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GLOBAL BIFURCATIONS NEAR A
DEGENERATE HETERODIMENSIONAL

CYCLE∗

Fengjie Geng1, Ting Wang2 and Xingbo Liu3,†

Abstract This article is devoted to investigating the bifurcations of a het-
erodimensional cycle with orbit flip and inclination flip, which is a highly
degenerate singular cycle. We show the persistence of the heterodimensional
cycle and the existence of bifurcation surfaces for the homoclinic orbits or pe-
riodic orbits. It is worthy to mention that some new features produced by the
degeneracies that the coexistence of heterodimensional cycles and multiple pe-
riodic orbits are presented as well, which is different from some known results
in the literature. Moreover, an example is given to illustrate our results and
clear up some doubts about the existence of the system which has a heterodi-
mensional cycle with both orbit flip and inclination flip. Our strategy is based
on moving frame, the fundamental solution matrix of linear variational system
is chose to be an active local coordinate system along original heterodimen-
sional cycle, which can clearly display the non-generic properties-“orbit flip”
and “inclination flip” for some sufficiently large time.
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1. Introduction

It is well known that the homoclinic or heteroclinic orbits play an important role in
the analysis of the mechanism for the existence of chaos and traveling wave prob-
lems associated with partial differential equations. And the analysis of bifurcations
of homoclinic or heteroclinic orbits is crucial step towards the understanding of
the global dynamics, which has attracted so much attentions that there are plenty
of interesting results achieved in the literature [1, 2, 6, 13, 25, 29, 30]. As a special
case of heteroclinic loops, the heterodimensional cycles are arousing more authors’
interests since the initial investigation by Newhouse and Palis [21]. A heteroclinic
cycle is said to be equi-dimensional if all the equilibria in the cycle have the same
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index (dimension of the stable manifold). Otherwise, it is called heterodimension-
al cycle. Heterodimensional cycles can be arose in many practical model such as
Chua’s circuit [10], the modified Vander Pol-duffing electronic oscillator [1] and etc.
Moreover, the heterodimensional cycles with saddle-foci always lead to extremely
complex dynamics behaviors. In 2004, Wen [27] proved that diffeomorphisms ex-
hibiting either a homoclinic tangency or a heterodimensional cycle are C1 dense
in the complement of the C1 closure of hyperbolic systems. However, as we know,
the codimension for the two orbits of the heterodimensional cycle are different, for
example, may be one of the orbits is of co-dimensional 0 while the other orbit is
codimensional-2, which makes the investigation much tougher. Consequently, it
is interesting and challenging to study the heterodimensional cycles although it is
difficult.

Fernández-Sánchez, et al. [11] investigated the T-point-Hopf bifurcation, in
which the T-point heteroclinic cycles is actually a kind of heterodimensional cycles.
In 2005, Lamb [14] declared that the reversible vector fields with heterodimensional
cycles are dense near Hopf-zero bifurcation. In the same year, Rademacher [22]
analyzed homoclinic orbits near heterodimensional cycles connecting an equilib-
rium point and a periodic orbit. Geng et al [12] devoted to the bifurcations of
heterodimensional cycles under some generic conditions, for more researches on
heterodimensional cycles, one may see [3–5,8,17–19] and the references cited there.

As is well known, there are many heteroclinic cycles with degeneracies such as
resonance eigenvalues, orbit flip or inclination flip maybe appear in the practical
system, and so are the heterodimensional cycles. So recently, some authors focus
their attentions on the researches of the heterodimensional cycles with degeneracies.
Lu [20] studied the heterodimensional cycle bifurcation with orbit-flip, they proved
that the persistent heterodimensional cycles and periodic orbits can not coexist.
Liu [17] investigated the heterodimensional cycle bifurcation with inclination flip,
they revealed new features produced by the inclination flip that heterodimensional
cycles and homoclinic orbits coexist. Some more studies on the degenerate heterodi-
mensional cycle are recommended to see [18,19,28]. A natural question would then
be asking what different bifurcation features can occur from the heterodimensional
cycle with both orbit flip and inclination orbit. To answer this question, we devote
to investigating the global bifurcations near a heterodimensional cycle with orbit
flip and inclination flip.

