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EXPLICIT EXACT PERIODIC WAVE
SOLUTIONS AND THEIR LIMIT FORMS FOR
A LONG WAVES-SHORT WAVES MODEL*

Bin He!' and Qing Meng?

Abstract A long waves-short waves model is studied by using the approach
of dynamical systems. The sufficient conditions to guarantee the existence
of solitary wave, kink and anti-kink waves, and periodic wave in different re-
gions of the parametric space are given. All possible explicit exact parametric
representations of above traveling waves are presented. When the energy of
Hamiltonian system corresponding to this model varies, we also show the con-
vergence of the periodic wave solutions, such as the periodic wave solutions
converge to the solitary wave solutions, kink and anti-kink wave solutions, and
periodic wave solutions, respectively.
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1. Introduction

Nonlinear partial differential equations (NPDESs) including the KdV equation, KP e-
quation, K(m, n) equation, sine-Gordon equation and long waves-short waves model
arising in plasma physics, chemistry, mechanics, biology and optics, etc. To investi-
gate the exact solutions of NPDEs, lots of methods have been proposed, such as the
inverse scattering method [12], Darboux and Bécklund transformations [18], Hiro-
ta bilinear method [1,13], Lie symmetry analysis method [4, 11, 16,23, 31], ansatz
method [8,30], G’ /G-expansion method [2,3], Kudryashov method [21,28], approach
of dynamical systems [14,19,22,24,29] and so on.
In this paper, we consider a long waves-short waves model

A, =20 (|BJ? ,
=20 (|B1") "
B, = iByy — AyB +iA’B — 2i0B |B|?,

where i2 = —1,A = A(x,t) represents the amplitude of the long wave and B =
B(z,t) the envelope of the short wave. Equation (1.1) was presented by Newell [26,
27] and has been studied by some authors [6,7,9,10,15,17,20,25,32,33]. Chowdhury
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and Chanda [6,7] proved the complete integrability, took the Weiss-Tabor-Carnevale
approach to the Painlevé analysis and considered its integrabilty and Backlund
transformation. Equation (1.1) has important applications in plasma physics [25]
and fluid mechanics [10]. For its physical relevance was shown in [9]. In [17],
it was shown that (1.1) is associated with a model equation proposed by Yajima
and Oikawa through a Muira transformation. The nonsmooth behaviors of solitary
waves for this equation are investigated by qualitative techniques in dynamical
systems [32]. A closed multi-soliton solution formula and some novel solutions are
obtained by Darboux transformation method [15,20]. Zhu and Kuang [33] also
shown that the equation (1.1) for ¢ = 1 has the cusp solitons by using the 0-
dressing method. Unfortunately, to our knowledge, the dynamic behaviors have
not been studied and not much is known for the solutions of equation (1.1) in the
previous literatures.

In this paper, we shall consider the dynamic behaviors, present some new exact
explicit traveling wave solutions of equation (1.1), and investigate the relations of the
traveling wave solutions using the approach of dynamical systems [14,19,22,24,29].

We consider the travelling wave solution of the form:

Az, t) = A(€), Bla,t) = ¢(£e' WO ¢ =g —ct, (1.2)

where A(€),d(£), (&) are real-valued functions, ¢ (# 0) is the wave speed, w is
a parameter and i> = —1. Substituting (1.2) into the first equation of (1.1) and
integrating the obtained equation once, we have

A©) =g~ 25(6), (13)

where g is the integral constant. Substituting (1.2) and (1.3) into the second equa-
tion of (1.1) and decomposing the real and imaginary parts, we obtain

ed! + 200 + 0" — L Pg! =0,
i 2 29 3 4o? 5 / 2 (1.4)
0"+ @t g0 =20 (14 2) 60+ 20" ot - 60" =0

where “/” is the derivative with respect to &.
Multiplying both sides of the first equation of (1.4) by ¢ and integrating with
respect to £ and setting the integral constant is zero, we have

v=2¢_1 (15)
c 2

Substituting (1.5) into the second equation of (1.4), yields equation

9" =p (6" + ad® + ) ¢, (1.6)
Wherep:—%g,az—%q, :%(w—ng—%cQ).
From (1.6), we get the following planar dynamical system:
do dy
=y, —=p(¢*+ap”+8)¢ (1.7)

a ~ Vg
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with the first integral

H(p,y) =" ~ 5p (26 + 306 + 68) 7 = h (19)

For a fixed h, the level curve H(¢,y) = h defined by (1.8) determines a set of
invariant curves of system (1.7) which contains different branches of curves. As h is
varied, it defines different families of orbits of system (1.7) with different dynamical
behaviors.

The reminder of this paper is organized as follows. In Section 2, we consider
bifurcation sets and phase portraits of (1.7). In Section 3, we state and prove our
main results for equation (1.1). Some numerical simulations for the main results
and a short conclusion will be given in Section 4 and Section 5, respectively.

2. Bifurcation sets and phase portraits of (1.7)

Definition 2.1 (see [19]). Suppose that ¢(§) is a continuous solution of system
(1.7) for £ € (—o0,+00) and lim ¢(¢) = p, lim ¢(£) = g. Recall that ¢(§) is
§—+o0 §——o0
called a solitary wave solution if p = ¢, ¢(§) is called a kink (or anti-kink) solution

if p#q.

Usually, a solitary wave solution of (1.6) corresponds to a homoclinic orbit of
system (1.7), a kink (or anti-kink) wave solution of (1.6) corresponds to a hetero-
clinic orbit (or the so-called connecting orbit) of system (1.7). Similarly, a periodic
orbit of system (1.7) corresponds to a periodic wave solution of (1.6). Thus, to
investigate all possible solitary wave, periodic wave, kink and anti-kink wave solu-
tions of (1.6), we need to find all periodic annuli, homoclinic and heteroclinic orbits
of system (1.7), which depend on the system parameters p, o and 3.

System (1.7) has three equilibrium points at (0,0), (£¢1,0) when 8 < 0, has
three equilibrium points at (0,0), (:I:\/—ia, 0) when o < 0 and 8 = 0, has three
equilibrium points at (0,0), (+3v/—2a,0) when a < 0 and 3 = }a?, has five equi-
librium points at (0,0), (£¢1,0), (£¢2,0) when o < 0 and 0 < B < 1a?, otherwise,

has only one equilibrium point at (0,0), where ¢19 = %\/2 (—a + /a2 — 4ﬂ>.

From (1.8), we have

p (—a + \/M) (—a2 +ay/a? — 48 + 85)

hle(iQﬁlaO):* 24 ;
p(a—l— Va2 —4ﬁ) (a2 + ay/a? —4B—86>
he = H(£¢2,0) = — o .

Let M(¢e,0) be the coefficient matrix of the linearized system of (1.7) at equi-
librium point (¢, 0) and J(¢pe,0) = det (M (¢.,0)), then we have

J(0,0) = —pB,
J (£V=a,0) = —p (20* + B)

J (i;\/% 0) =p Cla? - 6) ,
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J(£61,0) = p (48— a* + av/a? = 45) |
J (£65,0) = p (48 — o — a/a? = 15).

For an equilibrium point (¢, 0) of system (1.7), we know that (¢, 0) is a saddle
point if J(¢e,0) < 0, a center point if J(¢.,0) > 0, a cusp if J(¢e,0) = 0 and the
Poincaré index of (¢, 0) is zero.

