
10
)eiω

′
10τ

′
2 + 1

2 q̄3W
(2)
20 (− τ ′

2

τ ′
10
)eiω

′
10τ

′
2 + q3W

(2)
11 (− τ ′

2

τ ′
10
)e−iω′

10τ
′
2)

+ 3a′33q
2
2 q̄2e

−iω′
10τ

′
2 + a′34(q

2
2 q̄3e

−iω′
10τ

′
2 + 2q2q̄2q3e

−iω′
10τ

′
2))].

However

W20(θ) =
ig20

ω′
10τ

′
10

q(0)eiω
′
10τ

′
10θ +

iḡ02
3ω′

10τ
′
10

q̄(0)e−iω′
10τ

′
10θ + E1e

2iω′
10τ

′
10θ,

W11(θ) = − ig11
ω′
10τ

′
10

q(0)eiω
′
10τ

′
10θ +

iḡ11
ω′
10τ

′
10

q̄(0)e−iω′
10τ

′
10θ + E2. (3.15)
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Where E1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 )T ∈ R3 and E2 = (E

(1)
2 , E

(2)
2 , E

(3)
2 )T ∈ R3 are also

constant vectors and can be determined by the following equations, respectively
2iω′

10 − a11 −a12 0

−a21 2iω′
10 − a22 − b22e

−2iω′
10τ

′
10 −a23

0 −b32e
−2iω′

10τ
′
2 2iω′

10 − a33 − b33e
−2iω′

10τ
′
2

E1=2


H1

H2

H3

 ,


−a11 −a12 0

−a21 −a22 − b22 −a23

0 −b32 −a33 − b33

E2=


P1

P2

P3

 , (3.16)

with

H1 = a′11,H2 = a′21q
2
2 + a′22q

2
2e

−iω′
10τ

′
10 + a′23q2q3,

H3 = a′31q
2
2e

−2iω′
10τ

′
2 + a′32q2q3e

−2iω′
10τ

′
2 ,

P1 = 2a′11, P2 = 2a′21q2q̄2 + a′22q2q̄2(e
−iω′

10τ
′
10 + eiω

′
10τ

′
10) + a′23(q2q̄3 + q̄2q3),

P3 = 2a′31q2q̄2 + a′32(q2q̄3 + q̄2q3).

Therefore, we can calculate g21 and compute the following values:

c1(0) =
i

2ω′
10τ

′
10

(g20g11 − 2 |g11|2 −
|g02|2

3
) +

g21
2

,

µ2 = − Re{c1(0)}
Re{λ′(τ ′10)}

,

β2 = 2Re(c1(0)), (3.17)

T2 = −Im{c1(0)}+ µ2Im{λ′(τ10)}
ω′
10τ

′
10

.

Which determine the properties of bifurcation period solutions at τ = τ ′10 on the
center manifold. From the discussion above, we have the following results.

Theorem 3.1. For system (1.2), the direction of Hopf bifurcation is determined
by the sign of µ2: if µ2 > 0 (µ2 < 0), then the Hopf bifurcation is supercritical
(subcritical). The stability of the bifurcating periodic solutions is determined by the
sign of β2: if β2 < 0 (β2 > 0), the bifurcating periodic solutions are stable (unstable).
The period of the bifurcating periodic solutions is determined by the sign of T2: if
T2 > 0 (T2 < 0), the bifurcating periodic solutions increase (decrease).

4. Numerical examples

In this section, we present some numerical simulations by using Matlab to illustrate
the analytical results, and the corresponding waveform and the phase plots of system
(1.2) are drawn.