As we all know that a common way to discuss the homoclinic or heteroclinic
bifurcations is defining a suitable codim-1 transversal section to the unperturbed
orbits and a Poincaré-map which is composed by two mappings. By virtue of the
construction of the return map we may derive some information about the bifur-
cated periodic orbits, homoclinic orbits and heteroclinic orbits, the details one may
see [23]. Of course, Lin’s method is another effective way to discuss the homoclinic
or heteroclinic bifurcations [15]. However it is tough to deal with the different de-
generacy (including the inclination flip and the orbit flip). Our strategy is based on
the moving coordinates, which was initiated by Zhu and Xia [30] and then improved
in [18,20,28] and et al. A suitable fundamental solution matrix of linear variational
system has been chosen to be an active local coordinate system along original het-
erodenmensional cycle, which can clearly display the degenerate properties-”orbit
flip” and ”inclination flip” when the time is large enough. The bifurcation equations
which include important information can also be easily obtained by our method.
By constructing the moving coordinates and Poincaré maps in a sufficiently small
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neighborhood of the original heterodimensional cycle, we achieve the surfaces for
the perturbed parameter, on which the persistence of heterodimensional cycle, the
existence of homoclinic orbits and periodic orbits are established. It is worthy to
mention that some new features produced by the degeneracies that the coexistence
of the persistent heterodimensional cycle and multiple periodic orbits are presented,
which are different from the results obtained by Lu [20] and Liu [17]. Obviously,
the bifurcations of heterodimensional cycles with both orbit flip and inclination flip
have essential difference to that of heterodimensional cycle with only one orbit flip
or inclination flip. Moreover, to illustrate our results and eliminate doubts about
the existence of system which has a heterodimensional cycle with both orbit flip
and inclination flip, we present an example at the end of the paper. Further more,
we can point out that our results accomplished here can be extended to any higher
dimensional systems.

2. Problem and Assumptions

Consider the following Cr system

ż = f(z) + g(z, µ), (2.1)

and its unperturbed system
ż = f(z), (2.2)

where r ≥ 4, z ∈ R4, µ ∈ Rl, l > 2, 0 ≤ |µ| � 1, g(z, 0) = 0, f(z) is Cr with
respect to the phase variable z, g(z, µ) is Cr with respect to the phase variable z
and the parameter µ. In this paper, we need the following assumptions.

(H1) There are two hyperbolic equilibria pi, i = 1, 2 for system (2.2). And the
linearization matrix Df(p1) has four simple real eigenvalues: −ρ1

1, λ
1
1, λ

2
1, λ

3
1 fulfilling

−ρ1
1 < 0 < λ1

1 < λ2
1 < λ3

1; Df(p2) has four simple real eigenvalues: −ρ1
2,−ρ2

2, λ
1
2, λ

2
2

satisfying −ρ2
2 < −ρ1

2 < 0 < λ1
2 < λ2

2, ρ
2
2 ≥ 3ρ1

2, λ
2
2 ≥ 3λ1

2.
(H2) System (2.2) has a heteroclinic cycle Γ = Γ1∪Γ2 joining p1 and p2, where

Γi = {z = ri(t) : t ∈ R}, r1(+∞) = r2(−∞) = p2, r1(−∞) = r2(+∞) = p1, and

dim(Tr1(t)W
u
p1 ∩ Tr1(t)W

s
p2) = 1.

Here ri(t) denotes the flow of system (2.2), t ∈ R, W s
pi and Wu

pi are the Cr stable
and unstable manifolds of pi. And TpM denotes the tangent space of the manifold
M at p.

(H3) Let e±i = lim
t→∓∞

ṙi(t)
|ṙi(t)| , then e+

1 ∈ Tp1Wuu
p1 , e

+
2 ∈ Tp2Wu

p2 , e
−
1 ∈ Tp2W s

p2 ,

e−2 ∈ Tp1W s
p1 be unit eigenvectors corresponding to λ2

1, λ
1
2,−ρ1

2,−ρ1
1, respectively,

where Wuu
p1 is the strong unstable manifold of p1.

(H4) lim
t→−∞

Tr1(t)W
s
p2 = span{e+

1 , e
−
2 }, lim

t→+∞
Tr1(t)W

u
p1 = span{e−1 , e

+
2 , e

u+},

lim
t→−∞

Tr2(t)W
s
p1 = span{e+

2 }, lim
t→+∞

Tr2(t)W
u
p2 = span{e−2 , e+},

where e+, eu+ is the unit eigenvector corresponding to λ1
1, λ2

2, respectively.