By using the properties of equilibrium points and the approach of dynamical
systems, we can show that bifurcation sets and phase portraits of (1.7) are as drawn
in Fig. 1.

RIA
4

()
Figure 1. Bifurcation sets and phase portraits of (1.7) for p < 0. Parameters: (a) 8 < 0. (b) a < 0,8 =

O.(c)a<0,0<,8<%a2.(d)a<0,6:%o¢2.()a<0,16a <B<1 2 (f)oc<0,8:4a (g)
a<0,ﬁ>%a2ora20,ﬁ20.

@ h

3. Main results and their proofs

Pay attention to that sn(-, k), II(+,-, k) are the Jacobian elliptic function and the
normal elliptic integral of the third kind, respectively, with the modulus k, am(uq, k)
reads amplitude uy [5], we state some results of equation (1.1) as follows.

Proposition 3.1. Let

2 1
O = §¢3¢4\/ —3p, Qo = M =3p (V3 +73),

2

2.2
ky = 5 (0 —73) o = 72 2’¢34 \/:|E3a+\/m7

i (V3 +13) Y5 +3

ba(— ety = 2851 e <¢§ + 04 — (43 — 6F) cosh (i (x - ct))) c

<, 2= 62— (2 + %) cosh ((w—cp)) ) 2
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2 2 2
vl = ct) = PO (e — ) ) o) = (T2 4 ) - )

and y1,7v2,73 (3 < v2 < Y1) satisfy equation
2 2\(%2 _ A2V (%2 A2 1,3 o 2 3h
(X7 =)(X° =) (X7 +y3) = (X + 50X +36 ) X7+ s hy <h <0,
then when B < 0, equation (1.1) has two solitary wave solutions

o 404243
A1) =9~ T T oD com(Cu (e — ) — (B = 63))’
\/§¢3¢4 ei(wl(zfct)fwt)
V(8% + 63) cosh(Qu (z — ct)) — (¢ — 83)

and has two periodic wave solutions

20 (7 (73 + 73) 73 (0 —13) 50 (Qa(x — ct), k1))
(’Yz + ’Ys + (71 2) sn? (Qa(x — ct), k1)) ’

(3.2)
B(x,t) = i\/ 7 08 +73) =3 (0F —23) 7% (Qa(@ = ) k1) iy (o—ct)—wt)
) ( .

B(x,t) =+

Az, t) =g —

Y5473 + (77 —3) sn? (Qa(x — ct), k1)

Moreover, as h — 0, the periodic wave solutions (3.2) converge to the solitary wave
solutions (3.1).

Proof. When 8 < 0, from Fig. 1(a), we see that there are two homoclinic orbits
defined by H(¢,y) = 0 connecting with the saddle point (0, 0), passing through the
points (+¢3,0), respectively, and there are two periodic orbits defined by H(¢,y) =
h (h € (h1,0)), one of them passing through the points (v1,0) and (2,0), and
another passing through the points (—v2,0) and (—v1,0). In (¢, y)-plane, their
expressions are, respectively,

V=020 - )@ 46D, <9< 0 (33)
y=20y/ 2o - (@ + ). s o< 3.
yzi\/—;p( —¢?) (¢* =13) ($* +13), 12 <o <m, (3.5)
yzi\/—;p( —¢?)(¢? —13) (* +73), —Mn < o< -, (3.6)

where ¢34 = %\/¥3a + v/9a? — 488, 11,72, 73 (73 < 2 < 1) satisfy equation
3h
(=D =) 4o = (X4 Sax+39) 22+ Lo <n <o

Substituting (3.3) and (3.4) into the LZT? = y and integrating them along the
homoclinic orbits, respectively, we have

3 ds 1
—\/—=0l8, 3.7
/d) V(R — %) (2 + 02) 37 (37)
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¢ ds 1
= —\/—3pl¢l 3.8
/—¢3 sv/(03 — 52) (s + ¢7) 3/ 35

Completing the integrals in (3.7) and (3.8), we obtain two solitary wave solutions
of (1.6) as follows:

V20304
— 1 , .
N = T i e () — (7 ) (39)

where Q; = 2¢3¢41/=3p. Substituting (3.9) into (1.5) yields equation

2 12
e = 21?231@ / d ()

C
(02 + ¢3) cosh (2€) — (92 — ¢3) 3¢ (3.10)

Completing the integral in (3.10) and replacing ¥(§) by ¥1(€), we have

odsds <¢§ + ¢ — (@3 — ¢1) cosh (Y (w — cm) c
——— arcsin — —(x —ct).

hilr =) =", @5 — 1~ (63 + 9D cosh (@ —ct)) | 2

(3.11)

From (1.2), (1.3), (3.9) and (3.11), we obtain two solitary wave solutions of equation
(1.1) as (3.1).

Substituting (3.5) and (3.6) into the % = y and integrating them along the
periodic orbits, respectively, we have

Y1 ds :

=\ —3Plsh 3.12

o VO =) (2= (7 +23) @'ﬂ (3.12)
¢ ds 1

=\/ ~ 3PSk 3.13

—n V(0 = 82) (7 = 93) (2 +73) \/?KI (3.13)

Completing the integrals in (3.12) and (3.13), we obtain two periodic wave solutions
of (1.6) as follows:

_ (B +98) =98 (0F —23) sn? (Rl k) 314
¢(5)‘i\/ R Rt Ry R

2 2__~2
where Q3 = $71v/=3p (13 +73), k1 = % Substituting (3.14) into (1.5)

yields equation

_ o (i +7) d () 2 e
7/’(5) o CQ2 / 1— O[%SDQ (QQ§, kl) - <C + 2) 5, (315)

where o = 1%::12 Completing the integral in (3.15) and replacing () by ¥2(€),
2 3

we have

o(vV?++2 ov3 ¢
Yo(x —ct) = (/VZT—Z%)H (am (Qa(z —ct), k1), af, k1) — (Z‘O’ + ) (x — ct).
(3.16)
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From (1.2), (1.3), (3.14) and (3.16), we obtain two periodic wave solutions of equa-
tion (1.1) as (3.2).
Letting h — 0, we have

" = ¢3,72 — 0,773 = @4.

So that
2
73 (’71 72) 1 2 2 1

ki = 7%192 =3p (v +~3) = =04,
7 (v +73) 37 (2 +7%) = 3

n (9267 k‘l) — tanh (;Qlf) y

77 (5 +3) — 73 (0F —13) sn? (R, k1) N P3¢7 — P393 tanh? ( 5)
V3 473 + (7F —3) sn? (€, k1) ¢2 + ¢2 tanh? (30,€)
_ V2¢304 .
V(@3 + ¢3) cosh(€) — (¢3 — 43)

Therefore, as h — 0, the periodic wave solutions (3.2) converge to the solitary wave
solutions (3.1). O

Proposition 3.2. Let

Qg——*a —37]{72: s
73 (8 + %)

2 _ 2

V5 — 74

Q= 70/ =30 (% + %), ;

( 5 6) 2 ’Y§+’Yg

3
Y3(x —ct) = — 2:5; arctan (Q3(z — ct)) — g(ar —ct),
2 .2 2
il = ) = TOL IO (a0 ) k) o) = (T2 4 ) - )
4

and 4,75, %6 (V6 < v5 < 7Y4) satisfy equation
3 3h pa®
(X2 =R = DX +od) = (X34 Fa) x4 2, 2 <<,

then when o < 0,8 = 0, equation (1.1) has two solitary wave solutions

1 3
Az, t) = =v/3¢% — 4w + o o
2 c (1 + (Q3(x — ct)) )
, 3.17)
S i(Ys(xz—ct)—wt) (
B(z,t) =+ bac , w< 262
2

2y/1+ (e — ct))

and has two periodic wave solutions

20 (73 (4 +18) — 78 (i —12) s° (Qu(a — ct), k2))

(i +8+ (i —23) sn? (Qulx —ct) ka)) 7
)

Blot) — 4. |12 03 +78) =78 (08 —13) sn® (Qu(x — ct), ks
(z,t) = 2 .2 7 2 —
V2478 + (7 —72) sn? (Qu(z — ct), ko)

Az, t) = % 3c? —dw —

a(e—ct)—wt) < 32

(3.18)
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Moreover, as h — 0, the periodic wave solutions (3.18) converge to the solitary wave
solutions (3.17).

