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EXACT TRAVELLING WAVE SOLUTIONS TO
THE SPACE-TIME FRACTIONAL

CALOGERO-DEGASPERIS EQUATION USING
DIFFERENT METHODS

Ozkan Guner1,†

Abstract In this paper, we employed the ansatz method, the exp-function

method and the
(

G′

G

)
-expansion method for the first time to obtain the exact

and traveling wave solutions of the space time fractional Calogero Degasperis
equation. As a result, we obtained some soliton and traveling wave solutions
for this equation by means of proposed three analytical methods and the aid
of commercial software Maple. The results show that these methods are ef-
fective and powerful mathematical tool for solving nonlinear FDEs arising in
mathematical physics.
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1. Introduction

Fractional differential equations (FDEs) are generalizations of classical differential
equations of integer order. In recent years, this equations have gained consider-
able interest. Many significant phenomena in natural science and engineering such
as fluid dynamics, biology, polymeric materials, damping law, diffusion processes,
quantum, system identification, electromagnetic, mechanics, fluid flow, finance, vis-
coelasticity, quantum, chemistry, signal processing, control theory and so on can be
modeled by this equations [39,43,46,47].

Beacaue of its potential applications, scientists have devoted remarkable at-
tempt to study the numerical and analytic solutions of nonlinear FDEs. Never-
theless, not all nonlinear FDEs are solvable. During recent years, mathematician-
s and physicists have developed various techniques to find solutions of nonlinear
FDEs such as the variational iteration method, adomian decomposition method,
the homotopy perturbation method, the fractional sub-equation method, the first
integral method, the (G′/G)-expansion method, the functional variable method,
the exp-function method, the modified Kudryashov method, the fractional MSE
method, the ansatz method and the modified trial equation method and so on
[3–10,15,17–31,35,36,40–42,44,48–50,52,54,55].
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There are different kinds of fractional derivative operators. The most famous one
is the Caputo definition that the function should be differentiable [16]. In [37, 38],
modified Riemann-Liouville derivative is proposed by Jumarie. With this kind of
fractional derivative and fractional complex transform, we can convert fractional
differential equations into integer-order differential equations. The order α of Ju-
marie’s derivative is defined by

Dα
t u =

 1
Γ(1−α)

d
dt

∫ t
0
(t− ξ)−α(u(ξ)− u(0))dξ , 0 < α < 1

(f (n)(t))(α−n), n ≤ α < n+ 1, n ≥ 1,
(1.1)

where f : R → R, t → f(t) denotes a continuous (but not necessarily first-order-
differentiable) function. Some useful formulas:

Property 1.

Dα
t t
r =

Γ(1 + r)

Γ(1 + r − α)
tr−α, (1.2)

Property 2.

Dα
t {C1f(t) + C2g(t)} = C1D

α
t f(t) + C2D

α
t g(t), (1.3)

Property 3.
Dα
t C = 0, (1.4)

where C, C1 and C2 are constants.
In this line of thought, the structure of the article is as follows. In the next

section, we briefly give the steps of the methods. In Section 3 we apply the methods
to solve for the space–time fractional Calogero-Degasperis (CD) equation. Finally,
conclusions are presented in last section.

2. Methods and theirs algorithms

We consider the following general (2+1) dimensional nonlinear space-time FDEs of
the type

Q(u,Dα
t u,D

α
xu,D

α
y u,D

2α
t u,Dα

t D
α
xu,D

2α
x u,Dα

xD
α
y u,D

2α
y u, ...) = 0, (2.1)

where 0 < α ≤ 1 and u is an unknown function, and Q is a polynomial of u and its
partial fractional derivatives.

The proper traveling wave variable is [32]

u(x, y, t) = f(θ), (2.2)

θ =
kxα

Γ(1 + α)
+

myα

Γ(1 + α)
− ntα

Γ(1 + α)
, (2.3)

where k, m and n are nonzero constants.
By using the chain rule

Dα
t u = σt

df
dθD

α
t θ,

Dα
xu = σx

df
dθD

α
x θ,

Dα
y u = σy

df
dθD

α
y θ,

(2.4)
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where σt, σx and σy are called the sigma indexes [1], and it can be take σt = σx =
σy = L, where L is a constant.