Remark 2.1. It is easy to see from (H1) that Γ is a heterodimensional cycle. And
the condition (H2) means that Γ1 is a transverse orbit, so it can be preserved under
a small perturbation. That is, Γ1 is of codimension 0 and Γ2 is of codimension 2.
(H3) means that Γ1 is in orbit-flip as t → −∞, namely, the heteroclinic orbit Γ1
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tends to p1 along the strong unstable direction when t → −∞. While the fourth
equation in (H4) indicates that Wu

p2 is in inclination flip as t→ +∞. One may see
Figure 1, where we draw the manifold Wu

p2 only.

+

Figure 1. Heterodimensional cycle Γ = Γ1 ∪ Γ2 with Γ1 orbit flip and Wu
p2

inclination flip.

Remark 2.2. In fact, the restriction on the dimension is not essential, we may
extend our results to any higher dimensional system. For example, we can consider
a 5-dimensional system with the numbers of unstable and stable eigenvalues are
(2,3) and (3,2) respectively.

3. Local Coordinates and Poincaré map

In this section we shall achieve the normal form of system (2.1) and establish the
Poincaré map near the original heterodimensional cycle Γ. And then the bifurcation
equations will be obtained by virtue of the successor functions we define.

Firstly, we shall establish the normal form of system (2.1). Suppose that Ui is
the sufficiently small neighborhood of pi, then by using a translation and a linear
transformation, system (2.1) turns to be the following form in U1:

ẋ = λ1
1(µ)x+O(2),

ẏ = −ρ1
1(µ)y +O(2),

u̇ = λ3
1(µ)u+O(2),

ω̇ = λ2
1(µ)ω +O(2),

and in the neighborhood U2, system (2.1) becomes
ẋ = λ1

2(µ)x+O(2),

ẏ = −ρ1
2(µ)y +O(2),

u̇ = λ2
2(µ)u+O(2),

v̇ = −ρ2
2(µ)v +O(2),

where λi1(0) = λi1, ρ
1
1(0) = ρ1

1, i = 1, 2, 3. ρj2(0) = ρj2, λj2(0) = λj2, j = 1, 2. For

notational convenience we use λi1(µ), −ρ1
1(µ), i = 1, 2, 3, and ρj2(µ), λj2(µ), j = 1, 2
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as the corresponding eigenvalues of the linearization matrix of perturbed system
(2.1), which depends on the small parameter µ obviously.

Next, according to the stable (unstable) and strong stable manifold theorem
manifold theorems, we may choose two successive Cr and Cr−1 transformations
such that the local stable manifold, unstable manifold, strong unstable manifold
can be straightened in the region of Ui, and they are rendered as

Wu
p1 = {(x, y, u, ω) : y = 0}, W s

p1 = {(x, y, u, ω) : x = u = ω = 0},

Wuu
p1 = {(x, y, u, ω) : x = y = 0}, W s

p2 = {(x, y, u, v) : x = u = 0},

Wu
p2 = {(x, y, u, v) : y = v = 0}, Wuu

p2 = {(x, y, u, v) : x = y = v = 0}.

Also, we can straighten the orbit segments Γi ∩ U1, Γi ∩ U2, i = 1, 2.
Then due to the invariance of these manifolds, the system (2.1) has the following

Ck normal form in U1 of p1:
ẋ = (λ1

1(µ) + o(1))x+O(y)[O(u) +O(ω)],

ẏ = (−ρ1
1(µ) + o(1))y,

u̇ = (λ3
1(µ) + o(1))u+ [O(x) +O(y)][O(x) +O(ω)],

ω̇ = (λ2
1(µ) + o(1))ω + [O(x) +O(u)][O(x) +O(y)],

(3.1)

and has Ck normal form in U2 of p2 as:
ẋ = (λ1

2(µ) + o(1))x+O(u)[O(y) +O(v)],

ẏ = (−ρ1
2(µ) + o(1))y +O(v)[O(x) +O(u)],

u̇ = (λ2
2(µ) + o(1))u+O(x)[O(y) +O(v)],

v̇ = (−ρ2
2(µ) + o(1))v +O(y)[O(x) +O(u)],

(3.2)

where k = min{r − 2,
λ2
2

λ1
2
− 1,

ρ22
ρ12
− 1} ≥ 2, which is owing to that the weak un-

stable manifold of p1, and the weak stable manifold of P2 are approximately C
λ21
λ11 ,