Proof. When a < 0,8 = 0, from Fig. 1(b), we see that there are two homoclinic
orbits defined by H(¢,y) = 0 connecting with the cusp (0, 0), passing through the

points (:I:,/f%ozﬂ), respectively, and there are two periodic orbits defined by

H(¢,y)=h (h € (f%, 0)) , one of them passing through the points (74, 0) and

(75, 0), and another passing through the points (—vs,0) and (—74,0). In (¢, y)-plane,
their expressions are, respectively,

y::l:d)Q\/—;)p <—2a—¢2>, 0<op< \/—ga, (3.19)
yicbz\/;p (-3a-). —y-3aso<0 (3.20)

1
y= i\/—gp(ﬁ — %) (92 —12) (P> +12), 15 < ¢ <, (3.21)
y = i\/;p(ﬁ —¢2) (92 —2) (92 +13), —1a < o < —s, (3.22)

where Y4, 75,76 (76 < 75 < 74) satisfy equation

3 3h  pa’
(X2~ 2)(X° — 2)(X2 4+ 2) = (x? ; 2a) X BB e

Substituting (3.19) and (3.20) into the Z—? = y and integrating them along the
homoclinic orbits, respectively, we have

3

T2¢ ds [ 1
—F— =1/ 30l 3.23
~/¢ s /—2a —s? 39‘ | (3:23)
/¢ . B \/—lplﬁl 3.24
—V-3a 52 /—3a — 52 3 (3.24)

Completing the integrals in (3.23) and (3.24), we obtain two solitary wave solutions
of (1.6) as follows:

v —6a
— (3.25)
21/1+ (Q36)°
where Q3 = —3ay/=3p. Substituting (3.25) into (1.5) yields equation

3o d(3§) ¢
2093/1+(93§)2 25. (3.26)

Completing the integral in (3.26) and replacing ¥(§) by ¥3(€), we have

P(§) =+

P(§) =

3o
’(/Jg(l‘—Ct)——Q q

; arctan (Qs(z — ct)) — g(m — ct). (3.27)
3
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From (1.2), (1.3), (3.25), (3.27) and pay attention to that if 5 = 0, then

g= %\/362 — 4w,

we obtain two solitary wave solutions of equation (1.1) as (3.17).

Substituting (3.21) and (3.22) into the % = y and integrating them along the

periodic orbits, respectively, we have

Y4 ds ;
o V(7 —352)(s2—72) (s2+?) = \/—>3p|§|, (3.28)
v ds 1
V) (- (2 +]) \/_»3’)'5" (3.29)

Completing the integrals in (3.28) and (3.29), we obtain two periodic wave solutions
of (1.6) as follows:

_ [ (2 +98) — 76 (F —23) sn? (g, ko) (3.30)
¢(§) ==+ 2 2 2 2 2 ’ ’
V5 + 6 + (v — 75) sn? (Q4€, k2)
L TR T A e = [ 280E) - ,
where Q4 = 374/ =3p (75 +15), k2 = 20’ Substituting (3.30) into (1.5)
4 5 6

yields equation

_ (i +%) d (4¢) g ¢
vle) = cQy / 1— a2sn? (€, ky) <c + 2> & (3:31)

where a3 = 1;2;7{:2 Completing the integral in (3.31) and replacing ¥(&) by ¥4(€),

we have

Yy(x —ct) = Wﬂ (am (Qu(z — ct), ko), 03, ko) — (gzg + ;) (x — ct).
(3.32)

From (1.2), (1.3), (3.30), (3.32) and pay attention to that if 5 = 0, then

g= %\/?)c2 — 4w,

we obtain two solitary wave solutions of equation (1.1) as (3.18).
Letting h — 0, we have

3
Y4 — \/—5047’75 — 0,7 — 0.



1512 B. He & Q. Meng

So that
s - =\~ 3sle
s VR-)(E-D) 0 3"
%/(ﬁ - \/7 = /-3l
/[ & = \/-30le
ANV (E D) E 0 3"
¢ ds 1
- — -tk
/\/?32,/—3@—32 3

Therefore, as h — 0, the periodic wave solutions (3.18) converge to the solitary
wave solutions (3.17). O

Proposition 3.3. Let

1 1
5 = 324/ —3p (63 — 3), Q6 = 578\/ —3p (7% — %),

_2 = - . M- V3
o ¢3 ¢6 9 k3 , Qg = , Oy = )
77 % P V2 1T 2 -2

¢2:%\/—2a—2\/a2—4 , ¢5:%\/—2a+4\/a2—4 ,
¢3,6=%\/—3ai\/9a2—48 ,

 0pa2(d2 —3) . [ 83+ (205 — ¢2) cosh (2Q5(x — ct))
Ps(x —ct) = — 2092 arcsin ( 297 — 62 T 2 cosh (20s(x — 1))
(- e
0o /PE— 92 [ 62+ (¢ — 2¢3) cosh (2Q5(x — ct))
ez —ct) = W arcsin ( 7~ 967§ 2 cosh (20(x — 1))

+ (203 -3) @—et),

o7 2
Yr(z — ct) = LI (am (Q6(x — ct), k3) , a3, k3) —

C
—(x—ct
o (¢~ ct),

2

2 2 c
Us(a — cf) = 00T (am ((w — ct), ) 0 s) + (”7 - 2) (z —eb),

(9}

\}

Yoz —ct) = 20(?;% arctan <2¢>§ tan (397(:3 — ct))> — —(x —ct),

Cir

and 7,78, Y0 (79 < Y8 < 7y7) satisfy equation

3h
(X2 —12)(X2 = A2)(X2 = 2) = (X4+ aX2+3/3)X2+ 0<h<hy
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then when a < 0,0 < 8 < 1—36a2, equation (1.1) has two solitary wave solutions

4o ¢3pE cosh? (s (z — ct))