Substituting (2.2) with (1.2) and (2.4) into (2.1), we can rewrite Eq.(2.1) in the
following nonlinear ODE;

H(f, f
′
, f ′′, f ′′′, .....) = 0, (2.5)

where df
dθ . Now we concider three different methods.

2.1. Basic idea of Ansatz method

For dark soliton solution, the starting hypothesis is in the form [11,12,51]

u(x, y, t) = A tanhp θ (2.6)

where θ = kxα

Γ(1+α) + myα

Γ(1+α) −
ntα

Γ(1+α) and A, k, c are nonzero constants. From

the ansatz given above with expression (2.6), it is possible to obtain necessary
derivatives. Then, the obtained derivatives are substituted in the Eq.(2.5) and we
collect all terms with the same order of necessary terms. Then by equating each
coefficient of the resulting polynomial to zero, we obtain a set of algebraic equations
for; A, k and c. Finally solving the system of equations we can get exact solution
of Eq.(2.1).

2.2. Basic idea of Exp-function method

This method is based on the assumption that traveling wave solutions can be ex-
pressed in the following form which was developed by He and Wu [33]

f(θ) =

∑d
n=−c an exp [nθ]∑q
m=−p bm exp [mθ]

(2.7)

where p, q, c and d are positive integers, an and bm are unknown constants. Also
this expression can write in the following equivalent form.

f(θ) =
a−c exp [−cθ] + ...+ ad exp [dθ]

b−p exp [−pθ] + ...+ bq exp [qθ]
. (2.8)

To determine the value of c and p, we balance the linear term of lowest order
of equation Eq.(2.5) with the lowest order nonlinear term. Similarly, to determine
the value of d and q, we balance the linear term of highest order of Eq.(2.5) with
highest order nonlinear term [2,13,34,56].

2.3. Basic idea of
(
G′

G

)
-expansion method

Step 1: According to the this method which was developed by Wang [53], we look
for its solution f(θ) in the polynomial form

f(θ) =

z∑
i=0

ai

(
G′

G

)i
, az 6= 0, (2.9)
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where ai are constants, while G(θ) is the solution of the auxiliary linear second
order ODE

G′′(θ) + λG′(θ) + µG(θ) = 0, (2.10)

with λ and µ are being constants.
Step 2: z is a positive integer which is determined by the homogeneous bal-

ancing method in Eq.(2.5).
Step 3: By substituting Eqs.(2.9) and (2.10) into Eq.(2.5) with the value of z

obtained in Step 2, and collecting all terms with the same order of
(
G′

G

)
together.

Then setting each coefficient to zero, we obtained a set of algebraic equations for
ai, k, m and n.

Step 4: Solve the system of algebraic equations obtained in step 3 for ai (i =
0, 1, 2, ....., z), k, m and n by use of Maple. Then we substitute ai (i = 0, 1, 2, ....., z),
k, m, n and the solutions of Eq.(2.10) into Eq.(2.9), we can obtain a series of
fundamental solutions of Eq.(2.1) [14].

3. New solutions of the space–time fractional Calogero-
Degasperis (CD) equation

We consider the space–time fractional Calogero-Degasperis (CD) equation [45]

Dα
t D

α
xu− 4Dα

xuD
2α
x u− 2Dα

y uD
2α
x u+Dα

yD
3α
x u = 0, (3.1)

where 0 < α ≤ 1.
By using the transformations (2.2) and (2.3) with (2.4), then by once integrating,

Eq.(3.1) reduced into following ODE

− nkf ′ − (2k3L+mk2L)(f ′)2 +mk3L2f ′′′ = 0, (3.2)

where “f ′” = df
dθ and constant of integration is taken to be zero.