C
ρ22
ρ12 , respectively (see [24]). Of course, the same kind of change of variable can be

achieved by using the theory of exponential dichotomies and weighted exponential
dichotomies to get the normal form. But by [24], we know that the extra conditions
λ2

1 ≥ 3λ1
1 and ρ2

2 ≥ 3ρ1
2 are necessary to ensure such change of coordinates are

possible, so that the system (3.1),(3.2) are smooth enough.
Denote the orbits ri(t) by ri(t) = (rxi (t), ryi (t), rui (t), rωi (t))∗ in U1, and ri(t) =

(rxi (t), ryi (t), rui (t), rvi (t))∗ in U2, i = 1, 2. Let Ti be large enough such that
r1(−T1) = (0, 0, 0, δ)∗, r1(T1) = (0, δ, 0, 0)∗, r2(−T2) = (δ, 0, 0, 0)∗, r2(T2) = (0, δ, 0, 0)∗,
where “∗′′ denotes the transposition, and δ > 0 is small enough such that {(x, y, u, ω)∗ :
|x|, |y|, |u|, |ω| < 2δ} ⊂ U1, {(x, y, u, v)∗ : |x|, |y|, |u|, |v| < 2δ} ⊂ U2.

Take into account the linear variational system of (2.2)

Ż = Df(ri(t))Z, (3.3)

and its adjoint system

Φ̇ = −(Df(ri(t)))
∗Φ. (3.4)
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Let Z(t) and Φ(t) be the fundamental solution matrixes of (3.3) and (3.4) respec-
tively, the known results tell us that they have the relation as (Z−1(t))∗ = Φ(t).

Note that the assumption (H1) means that the two equilibria are hyperbolic,
which implies system (3.3) has exponential dichotomies on R+ and R−, so the
following properties can be guaranteed.

Lemma 3.1. Assume (H1)-(H4) hold, then (1) there exists a fundamental solution
matrix Z1(t) = (Z1

1 (t), Z2
1 (t), Z3

1 (t), Z4
1 (t)) for system (3.3) satisfying

Z1
1 (t) =

ṙ1(t)

|ṙ1(−T1)|
∈ Tr1(t)W

u
p1 ∩ Tr1(t)W

s
p2 ,

Z2
1 (t), Z3

1 (t) ∈ Tr1(t)W
u
p1 ∩ (Tr1(t)W

s
p2)c,

Z4
1 (t) ∈ (Tr1(t)W

u
p1)c ∩ Tr1(t)W

s
p2 ,

such that

Z1(−T1) =


0 1 0 ω41

1

0 0 0 1

0 0 1 ω43
1

1 0 0 0

 , Z1(T1) =


0 ω21

1 ω31
1 0

ω12
1 ω22

1 ω32
1 ω42

1

0 ω23
1 ω33

1 0

0 ω24
1 ω34

1 ω44
1

 ,

where ω12
1 < 0, ω44

1 6= 0, d1 =

∣∣∣∣∣∣ω
21
1 ω31

1

ω23
1 ω33

1

∣∣∣∣∣∣ 6= 0. The notation (M)c means subspace

complementary to M .
(2) there exists a fundamental solution matrix Z2(t) = (Z1

2 (t), Z2
2 (t), Z3

2 (t), Z4
2 (t)) for

system (3.3) satisfying

Z1
2 (t), Z2

2 (t) ∈ (Tr2(t)W
u
p2)c,

Z3
2 (t) =

ṙ2(t)

|ṙ2(−T2)|
∈ Tr2(t)W

u
p2 ∩ Tr2(t)W

s
p1 ,

Z4
2 (t) ∈ Tr2(t)W

u
p2 ∩ (Tr2(t)W

s
p1)c,

Z2(−T2) =


ω11

2 ω21
2 1 0

ω12
2 ω22

2 0 0

ω13
2 ω23

2 0 1

ω14
2 ω24

2 0 0

 , Z2(T2) =


0 0 0 ω41

2

0 0 ω32
2 ω42

2

1 0 0 0

0 1 0 0

 ,

where ω32
2 < 0, ω41

2 6= 0, d2 =

∣∣∣∣∣∣ω
12
2 ω22

2

ω14
2 ω24

2

∣∣∣∣∣∣ 6= 0.