Alz,t) =g —
() = 9 = (T cosh 205 (z — 1)) + 263 — 32)’ .
B (p — i(s(x— ct)—wt) ’
Blat) = i\/i(bg@ cosh(Q5(x — ct))e
\/#2 cosh(2Qs5(z — ct)) + 243 —
has two kink and anti-kink wave solutions
40¢2p? sinh?(Q5(x — ct
A(l‘,t) =g— . U¢2¢5 S ( 5(‘7: 02)) ==
c (¢ cosh(2Qs(x — ct)) + ¢35 — 2¢3) (3.34)
. o i(16(z—ct)—wt) '
Blat) = iﬂ¢2¢5 sinh(Q5(x — ct))e
V2 cosh(2Q5(x — ct)) + ¢ — 263
and has some periodic wave solutions
207373
Az, t) =g — ,
(0 =9 = T 2 = e (Yl — ch) Ks)
gir (a—ct)—wt) (3.35)
B(.’E, t) 7778 ’
\/78 —2)sn2(Qs(x — ct), k3)
20777§5n2(96(a: —ct), k3)
Az, t) =g — ,
@8 =g c(vF =% + 3 sn*(Qe(z — ct), ks)) (3.36)
Bla,t) j[777953”(96(% — ct), kg)e'(Vs(eet)=wh) '
\/73 — 8 +~3sn?(Qe(x — ct), ks)
4o ¢3P5
A {177t =g — ’
0 =9~ T 52— (- ) cos(a (o — ) -
\/§¢3¢6 et (Yo (z—ct)—wt) (3.37)
B(z,t) =

V83 + 0F — (08 — 8§) cos(Qr(x — cb))

Moreover, as h — hs, the periodic wave solutions (3.35) converge to the solitary
wave solutions (3.33), the periodic wave solutions (3.36) converge to the kink and
anti-kink wave solutions (3.34), respectively, and as h — 0, the periodic wave solu-
tions (3.35) converge to the periodic wave solutions (3.37).

Proof. When a < 0,0 < g8 < 13—6042, from Fig. 1(c), we see that there are two ho-
moclinic orbits and two heteroclinic orbits defined by H(¢,y) = hs, the homoclinic
orbits connecting with the saddle points (g3, 0), respectively, and passing through
the points + (¢5,0) , respectively, the heteroclinic orbits connecting with the saddle
points (+¢2, 0), there are three periodic orbits defined by H(¢,y) = h (h € (0, h2)),
two of them passing through the points (y7,0) and (vs,0), (—7s,0) and (—~v7,0),
respectively, and another passing through the points (79, 0) and (—v9, 0), and there
are two periodic orbits defined by H(¢,y) = 0, one of them passing through
the points (¢3,0) and (¢g,0), and another passing through the points (—g¢g,0)

and (—¢3,0), where ¢o = %\/—204—2\/042—4 , O5 = %\/—204—&—4\/@2—4 ,

$3,6 = %\/—304 + 1/9a? — 483, and 7, vs, Y9 (Yo < vs < 7y7) satisly equation

h
(X2 = 12)(X2 = 12)(X2 = 2) = (X4+ aX2+35>X2+0<h<h2
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In (¢, y)-plane, their expressions are, respectively,

= (P - )\ —5r@R— ), <<, (3.39)
= (P - )\ —5pE— 9D, —bs <0< —on (3.39)
=+ (¢3 — ¢%) —%p(dé — %), —2 < & < ¢s, (3.40)
y=i\/—;p( — ) (#* —1%) (6* —13), w<o<m, (341)
Y= bR @ F D w<es o G
Y= k20— ) O - 6) (), <6< (3.43)
V= 20\ 10(3 - ) (7 - ), G0 <6< 0o (3.44)
V= ko[ 1p(B - ) (@~ ), -0 <0< 60 (3.45)

Substituting (3.38) and (3.39) into the @ = y and integrating them along the
homoclinic orbits, respectively, we have

/¢5 = = *}plil (3.46)
o (2 —93) /93— 2 3Me :

¢ ds 1
/¢5 (2 — ) /o2 — 52 —§P|f\- (3.47)

Completing the integrals in (3.46) and (3.47), we obtain two solitary wave solutions
of (1.6) as follows:

V2¢9¢5 cosh(Q25€)
\/#2 cosh(2Q5€) + 262 —

where Q5 = 1621/—3p (¢ — ¢3). Substituting (3.48) into (1.5) yields equation

_ U¢2 ¢5 ¢2 (2955)
w(e) = s / @2 cosh(2Q58) + 203 —

Completing the integral in (3.49) and replacing 1(€) by ¢5(&), we have

I <¢§ + (203 — 63) cosh (205 (x — ct)))

P(§) = (3.48)

7+ (23-2)e  a9)

Ys(x —ct) = 2005 202 — 2 + ¢2 cosh (25 (2 — ct))

+ (28 -3) @—ct).
(3.50)

From (1.2), (1.3), (3.48) and (3.50), we obtain two solitary wave solutions of equa-
tion (1.1) as (3.33).
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Substituting (3.40) into the % = y and integrating it along the heteroclinic

orbits, we have
0
ds 1
=+4/—5p€ (3.51)
/4: (93 — s2) /93 — 3

Completing the integrals in (3.51), we obtain two kink and anti-kink wave solutions
of (1.6) as follows:

V2¢2¢5 sinh(Q25€)

- : 3.52
oo V62 cosh(2Q5€) + ¢2 — 263 (8.52)
Substituting (3.52) into (1.5) yields equation
0¢2 ¢2 ) d (2958) o, c

Completing the integral in (3.53) and replacing 1(€) by (&), we have

b oty _COVE <¢g + (62 — 263) cosh (20 (« ct)))
(3.54)

2025 2 — 203 + ¢ cosh (2Q5(z — ct))
+ (28 -3) @—ct).

From (1.2), (1.3), (3.52) and (3.54), we obtain two kink and anti-kink wave solutions
of equation (1.1) as (3.34).

Substituting (3.41) and (3.42) into the i—? = y and integrating them along the
periodic orbits, respectively, we have

ke ds -
=\ 3PSk 3.55
6 VOE—52)(s2 =) (s> —3) \/?KI (3.55)

9
¢ ds 1
=\ ~3Plsl 3.56
e VOI =) (73 (7 — ) \/?'fl (3.56)

Completing the integrals in (3.55) and (3.56), we obtain two periodic wave solutions
of (1.6) as follows:

—+ Y78
o) VAZ+ (72 —2)sn2(Q6€, k) (8:57)

where Q6 = 78/ —3p (72 —3), ks = 1/1: 1? Substituting (3.57) into (1.5)

yields equation

_ o d (Q26£) ¢
vie) = Qg / 1 — aZsn? (Q6, k3) 2€7 (3.58)

where o = 7827;273 Completing the integral in (3.58) and replacing () by ¥7(€),
8
we have
2

Yr(x —ct) = %H (am (Qs(x — ct), k3) , a3, kg) — g(x — ct). (3.59)
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From (1.2), (1.3), (3.57) and (3.59), we obtain two periodic wave solutions of equa-
tion (1.1) as (3.35).

Substituting (3.43) into the % = y and integrating it along the periodic orbit,
we have

ds Lo (3.60)

0
/qs V07 =57 (18 — %) (5 — 57) 3

Completing the integral in (3.60), we obtain two periodic wave solutions of (1.6) as
follows:

i 7795026, K3)
VA2 =73 + 2502 (Q6€, ks)

Substituting (3.61) into (1.5) yields equation

oy d (%) e
Mo‘d%/ﬁ—aﬁﬂm&x@+<t:_2>é (3.62)

¢(¢)

. (3.61)

where a2 = ’737—37?' Completing the integral in (3.62) and replacing ¥(&) by ¥s(),

we have
2 2
Yg(x —ct) = %H (am (Qg(z — ct), k) , af, ks) + (027 - g) (x —ct). (3.63)
6

From (1.2), (1.3), (3.61) and (3.63), we obtain two periodic wave solutions of equa-
tion (1.1) as (3.36).