3.1. Exact solution by ansatz method

From the ansatz given above Eq.(2.6), we get necessary derivatives and these are
substituted in the Eq.(3.1) we get algebraic equation. By use this equation, in
order to reduce the number of coefficients of the powers of tanh θ, we determine the
balance value of p. Equating 2(p + 1) = p + 3 yields p = 1. Using this value of
p = 1, this algebraic equation reduces to

(8A2n2k − 4A2mkn+ 24Ak3m) tanh5

+(8A2mkn− 40Ak3m− 16A2n2k − 2Akn) tanh3

+(16Ak3m+ 2Akn− 4A2mkn+ 8A2n2k) tanh = 0. (3.3)

So, we obtain a system of algebraic equations

8A2n2k − 4A2mkn+ 24AL2k3m = 0,

8A2mkn− 40AL2k3m− 16A2n2k − 2Akn = 0,

16AL2k3m+ 2Akn− 4A2mkn+ 8A2n2k = 0.

(3.4)
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Solving this system for A and n gives

A =
6L2k2m

n(m− 2n)
, (3.5)

n = 4L2k2m. (3.6)

Equation (3.5) prompts the constraint m 6= 2n. Thus finally, the dark soliton
solution for Eq.(3.1) is given by

u(x, y, t) = A tanh

(
kxα

Γ(1 + α)
+

myα

Γ(1 + α)
− ntα

Γ(1 + α)

)
, (3.7)

where A is given in Eq.(3.5) and n is given in Eq.(3.6).

3.2. Exact solutions by Exp-function method

By balancing the order of f ′′′ and (f ′)2 in Eq.(3.2), we obtain

f ′′′ =
c1 exp[−(c+ 7p)θ] + ...

c2 exp[−8pθ] + ...
, (3.8)

and

(f ′)2 =
c3 exp[−(2c+ 2p)θ] + ...

c4 exp[−4pθ] + ...
, (3.9)

where ci are determined coefficients only for simplicity. Balancing lowest order of
exp-function in Eqs.(3.8) and (3.9) we get

− (c+ 7p) = −(2c+ 6p), (3.10)

and

p = c. (3.11)

Similar process we balance the linear term of highest order in Eq.(3.2), we obtain

q = d. (3.12)

The simplest choice for c, p, q and d is p = c = 1 and q = d = 1. According to
p = c = 1 and q = d = 1, Eq.(2.8) becomes

f(θ) =
a1 exp(θ) + a0 + a−1 exp(−θ)
b1 exp(θ) + b0 + b−1 exp(−θ)

. (3.13)

Substituting Eq.(3.13) into Eq.(3.2), and solving this system of algebraic equa-
tions by the help of Maple, we get the following results

Case 1:

a1 = 0, a0 = a0, a−1 = a−1,

b1 = 0, b0 = 0, b−1 = b−1,

k = −m2 , m = m, n = m3L2

4 .

(3.14)
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Substituting these results into (3.13), we get the following exact solution

u1(x, y, t) =
a0 + a−1 exp

(
−
(
−mxα

2Γ(1+α) + myα

Γ(1+α) −
m3L2tα

4Γ(1+α)

))
b−1 exp

(
−
(
−mxα

2Γ(1+α) + myα

Γ(1+α) −
m3L2tα

4Γ(1+α)

)) . (3.15)

Case 2:

a1 = a1, a0 = a0, a−1 = a−1,

b1 = 0, b0 = b0, b−1 = 0,

k = −m2 , m = m, n = m3L2

4 .

(3.16)

Substituting these results into (3.13), we obtain

u2(x, y, t) =
a1 exp

(
−mxα

2Γ(1+α)
+ myα

Γ(1+α)
−m3L2tα

4Γ(1+α)

)
+a0+a−1 exp

(
−
(
−mxα

2Γ(1+α)
+ myα

Γ(1+α)
−m3L2tα

4Γ(1+α)

))
b0

.

(3.17)
Case 3:

a1 = a1, a0 = 0, a−1 = a−1,

b1 = 0, b0 = 0, b−1 = b−1,

k = k, m = −2k, n = −8k3L2.

(3.18)

Substituting these results into (3.13), we get the following exact solution

u3(x, y, t) =
a1 exp

(
kxα

Γ(1+α)
− 2kyα

Γ(1+α)
+ 8k3L2tα

Γ(1+α)

)
+a−1 exp

(
−
(

kxα

Γ(1+α)
− 2kyα

Γ(1+α)
+ 8k3L2tα

Γ(1+α)

))
b−1 exp

(
−
(

kxα

Γ(1+α)
− 2kyα

Γ(1+α)
+ 8k3L2tα

Γ(1+α)

)) .