Let a = 8, a1 = 5.25, a2 = 4, r1 = 1, r2 = 2, r3 = 1, r = 3, b = 5, b1 = 1,
c = 0.5, m = 0.1, qE = 0.1. Then, we have the following particular example of
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system (1.2):

ẋ1(t) = 8x2(t)− x1(t)− 5x1(t)− 0.5x2
1(t),

ẋ2(t) = 5x1(t)− 2x2(t)− x2(t)x2(t− τ1)−
5.25(1− 0.1)2x2

2(t)y(t)

1 + 3(1− 0.1)2x2
2(t)

, (4.1)

ẏ(t) =
4(1− 0.1)2x2

2(t− τ2)y(t− τ2)

1 + 3(1− 0.1)2x2
2(t− τ2)

− y(t)− 0.1y(t− τ2).

It is not difficult to verify that the (H1) holds, we can get the interior equilibrium
E∗(1.6346, 1.3929, 2.3875).

For τ1 > 0,τ2 = 0, we obtain ω10 = 1.1497, τ10 = 0.7842. From Theorem 2.1, we
know that the interior equilibrium E∗ is asymptotically stable when τ1 ∈ [0, τ10),
when the time delay τ1 passes through the critical value τ10, the interior equilibrium
E∗ will lose its stability and a Hopf bifurcation occurs, and a family of periodic
solutions bifurcate from the interior equilibrium E∗. The corresponding waveform
and the phase plots are depicted in Figure 1 and Figure 2. Similarly, we have
ω20 = 0.3924, τ20 = 2.2209.
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Figure 1. When τ2 = 0, E∗ is asymptotically
stable for τ1 = 0.65 < τ10 = 0.7842.
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Figure 2. When τ2 = 0, E∗ undergoes a Hopf
bifurcation for τ1 = 0.8 > τ10 = 0.7842.

For τ1 = τ2 = τ ̸= 0, we obtain ω0 = 0.8051, τ0 = 0.6326. From Theorem 2.3, we
know that, when the time delay τ increases from zero to τ0, the interior equilibrium
E∗ is asymptotically stable. Once the time delay τ passes through the critical value
τ0, the interior equilibrium E∗ will lose its stability and a Hopf bifurcation occurs.

For τ1 > 0, τ ′2 = 1.8 ∈ [0, τ20], we have ω
′
10 = 0.3780, τ ′10 = 0.3619. According to

Theorem 2.4, E∗ is asymptotically stable when τ1 ∈ [0, τ ′10) and unstable when τ1 >
τ ′10. After the computation of Eq.(3.17), we obtain c1(0) = −1.9358−8.0829i, µ2 =
54.6836, β2 = −3.8716. From theorem 3.1, the Hopf bifurcation is supercritical,
the bifurcating periodic solutions are stable, which can be depicted in Figure 3 and
Figure 4.

These numerical simulation results constitute excellent validations of our theoreti-
cal analysis. Due to the bifurcation periodic solutions are stable, the species in
system (1.2) can coexist in an oscillatory mode from the viewpoint of biology.
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Figure 3. E∗ is asymptotically stable for τ1 =

0.21 < τ ′
10 = 0.3619 and τ ′

2 = 1.8.
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Figure 4. E∗ undergoes a Hopf bifurcation for

τ1 = 0.4 > τ ′
10 = 0.3619 and τ ′

2 = 1.8.

5. Conclusions

In this paper, we have incorporated two time delays, a prey refuge and selective har-
vesting into a stage structured predator-prey system. By analyzing the associated
characteristic equation, its local stability and the existence of Hopf bifurcation with
respect to delay are established. By using the normal form theory and center mani-
fold theorem, the explicit formulas which determine the direction of Hopf bifurcation
and stability of the bifurcating periodic solution are derived. The numerical results
which the Hopf bifurcation is supercritical and the bifurcation periodic solutions
are stable are in accord with the theoretical analysis.

In addition, stage structure for the prey is considered in this paper due to the
lack of hunting ability for the immature prey. If we investigate stage structure for
the predator or stage structure for the prey and the predator together, what will
the dynamical behavior of system is? This is very valuable from the perspective of
biological diversity, and we leave it for the future work.
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