Proof. (1) Note that the heteroclinic orbit r1(t) tends to p1 along the strong
unstable manifold Wuu

p1 when t → −∞, and tends to p2 along the weak sta-

ble manifold W s
p2 as t → +∞, then based on the fact Z1

1 (t) = ṙ1(t)
|ṙ1(−T1)| and

the orbit segments have been straightened, it is easy to have the expressions of
Z1

1 (−T1), Z1
1 (T1) and the fact ω12

1 < 0. Choose Z2
1 (t), Z3

1 (t) ∈ Tr1(t)W
u
p1 , then the
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strong inclination property guarantees that d1 6= 0. Let Z̄4
1 (t) ∈ (Tr1(t)W

u
p1)c with

Z̄4
1 (−T1) = (0, 1, 0, 0)∗, we have Z̄4

1 (T1) = (ω̄41
1 , ω̄42

1 , ω̄43
1 , ω̄44

1 )∗. Then Z4
1 (t) =

Z̄4
1 (t)−d−1

1 (ω̄41
1 ω33

1 −ω̄43
1 ω31

1 )Z2
1 (t)−d−1

1 (ω̄43
1 ω21

1 −ω̄41
1 ω23

1 )Z3
1 (t), is also one solution

in (Tr1(t)W
u
p1)c based on the property of the solution to the linear system Conse-

quently, we achieve that Z4
1 (−T1) = (ω41

1 , 1, ω43
1 , 0)∗, and Z4

1 (T1) = (0, ω42
1 , 0, ω44

1 )∗.
Since Z1(t) is a fundamental solution matrix, we know that detZ1(−T1) 6= 0, to-
gether with the Liouville formula, we have ω44

1 6= 0.
The proof of result (2) can be finished with similar argument of proof for result

(1).

Remark 3.1. The first columns of matrixes Z1(−T1), Z1(T1) clearly display the
degenerate condition of “orbit flip”, and the fourth columns of Z2(−T2), Z2(T2)
clearly exhibit the degenerate condition of “inclination flip.”

Take (Z1
i (t), Z2

i (t), Z3
i (t), Z4

i (t)), i = 1, 2 as a new local coordinate system along
the original heterodimensional cycle Γ. Denote Φi(t) = (φ1

i , φ
2
i , φ

3
i , φ

4
i ), Φi(t) is

defined as before. Take a coordinate transformation near the orbits Γi as

z(t) = Si(t)
def
= ri(t) + Zi(t)Ni(t),

whereN1(t) = (0, n2
1, n

3
1, n

4
1)∗, N2(t) = (n1

2, n
2
2, 0, n

4
2)∗, and the components n2

1, n
3
1, n

4
1

(resp. n1
2, n

2
2, n

4
2) are the coordinate decomposition of system (2.1) in the new local

coordinate system corresponding to Z2
1 (t), Z3

1 (t), Z4
1 (t) (resp. Z1

2 (t), Z2
2 (t), Z4

2 (t)).
Define the cross-sections as

S0
1 = {z = S1(−T1) : |x|, |y|, |u|, |ω| < 2δ},
S1

1 = {z = S1(T1) : |x|, |y|, |u|, |v| < 2δ},
S0

2 = {z = S2(−T2) : |x|, |y|, |u|, |v| < 2δ},
S1

2 = {z = S2(T2) : |x|, |y|, |u|, |ω| < 2δ},

which intersect Γi transversally. (see Figure 2)

Figure 2. The cross sections and Poincaré map.

Next, we construct Poincaré map by two steps, which has four components
F 0

1 : S1
2 → S0

1 , F
1
1 : S0

1 → S1
1 , F

0
2 : S1

1 → S0
2 , F

1
2 : S0

2 → S1
2 .