Substituting (3.44) and (3.45) into the % = y and integrating them along the
periodic orbits, respectively, we have

b3 ds 1
— /=2 ple], 3.64
/ By rrea e i G L (364
® ds 1
= —4/—= . 3.6
/. VAo VT (36

Completing the integrals in (3.64) and (3.65), we obtain two periodic wave solutions
of (1.6) as follows:

V24306
=+ , 3.66
N R v R e oy (00
where Q7 = %(;53(1)6\/—3;). Substituting (3.66) into (1.5) yields equation

297/ ¢35 + OF + (0F — ¢3) cos () 2

Completing the integral in (3.67) and replacing ¥(§) by ¥g(€), we have

Yo(x —ct) = 206?23% arctan <2¢§ tan (;(27(:5 — ct))) — g(x —ct). (3.68)
7
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From (1.2), (1.3), (3.66) and (3.68), we obtain two periodic wave solutions of equa-
tion (1.1) as (3.37).
Letting h — ho, we have

Y7 = P5,78 = 92,79 — P2.

So that
k=2 1; :E 1.0 = 2sy/~3p (12~ 18) = 5,50 (266, ks) — tanh (56)
Y78 . D205
VIR 0F =09 (€ ks) /62 4+ (62— 63) tand® (256)
_ V2¢2¢5 cosh(€25¢)
/0% cosh(2058) + 203 — 92
Y77v9o50(26€, k3) N P2¢5 tanh (€258)
V2 =5 + 13502 (Q6E, k) N/¢g_-¢§+¢gtanh2(95§)
V20205 sinh(Q5¢)

/97 cosh(29056) + 2 — 203

Therefore, as h — hs, the periodic wave solutions (3.35) converge to the solitary
wave solutions (3.33), the periodic wave solutions (3.36) converge to the kink and
anti-kink wave solutions (3.34), respectively.

Letting h — 0, we have

Y7 = ¢3,78 — d6,79 — 0.

So that

P ] Ak

1 1
— Oa QG =378 73p 72 - 72 — 7973
v\ 72 — 2 378V 3007 %) =

sn (26, k3) — sin <;Q7§> ’

V78 o P30
VI 0F =)0l ks) 52 4 (63 — 63) sin® (50r€)
V20306

T VR R (0] ) cos(E)

Therefore, as h — 0, the periodic wave solutions (3.35) converge to the periodic
wave solutions (3.37). O
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Proposition 3.4. Let

:—fa\/i, Qg = *’Yll —3p (Vi — i),

foy = Y12 720_7121’ a%: 7%1_27120’ 04(23: 2’?%2 -
Y11y Yio — V12 M1 Y12 — Yo
3o ) 2 — cosh (2Qg(x — ct)) foge!
—ct) = - —ct
Yro(x = ct) 8clg aresi (2 cosh (2Qg(z — ct)) — 1 (40 + 2) (z = ct),
V3oa cosh (2Qg(x — ct)) + 2 o
e (9o
Yz —ct) 8clg arest <2cosh (2Qg(z — ct)) + 1) 4c + 2 (= ct)
c
Yra(x —ct) = 32101_[ (am (Qo(z — ct), ka) , 03, ky) — i(x —ct),
9
2
Pis(x —ct) = %19011 (am (Qo(x — ct), ka) , oF, ka) + (0110 - ;) (z —ct),
and 10,711,712 (Y12 < 111 < Y10) Satisfy equation
9 3h 3
(X% =770) (X2 =f)(X2 =) = (X4 +3ax? 4 6o > X2 +L0<h< %
then when a < 0,8 = 16a , equation (1.1) has two solitary wave solutions
20a cosh? (Qg(x — ct))
A(z,t) = —V9 2 —16¢2 12¢* +
(,1) \/ ato e ¢ (2cosh(2Qg(z — ct)) — 1)’
a— h(Q _ i(10(z—ct)—wt)
B(z,t) =+ orcosh(@s(z — ct))e , w< —2(3a20+4c4),
/2 cosh(2Qs(z — ct)) — 1 16¢
(3.69)
has two kink and anti-kink wave solutions
20 sinh? (Qg(x — ct))
Az, t) = —+/9a202 — 16¢2 12¢* +
(%) \/ Ao T 0w L T cosh (20 (x — ) + 1)
Vam h(Q —ct i(11(z—ct)—wt)
B(x,t) =+ asinh(Qs(w — ct))e , < 2(3a U+4c)
V2 cosh(2Qs(z — ct)) + 1 = Toc
(3.70)
and has some periodic wave solutions
2077071
Az, t) —\/9&202 —16c2w + 12¢* — 10 ,
c (Vi + (770 — i) sn? (o (z — ct), ka))
i(12(z—ct)—wt)
B(x,t) = 10911 = , w< — (30”0 +4c?)
\/711 (710 — 7i1)sn?(Qo(x — ct), ka) 16
(3.71)
9252 ~2 sn2 (el — ct
A(z,t) —\/90(202 — 16c2w + 12¢* — 5 071%712!9”2( 92( ct), ka) ,
¢ (Vi = iz + Viasn?(Qo(z — ct), ka))
Q —ct). k i(13(z—ct)—wt) 3
B(x,t) = i%wusn( o(@ — ct), ka)e , w< — (3a’0 +4cY).
Vo — e + 1Eesn?(Qo(x — ct), ka) 16¢

(3.72)
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Moreover, as h — %, the periodic wave solutions (3.71) converge to the solitary

wave solutions (3.69), the periodic wave solutions (3.72) converge to the kink and
anti-kink wave solutions (3.70), respectively.

Proof. When a < 0,5 = 1%&27 from Fig. 1(d), we see that there are two homo-

clinic orbits and two heteroclinic orbits defined by H(¢,y) = %, the homoclinic
orbits connecting with the saddle points (:I:%\/ —a,O), respectively, and passing
through the points £ (\/—a,O), respectively, the heteroclinic orbits connecting

with the saddle points (:I:%ﬁ, 0) , and there are three periodic orbits defined
by H(¢p,y) = h (h € (O, ’%;)) , two of them passing through the points (71, 0)
and (711,0), (—y11,0) and (=710, 0), respectively, and another passing through the
points (7y12,0) and (—v12,0), where v10, 711,712 (Y12 < Y11 < Y10) Satisfy equation

3 9 3h 3
(X2 =2 ) (X2 =2 (X2 =93 = <X4 + §ozX2 + 16a2> X2 4+ - 0<h< %.

In (¢, y)-plane, their expressions are, respectively,

_ (<z>2 T i“) —spl-a—), Va<e<yvoa (3.73)
y=% (o4 q0) \gpla- i) —VEase<opvma G
y:i(—ia—&) —splca— ), —Va<e< VIR, (37)
y= i\/—;p(vfo —¢?) (9% = 771) (82 = 7a), M1 < ¢ < Y10, (3.76)
V=t bp (it~ ) (@ )@ —1B), oSO, (BT
y= i\/_;f’('}’%o —¢2) (Vi1 — 0%) (72 — %), —m2 < ¢ < Yia- (3.78)

Substituting (3.73) and (3.74) into the % = y and integrating them along the
homoclinic orbits, respectively, we have

/V—T“ - — /-0l (3.79)
o (2+la)v—a—st 3PIsh :

¢ ds 1
/—\/—Tx (2 +1a)vV—a—s — 5kl (3.80)

Completing the integrals in (3.79) and (3.80), we obtain two solitary wave solutions
of (1.6) as follows:

o(6) = V/—acosh(Qg€)

B /2 cosh(29s€) — 1 (3.81)

where Qg = —2ay/=p. Substituting (3.81) into (1.5) yields equation

3o« d (2Q58) ca ¢
(o) = 80 / 2cosh(2Qs€) — 1 B (E + 5) & (3.82)
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Completing the integral in (3.82) and replacing ¥(§) by ©¥10(§), we have

V3oa . — cosh (2Qg(z — ¢ ca ¢
8398 arest (22cosh (2};2(82(; ) ﬂ)1) - (* + *) (z —ct).