(3.19)
Case 4:

a1 = 0, a0 = − b0(6kLmb−1−(2k+m)a−1)
b−1(2k+m) , a−1 = a−1,

b1 = 0, b0 = b0, b−1 = b−1,

k = k m = m, n = mk2L2,

(3.20)

where a−1, b0 and b−1 are free parameters. When we substitute these results into
(3.13), we get the following exact solution

u4(x, y, t) =
− b0(6kLmb−1−(2k+m)a−1)

b−1(2k+m)
+a−1 exp

(
−
(

kxα

Γ(1+α)
+ myα

Γ(1+α)
−mk2L2tα

Γ(1+α)

))
b0+b−1 exp

(
−
(

kxα

Γ(1+α)
+ myα

Γ(1+α)
−mk2L2tα

Γ(1+α)

)) . (3.21)

Case 5:

a1 = a1, a0 =
a1b

2
−1+a−1b

2
0

b−1b0
, a−1 = a−1,

b1 = 0, b0 = b0, b−1 = b−1,

k = k m = −2k, n = −2k3L2,

(3.22)
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where a−1, b0 and b−1 are free parameters. When we substitute these results into
(3.13), we have

u5(x, y, t) =

a1 exp
(

kxα

Γ(1+α) −
2kyα

Γ(1+α) + 2k3L2tα

Γ(1+α)

)
+

a1b
2
−1+a−1b

2
0

b−1b0

+a−1 exp
(
−
(

kxα

Γ(1+α) −
2kyα

Γ(1+α) + 2k3L2tα

Γ(1+α)

))
b0+b−1 exp

(
−
(

kxα

Γ(1+α)
− 2kyα

Γ(1+α)
+ 2k3L2tα

Γ(1+α)

)) .

(3.23)

If we take a0 = 1, a−1 = 1 and b−1 = 1, solution (3.15) becomes

u1(x, y, t) =
1+cosh

(
−mxα

2Γ(1+α)
+ myα

Γ(1+α)
−m3L2tα

4Γ(1+α)

)
−sinh

(
−mxα

2Γ(1+α)
+ myα

Γ(1+α)
−m3L2tα

4Γ(1+α)

)
cosh

(
−mxα

2Γ(1+α)
+ myα

Γ(1+α)
−m3L2tα

4Γ(1+α)

)
−sinh

(
−mxα

2Γ(1+α)
+ myα

Γ(1+α)
−m3L2tα

4Γ(1+α)

) . (3.24)

Similarly; if we take a0 = 2, a1 = 1, a−1 = 1 and b0 = 2, solution (3.17)
becomes

u2(x, y, t) = 2 cosh2
(
− mxα

4Γ(1+α) + myα

2Γ(1+α) −
m3L2tα

8Γ(1+α)

)
. (3.25)

When we take a1 = 1, a−1 = 1 and b−1 = 1, solution (3.19) becomes

u3(x, y, t) =1 + cosh

(
2kxα

Γ(1 + α)
− 4kyα

Γ(1 + α)
+

16k3L2tα

Γ(1 + α)

)
+ sinh

(
2kxα

Γ(1 + α)
− 4kyα

Γ(1 + α)
+

16k3L2tα

Γ(1 + α)

)
. (3.26)

Also if we take a−1 = 1, b−1 = 1 and 6kLm = 2k +m, solution (3.21) becomes

u4(x, y, t) =
cosh

(
kxα

Γ(1+α)
+ myα

Γ(1+α)
−mk2L2tα

Γ(1+α)

)
−sinh

(
kxα

Γ(1+α)
+ myα

Γ(1+α)
−mk2L2tα

Γ(1+α)

)
1+cosh

(
kxα

Γ(1+α)
+ myα

Γ(1+α)
−mk2L2tα

Γ(1+α)

)
−sinh

(
kxα

Γ(1+α)
+ myα

Γ(1+α)
−mk2L2tα

Γ(1+α)

) . (3.27)