Step 1. Put z(t) = Si(t)
def
= ri(t) + Zi(t)Ni(t) into equation (2.1), notice that

ṙi(t) = f(ri(t)), Żi(t) = Df(ri(t))Zi(t), we have:

Ṅi(t) = Φ∗i (t)gµ(ri(t), 0)µ+ h.o.t.,
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where gµ is the partial derivation of g(z, µ) with respect to µ. Integrating both
sides of the above equation from −Ti to Ti, we obtain

Ni(Ti) = Ni(−Ti) +

∫ Ti

−Ti
Φ∗i (t)gµ(ri(t), 0)µdt+ h.o.t.,

which then defines the global map F 1
1 : S0

1 −→ S1
1 and F 1

2 : S0
2 −→ S1

2 , as follows

F 1
1 (0, n0,2

1 , n0,3
1 , n0,4

1 )∗ = (0, n̄1,2
1 , n̄1,3

1 , n̄1,4
1 )∗,

F 1
2 (n0,1

2 , n0,2
2 , 0, n0,4

2 )∗ = (n̄1,1
2 , n̄1,2

2 , 0, n̄1,4
2 )∗,

where
n̄1,j

1 = n0,j
1 +M j

1µ+ h.o.t., n̄1,k
2 = n0,k

2 +Mk
2 µ+ h.o.t., (3.5)

and M j
1 =

∫ T1

−T1
φj∗1 (t)gµ(r1(t), 0) dt, j = 2, 3, 4;Mk

2 =
∫ T2

−T2
φk∗2 (t)gµ(r2(t), 0) dt, k =

1, 2, 4.
For the sake of simplicity for computation, we need the following result.

Lemma 3.2.

M j
1 =

∫ T1

−T1

φj∗1 (t)gµ(r1(t), 0) dt =

∫ +∞

−∞
φj∗1 (t)gµ(r1(t), 0) dt, j = 2, 3, 4;

Mk
2 =

∫ T2

−T2

φk∗2 (t)gµ(r2(t), 0) dt =

∫ +∞

−∞
φk∗2 (t)gµ(r2(t), 0) dt, k = 1, 2, 4.

Proof. To avoid the redundant illustration, we only show that the equality

M2
1 =

∫ +∞

−∞
φ2∗

1 (t)gµ(r1(t), 0) dt (3.6)

is true, the others can be obtained with similar arguments. To obtain (3.6) what
we need to do is proving φ2∗

1 (t)gµ(r1(t), 0) = 0 when |t| ≥ T1. Set

φ2∗
1 (t) = (φ21

1 , φ
22
1 , φ

23
1 , φ

24
1 ),

Note that Φ∗1(t)Z1(t) = I, it then follows that φ2∗
1 (t)Z1

1 (t) = 0. Together with
Z1

1 (T1) = (0, ω12
1 , 0, 0)∗, Z1

1 (−T1) = (0, 0, 0, 1)∗, we have φ22
1 (T1) = φ24

1 (−T1) = 0.
Since r1(t) = (0, ry1(t), 0, 0)∗ as t ≥ T1, where |ry1(t)| = O(δ). Note (3.2), we

obtain

Df(r1(t)) =


λ1

2 +O(δ) 0 O(δ) 0

O(δ) −ρ1
2 +O(δ) O(δ) O(δ)

O(δ) 0 λ2
2 +O(δ) 0

O(δ) 0 O(δ) −ρ2
2 +O(δ)

 .

As φ2
1(t) is a solution of Φ̇ = −(Df(r1(t)))∗Φ, then φ̇22

1 (t) = −[−ρ1
2 +O(δ)]φ22

1 (t).
According to φ22

1 (T1) = 0, it follows φ22
1 (t) = 0 for t ≥ T1. Similarly, as r1(t) =

(0, 0, 0, rω1 (t))∗ for t ≤ −T1, we have φ24
1 (t) = 0 as t ≤ −T1.

Based on the normal forms (3.1) and (3.2), we get

gµ(r1(t), 0) = (0, O(δ), 0, 0)∗, for t ≥ T1,
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gµ(r1(t), 0) = (0, 0, 0, O(δ))∗, for t ≤ −T1.

It then yields φ2∗
1 (t)gµ(r1(t), 0) = 0, |t| ≥ T1. The conclusion is verified.

Step 2. Next we shall establish the local maps F 0
1 : q1

2 ∈ S1
2 −→ q0

1 ∈ S0
1 and

F 0
2 : q1

1 ∈ S1
1 −→ q0

2 ∈ S0
2 induced by flows in the neighborhood Ui.