Yro(w —et) = ic 2
(3.83)

From (1.2), (1.3), (3.81), (3.83) and pay attention to that if 8 = 2.2, then

1
g=—v90202 — 16c2w + 12¢4,
4c
we obtain two solitary wave solutions of equation (1.1) as (3.69).

Substituting (3.75) into the % = y and integrating it along the heteroclinic
orbits, we have

/¢ ds Y (3.84)
0 (—ia-s?)V-—a-4s 3

Completing the integrals in (3.84), we obtain two kink and anti-kink wave solutions
of (1.6) as follows:

B v/ —asinh(Qg€)
Pe) = V/2cosh(2Qs€) +1°

(3.85)

Substituting (3.85) into (1.5) yields equation

_ 3oa d (2Q5¢) oa ¢
v = 8cf2g / 1+ 2cosh(20s6) (4C * 2) 3 (3.86)

Completing the integral in (3.86) and replacing ¥ (&) by ¥11(§), we have

V3oa ) cosh (2Qg(xz — ct)) + 2 ca ¢
By T <2cosh (2% — b)) + 1) (G t3) e

¢11($ — Ct) = — Ic
(3.87)

From (1.2), (1.3), (3.85), (3.87) and pay attention to that if 8 = 2a?, then

1
g= 4—\/9&202 — 162w + 12¢4,
c

we obtain two kink and anti-kink wave solutions of equation (1.1) as (3.70).
Substituting (3.76) and (3.77) into the % = y and integrating them along the
periodic orbits, respectively, we have

Y10 ds B \/Td s
o VOh-A@-m@-m V3 -

’ ds BN
=710 \/(7%0 - 82) (82 — Py%l) (82 _ 7%2) - 7§p‘§| (3.89)

Completing the integrals in (3.88) and (3.89), we obtain two periodic wave solutions
of (1.6) as follows:

=+ 10711 7
o) Vg + (V¥ — 73)sn2(Qo€, k) (3.90)
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where Qg = 17111/ =3p(V3) — %), ks = %,/%. Substituting (3.90) into
(1.5) yields equation

_ o d (Q29€) c
vie) = Qg / 1 — a2sn? (Qo&, ka) a 25’ (3.91)

where o = 7317%%0 Completing the integral in (3.91) and replacing ¢ (&) by 112(£),
11

we have

2
Yra(x —ct) = %H (am (Qo(x — ct), ky) , a2, k4) — g(;v —ct). (3.92)
(29

From (1.2), (1.3), (3.90), (3.92) and pay attention to that if 8 = 2a?, then

1
g= 4—\/904202 — 162w + 12¢4,
c

we obtain two periodic wave solutions of equation (1.1) as (3.71).
Substituting (3.78) into the ing = y and integrating it along the periodic orbit,

we have

/0 ds /-t (3.93)
o V0t —52) (71 — 5%) (71 — 52) 3

Completing the integral in (3.93), we obtain two periodic wave solutions of (1.6) as
follows:

Y1071280(Q08, k)
V2 — 7 + 13502 (Qo€, ka)

Substituting (3.94) into (1.5) yields equation

o074 d (Q9€) oy, ¢
v(e) = 091; / 1 — adsn? (Qo&, ky) + ( clo B 2) & (3.95)

o) =+

(3.94)

where a2 = 2@2 Completing the integral in (3.95) and replacing ¥(&) by ¥13(£),

) 7120.
we have

o} oy, ¢
P13(z —ct) = %1901-[ (am (Qo(z — ct), ka) , g, ka) + (7210 — 2) (x —ct). (3.96)

From (1.2), (1.3), (3.94), (3.96) and pay attention to that if 8 = 3 a?, then

1
g= 4—\/9@202 — 162w + 12¢4,
c

we obtain two periodic wave solutions of equation (1.1) as (3.72).

3
Letting h — £, we have

1 1
Y10 = V—Q; 711 = oV X2 - 5\/—&
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So that

Y12 ’710 ’711 1 2 2
ki=—\3— =1 Qo= 71\ —3p(vio — 7i2) = s,
1 710 %2 3 (1o i2)

sn (Qgg, k‘4) — tanh (ng) s

710711 *%04
2 2 2 \an2 - 2
Vi + (Vo — 711)sn? (Do, ka) \/—ia — 3atanh? (Qs€)
_ V/—acosh(Qs8)
/2 cosh(29s€) — 1
Y1071280(29€, Ka) —jatanh (Qg€)
Vo — Viz + 112502, ka) \/—fa — Latanh® (Qs€)
Vv —asinh(Qgé)

~ /2cosh(20s6) + 1

Therefore, as h — £z, the periodic wave solutions (3.71) converge to the solitary
wave solutions (3.69), the periodic wave solutions (3.72) converge to the kink and
anti-kink wave solutions (3.70), respectively. O

Proposition 3.5. Let

1 2
Qo = 3714 =3p (Vi3 —75), Q1 = §¢1 3p (2 — 1),

b — Y15 ’7%3 - 7%4 2 _ 7%4 - ’Y%s 2 _ 7125
5 — 2 20 Q7 = 2 y g = 5 A2
Y14V Y13 — V15 V14 Y15 — Y13
1 1
¢1:§\/—2@+2\/a2—4,¢>7:§\/—2a—4 a2 — 48,

Y1a(x —ct) = 7131_1 (am (Qo(z — ct), ks) , a3, ks) — E(x —ct),
CQlO 2

. ’713 2 U’Y%?, c
Yis5(x —ct) = o II (am (Qo(z —ct), ks) , ag, kjs) + ( — ) (z —ct),
10 c 2

vy
Pig(r — ct) = —W arctan (\/ﬁ tan <;Q11(1' - ct)))

opr ¢
+ (Cl - 2) (x —Ct),

and 13,714,715 (715 < Y14 < 113) satisfy equation

3 3h
(X2 =B =R o) = (X4 Jax? 438 ) X4 2 by <<

then when o < 0, %aQ <pB< iaQ, equation (1.1) has two solitary wave solutions as
(3.33), has two kink and anti-kink wave solutions as (3.34), and has some periodic
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wave solutions

20’7%37%4
A I,t =g — ’
(0 =9 g+ 0% = 22 sn(role — i), ) Lo
B(z,t) = £ 13714 €114 (z—ct)—wt) (3.97)
z,t) = ,
VYl + (s — 3)sn? (Quo(w — ct), ks)
o 20715715 s1* (o (z — ct), ks)
A(xat)—g_ 2 _ .2 2 2Q — ’
c (Y13 — 15 + Vs (Quo(x — ct), ks)) (3.98)
B(z,t) = i7137155n(910(33 — ct), ks) el (Vs (rmet—wh) '
7 Vi — 78 + 1Esn? (Qo(z — ct), ks)
200392 (cos (V1 (x — ct)) — 1)
Al t) =g - c (@2 — 293 + ¢2 cos(Q1(z — ct)))’
(3.99)

i¢1¢7\/COS (Q1(z —ct)) — 1 ei(16(z—ct)—wt)
V6% =263 + ¢% cos(Qn1 (w — ct))

Moreover, as h — ha, the periodic wave solutions (3.97) converge to the solitary
wave solutions (3.33), the periodic wave solutions (3.98) converge to the kink and
anti-kink wave solutions (3.34), respectively, and as h — hq, the periodic wave
solutions (3.98) converge to the periodic wave solutions (3.99).