Finally, when we take a1 = 1, a−1 = −1, b0 = 1 and b−1 = 1, solution (3.23)
becomes

u5(x, y, t) =1 + cosh

(
kxα

Γ(1 + α)
− 2kyα

Γ(1 + α)
+

2k3L2tα

Γ(1 + α)

)
− sinh

(
kxα

Γ(1 + α)
− 2kyα

Γ(1 + α)
+

2k3L2tα

Γ(1 + α)

)
. (3.28)

3.3. Exact solution by
(
G′

G

)
-expansion method

According to homogeneous balancing method, with balancing the f ′′′ and (f ′)2, we
get 2z + 2 = 3 + z, hence z = 1. Then we suppose that Eq.(3.2) has the following
formal solution

f(θ) = a0 + a1

(
G′

G

)
, a1 6= 0. (3.29)

By using Eq.(3.29) and Eq.(2.10) we have necessary derivaties and substituting

them into Eq.(3.2), collecting the coefficients of
(
G′

G

)i
(i = 0, ..., 4) and setting it

to zero we derive a set of algebraic equations and solving this system by Maple we
get

a0 = a0, a1 = − 6mkL
m+2k ,

k = k, m = m,

n =
(
λ2 − 4µ

)
mk2L2,

(3.30)
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λ and µ are arbitrary constants. By using (3.30) with expression (3.2) can be
written as

f(θ) = a0 − 6mkL
m+2k

(
G′

G

)
. (3.31)

When λ2 − 4µ > 0, substituting the general solution of (2.10) into (3.31), we
obtain the following traveling wave solution of space–time fractional CD equation

f1(θ) = a0 +
3mkLλ

m+ 2k
− 3mkL

√
λ2 − 4µ

m+ 2k

(
C1 sinh

1
2

√
λ2−4µθ+C2 cosh

1
2

√
λ2−4µθ

C1 cosh
1
2

√
λ2−4µθ+C2 sinh

1
2

√
λ2−4µθ

)
,

(3.32)

where θ = kxα

Γ(1+α) + myα

Γ(1+α) −
(λ2−4µ)mk2L2tα

Γ(1+α) .

Similarly when λ2 − 4µ < 0, we get

f2(θ) = a0 +
3mkLλ

m+ 2k
− 3mkL

√
4µ− λ2

m+ 2k

(
−C1 sin

1
2

√
4µ−λ2θ+C2 cos

1
2

√
4µ−λ2θ

C1 cos
1
2

√
4µ−λ2θ+C2 sin

1
2

√
4µ−λ2θ

)
,

(3.33)

where θ = kxα

Γ(1+α) + myα

Γ(1+α) −
(λ2−4µ)mk2L2tα

Γ(1+α) .

In particular, if C1 6= 0, C2 = 0, λ > 0, µ = 0, a0 = 0 then f1 and f2 become

u(x, y, t) =
3mkLλ

m+ 2k

{
1− tanh

(
λkxα

2Γ(1 + α)
+

λmyα

2Γ(1 + α)
− λ3mk2L2tα

2Γ(1 + α)

)}
.

(3.34)

4. Conclusion

In this paper, based on the the ansatz method, the exp-function method and the
(G′/G)−expansion method, the space time fractional CD equation is solved exactly.
The obtained exact solutions are either hyperbolic function solutions or turned into
hyperbolic function solutions when suitable parameters are chosen. Comparing
our results to the Mohyud-Din’s results [45] it can be seen that these results are
new. Moreover, when the established solutions are compared with each other, it
can be seen that solutions (3.7), (3.24), (3.25), (3.26), (3.27), (3.28) and (3.34) are
different and never been obtained. When we choose λ = 2, a0 = − 3mkLλ

m+2k and L =

− m+2k
4mk(m−2n) , solution (3.34) can be convert solution (3.7). Also, we can compare

methods. While the ansatz method and the (G′/G)−expansion method only give
one solution, the exp-function method gives different and variety of travelling wave
solutions. The performance of these methods are found to be reliable, effective,.very
powerful and convenient for solving nonlinear FDEs.

Acknowledgements. The authors are grateful to the anonymous referees for their
useful suggestions which improve the contents of this article.
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