B(x,t) =

Proof. We only proof the results about the periodic wave solutions, the proof
for other results are similar to the Proof for Proposition 3.3, we omit them here.
When a < 0, 1%0‘2 < B < iaQ, from Fig. 1(e), we see that there are three
periodic orbits defined by H(¢,y) = h (h € (hy, ha)), two of them passing through
the points (y13,0) and (y14,0), (—714,0) and (—v13,0), respectively, and another
passing through the points (—v15,0) and (y15,0), and there is one periodic orbits
defined by H(¢,y) = hy passing through the points (—¢7,0) and (¢7,0), where

o7 = %\/—204 —4y/a? — 48, and 13,714, Y15 (715 < 114 < Y13) satisfy equation

3 3h
(X2 = A7) (X2 = 1) (X? —7is) = <X4+ 20<X2+35) X2+ > h1 < h < hs.

In (¢, y)-plane, their expressions are, respectively,

V=t IR - @ R @ R, m<o<me (100
y= i\/—;p (Vs = 0%) (¢* =12) (0* =%5), —ms < <—ma,  (3.101)
y= 120 Gh - Ol - ) (s~ ), <o (102
y=+ (- ) \[-5p (63— 60, —or<o<on (3.108)

where ¢1 = %\/—20[ +2y/a? —48.
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Substituting (3.100) and (3.101) into the % = y and integrating them along the
periodic orbits, respectively, we have

” s = /-0l (3.104)
s Vos-D (- (- V3 '

' s = /-0l (3.105)
e VO = D) () () V37 '

Completing the integrals in (3.104) and (3.105), we obtain two periodic wave solu-
tions of (1.6) as follows:

713714
=4 7
o) VA3 + (Vs — 3)sn2(Q0€, ks) (3.106)

where Q19 = $y147/—3p (V33 — 735), ks = :’/iiy/% Substituting (3.106) into

(1.5) yields equation

= 07%3 d(Qlof) ¢
77[1(5) B CQIO / 1— Oé%SIlQ (Qlog, kS) 257 (3107)

2 2
where o? = 14 Jis

¥14(€), we have

. Completing the integral in (3.107) and replacing (&) by

2
Yra(z — ct) = ZH3TT (am (Quo(x — ct), ks) 02, ks) — < (z — ct). (3.108)
CQlO 2

From (1.2), (1.3), (3.106) and (3.108), we obtain two periodic wave solutions of
equation (1.1) as (3.97).

Substituting (3.102) into the % = y and integrating it along the periodic orbit,
we have

0
ds 1

=44/ —=p€. (3.109)
o V(s — 52 (45 — 52) (415 — 5?) 3

Completing the integral in (3.109), we obtain two periodic wave solutions of (1.6)
as follows:

¢(€) — 4 713715811(91057 k?5)
\/’7%3 - 7125 + 7%55112(91057 k5)

Substituting (3.110) into (1.5) yields equation

_ 07is d (£108) oYy ¢
v(g) = Qo / 1 — a2sn? (Q10&, ks) * ( c 2> & (3.111)

(3.110)

2
where a2 = 15,
Y15~ Vi3

15(€), we have

. Completing the integral in (3.111) and replacing ¥(§) by

o3 oyl e
PY1s5(x —ct) = Ty (am (Quo(z — ct), ks) , 03, ks) + Ihs _ ¢ (x — ct).
CQlo C 2
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From (1.2), (1.3), (3.110) and (3.112), we obtain two periodic wave solutions of
equation (1.1) as (3.98).

Substituting (3.103) into the Z—f = y and integrating it along the periodic orbit,
we have

+ —ép{. (3.113)

/0 ds _
o (97 —5%) b} — 52

Completing the integrals in (3.113), we obtain two periodic wave solutions of (1.6)
as follows:

B(6) = p1d7+/cos (1) — 1

= 114
V2 — 207 + 2 cos(Q11€)’ (3114

where Q11 = 2¢1/3p (¢% — ¢3). Substituting (3.114) into (1.5) yields equation

_ 2093 (6% — ¢3) d (:€) odi ¢
w(g) o CQll / QS% — 2¢)% + QZS% COS (Qllg) + (C B 2) € (3115)

Completing the integral in (3.115) and replacing ¥(§) by ¥16(€), we have

Vv
Pre(x —ct) = — W arctan (\/lew tan (;Qll(x — ct))>

+ <mﬁ_;> (z — ct).

c
(3.116)
From (1.2), (1.3), (3.114) and (3.116), we obtain two periodic wave solutions of
equation (1.1) as (3.99).
Letting h — hs, we have

Y13 = @5,714 — 2,715 — P2.

So that

2 2
M5 [Vis — L -
hs = 118 137724 — 1,0 = =y1ay/ =30 (035 — %) — Qs,
% — 715 3

14 'st
sn (Q10&, ks) — tanh (Q58),
V13714 R P295
Vit (Vs —12)sn2 (o0&, ks) \/¢>§ + (¢% — ¢3) tanh? (Q5€)
_ V2¢2¢5 cosh(€256)
V/62 cosh(205) + 203 — 62
71371550 (108, ki) . P25 tanh (258)
Vs — Vis + 1552 (Qok, ks) \/¢§ — 2 + $3 tanh? (Q5€)
V2¢3¢5 sinh(Q5¢)

/o7 cosh(2058) + 2 — 23
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Therefore, as h — hs, the periodic wave solutions (3.97) converge to the solitary
wave solutions (3.33), the periodic wave solutions (3.98) converge to the kink and
anti-kink wave solutions (3.34), respectively.

Letting h — hy, we have

Y13 = @1,714 — P1,715 — P7.

So that
2 2
Y15 (Y13 — Y14 1 2 2 1
ks = —| 55— — 0,80 = 74/ =30 (715 — 715) — 5,
Y14 ’Yfg 77%5 3 (713 15) B
1
sn (210, k5) — sin (29115> )
713’715SH(91()f,k5) N $1¢7sin (%9115)

Vs — s + 1502 (Quo€, ks) \/Qﬁ — ¢% + ¢2sin® (1Q11€)

_ $1¢7+/cos (9115) -1
V% — 297 + ¢2 cos(Q1€)

Therefore, as h — hi, the periodic wave solutions (3.98) converge to the periodic
wave solutions (3.99). O

Proposition 3.6. When a <0, = iaQ, equation (1.1) has two kink and anti-kink
wave solutions

oo (Qia(z — ct))? ,
c (1 + (Q2(x — ct))2)

1
Az, t) = %\/30(202 —4c?w + 3¢t +

B(z,t) = ing(SL’ — Ct) @ 5 ei(¢17($_0t)—“’t)7 (3.117)
2 (1 + (Qa(x — ct)) )

|~

w < (304202 + 364) ,

B~

c
where Q15 = —fa/=3p, Y17(z—ct) = e arctan (Qiz(z — )= (%2 + £) (z—ct).

Proof. When a < 0,8 = %az, from Fig. 1(f), we see that there are two hetero-

clinic orbits defined by H(¢,y) = % connecting with the cusps (:I:%s/—Qa, 0) .In
(¢, y)-plane, their expressions are

Y=+ (—la - ¢2) \/—;p (—;a - ¢2), Vmcs<lvm ey

Substituting (3.118) into the ‘é—‘é’ = y and integrating it along the heteroclinic
orbits, we have

’ ds \/T
=+ 3¢ _
/¢ (—1a - s?) m 3 (3.119)
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Completing the integrals in (3.119), we obtain two kink and anti-kink wave solutions
of (1.6) as follows:

—a
P(§) = £l | ——, 3.120
2 (1+(Q126)%) (3:120)
where Q15 = —a/=3p. Substituting (3.120) into (1.5) yields equation
ow d (£2128) oa ¢
= -\ +z)¢ 3.121
1/)(5) 2C912 / 1 + (9126)2 ( 2¢ 2) 5 ( )
Completing the integral in (3.121) and replacing (&) by ¥17(§), we have
oo oa ¢
Yr7(x —ct) = RO arctan (Qqa(z — ct)) — (2—6 + 5) (z —ct). (3.122)

From (1.2), (1.3), (3.120), (3.122) and pay attention to that if 3 = 12, then

1
g =—1/30202 — 4c®w + 3c*,
2c
we obtain two kink and anti-kink wave solutions of equation (1.1) as (3.117). O

4. Numerical simulations

Example 4.1. If p = —1.5,a = —1.2, = —1.0, then h; = —2.702018916. Taking
h = —2.0, we have 7, ~ 1.533774952, v, ~ 1.027947900,~; ~ 1.268519802. Tak-
ing h = —0.1, we have v; =~ 1.683377144, v, ~ 0.2535277454,~3 ~ 1.047871618.
Taking h = —0.000001, we have ~; ~ 1.688763438, 7, ~ 0.0008164964176,v; ~
1.025632788. Taking h = —0.000000001, we have 1 =~ 1.688763491, 2 =~ 0.000025819,
3 = 1.025632551. The profiles of (3.9) are shown in Fig. 2(a) and (b), the limiting
process of (3.14) are similar to that in Fig. 3(a)-(h).

Figure 2. The profiles of (3.9).

Example 4.2. If p = —2.0,a = —1.5, then —22° = —1.125. Taking h = —1.0, we
have v4 ~ 1.331401565, v5 ~ 1.090430135,v¢ ~ 0.8436041767. Taking h = —0.05,
we have v4 ~ 1.494986778,vs ~ 0.4368609095,v¢ ~ 0.4193243616. Taking h =
—0.005, we have v4 ~ 1.499505440,v5 ~ 0.2418688693, 76 ~ 0.2387825643. Taking
h = —0.001, we have v4 /=~ 1.499901205, v5 ~ 0.1611527290, v ~ 0.1602305454. The
profiles of (3.25) are shown in Fig. 4(a) and (b), the limiting process of (3.30) are
similar to that in Fig. 5(a)-(h).

Example 4.3. If p = —1.5,a = —2.0, 8 = 0.5, then hy ~ 0.1035533906. Taking h =
0.001, we have v7 = 1.538347555,~vs = 0.7950785458, 79 ~ 0.03656373036. Taking
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(e) (f) () (h)

Figure 3. The limiting precess of (3.14) tends to (3.9) when h — 0.

) (b)

Figure 4. The profiles of (3.25).

(e) (f) (&) (h)

Figure 5. The limiting precess of (3.30) tends to (3.25) when h — 0.

h = 0.07, we have v7 ~ 1.548898304, vg =~ 0.6921817194, 79 ~ 0.3489964330. Taking
h = 0.1, we have 7 ~ 1.553264923, s ~ 0.5929516612,v9 ~ 0.4855681285. Taking
h = 0.1035533, we have 7 ~ 1.553773961,vg ~ 0.5414660585, v9 ~ 0.5409260443.
The profiles of (3.48) are shown in Fig. 6(a) and (b), the limiting process of (3.57)
are similar to that in Fig. 7(a)-(h). The profiles of (3.52) are shown in Fig. 8(a)
and (b), the limiting process of (3.61) are similar to that in Fig. 9(a)-(h).
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(a)

Figure 6. The profiles of (3.48).

AL

(a) (b)

Figure 8. The profiles of (3.52).

Example 4.4. If p = —1.5,a = —2.0,5 = 0.5, then hy ~ 0.1035533906. Taking
h = 0.07, we have 7 ~ 1.548898304, vg ~ 0.6921817194, v9 ~ 0.3489964330. Taking
h = 0.03, we have v7 =~ 1.542873100, vg =~ 0.7587922583, 79 ~ 0.2092293118. Taking
h = 0.01, we have v; &~ 1.539766907, v5 =~ 0.7844810203, 79 = 0.1170786149. Taking
h = 0.0001, we have 77 ~ 1.538204864,vs ~ 0.7961108128,v9 =~ 0.01154854563.
The profiles of (3.66) are shown in Fig. 10(a) and (b), the limiting process of (3.57)
are similar to that in Fig. 11(a)-(h).

Example 4.5. If p = —1.5,a = —1.2,8 = 0.31, then h; =~ 0.05181966008, ho ~
0.07418033992. Taking i = 0.072, we have 713 ~ 1.018443976, y14 ~ 0.6802733772,
Y15 & 0.5477225575. Taking h = 0.069, we have 13 =~ 1.011131104, v14 ~ 0.7183708135,
v15 &~ 0.5114266959. Taking h = 0.065, we have 113 ~ 1.0,v14 =~ 0.7571030846,
Y15 ~ 0.4762299017. Taking h = 0.05182, we have ;3 =~ 0.9080818774,v14 ~
0.9069726505, v15 ~ 0.3908809475. The profiles of (3.114) are shown in Fig. 12(a)
and (b), the limiting process of (3.110) are similar to that in Fig. 13(a)-(h).

Example 4.6. Taking p = —1.5, & = —1.2, the profiles of (3.120) are shown in Fig.
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AN AN -
J UV M\/ _Jt

Figure 11. The limiting precess of (3.57) tends to (3.66) when h — 0.

14(a) and (b).

5. Conclusion

In this paper, we investigate the dynamic properties and present some explicit
exact traveling wave solutions of the long waves-short waves model (1.1) using
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Nﬂ/
\]t\f

VM\ \W&

Figure 13. The limiting precess of (3.110) tends to (3.114) when h — hy.

(a) (b)

Figure 14. The profiles of (3.120).

the bifurcation method of dynamical system. Also, the relations of the periodic
wave solutions and other traveling wave solutions are stated. Our main results
for equation (1.1) are given in Propositions 3.1-3.6. Comparing with the before
references, we obtained some new results. Actually, there are some interesting and
important problems of equation (1.1) to be further studied. For examples, how to
search for more new explicit exact non-smooth traveling wave solutions and non-
traveling wave solutions of equation (1.1)? We will study equation (1.1) further.
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