Let τi (i = 1, 2) be the time spent from q1
i−1 to q0

i , q1
0 = q1

2 . Suppose ρ1
1 > λ1

1,

λ1
2 > ρ1

2, then we select s1 = e−λ
1
1(µ)τ1 , s2 = e−ρ

1
2(µ)τ2 (if ρ1

1 < λ1
1, λ1

2 < ρ1
2, then it

turns to s1 = e−ρ
1
1(µ)τ1 , s2 = e−λ

1
2(µ)τ2). According to the normal forms (3.1), (3.2),

the local map F 0
1 : q1

2(x1
2, y

1
2 , u

1
2, ω

1
2) ∈ S1

2 → q0
1(x0

1, y
0
1 , u

0
1, ω

0
1) ∈ S0

1 can be expressed
as

x1
2 = x(T2) ≈ s1x

0
1, y

0
1 = y(T2 + τ1) ≈ δsβ1(µ)

1 ,

u1
2 = u(T2) ≈ s

λ31(µ)

λ11(µ)

1 u0
1, ω

1
2 = ω(T2) ≈ δs

λ21(µ)

λ11(µ)

1 ,

(3.7)

and the local map F 0
2 : q1

1(x1
1, y

1
1 , u

1
1, v

1
1) ∈ S1

1 → q0
2(x0

2, y
0
2 , u

0
2, v

0
2) ∈ S0

2 can be
expressed as

x1
1 = x(T1) ≈ δs

1
β2(µ)

2 , y0
2 = y(T1 + τ2) ≈ δs2,

u1
1 = u(T1) ≈ s

λ22(µ)

ρ12(µ)

2 u0
2, v

0
2 = v(T1 + τ2) ≈ s

ρ22(µ)

ρ12(µ)

2 v1
1 ,

(3.8)

where β1(µ) =
ρ1

1(µ)

λ1
1(µ)

,
1

β2(µ)
=
λ1

2(µ)

ρ1
2(µ)

, we call (s1, s2, x
0
1, u

0
1, u

0
2, v

1
1) Shilnikov vari-

ables.

To get the Poincaré map, we still need to establish the relationship between the
old coordinates

q0
1(x0

1, y
0
1 , u

0
1, ω

0
1)∗, q1

1(x1
1, y

1
1 , u

1
1, v

1
1)∗, q0

2(x0
2, y

0
2 , u

0
2, v

0
2)∗, q1

2(x1
2, y

1
2 , u

1
2, ω

1
2)∗

and their new coordinates

q0
1(0, n0,2

1 , n0,3
1 , n0,4

1 ), q1
1(0, n1,2

1 , n1,3
1 , n1,4

1 ), q0
2(n0,1

2 , n0,2
2 , 0, n0,4

2 ), q1
2(n1,1

2 , n1,2
2 , 0, n1,4

2 ).

Based on Si(t) = ri(t) + Zi(t)Ni(t), and the expressions of Zi(−Ti), Zi(Ti),
(i = 1, 2), we obtain



n0,2
1 = x0

1 − ω41
1 y0

1 ,

n0,3
1 = u0

1 − ω43
1 y0

1 ,

n0,4
1 = y0

1 ,

n0,1
2 = d−1

2 (ω24
2 y0

2 − ω22
2 v0

2),

n0,2
2 = d−1

2 (ω12
2 v0

2 − ω14
2 y0

2),

n0,4
2 = u0

2 + d−1
2 [(ω23

2 ω14
2 − ω13

2 ω24
2 )y0

2 + (ω13
2 ω22

2 − ω23
2 ω12

2 )v0
2 ],

(3.9)
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and

n1,2
1 = d−1

1 (ω33
1 x1

1 − ω31
1 u1

1),

n1,3
1 = d−1

1 (ω21
1 u1

1 − ω23
1 x1

1),

n1,4
1 = (ω44

1 )−1v1
1 + (ω44

1 )−1d−1
1 [(ω23

1 ω34
1 − ω24

1 ω33
1 )x1

1 + (ω24
1 ω31

1 − ω21
1 ω34

1 )u1
1],

n1,1
2 = u1

2,

n1,2
2 = ω1

2 ,

n1,4
2 = (ω41

2 )−1x1
2.

(3.10)
Together with equations (3.5), (3.7), (3.9), we have the Poincaré map F1 =

F 1
1 ◦ F 0

1 : S1
2 → S1

1 as follows
n̄1,2

1 = x0
1 − δω41

1 s
β1(µ)
1 +M2

1µ+ h.o.t.,

n̄1,3
1 = u0

1 − δω43
1 s

β1(µ)
1 +M3

1µ+ h.o.t.,

n̄1,4
1 = δs

β1(µ)
1 +M4

1µ+ h.o.t..

(3.11)

and by (3.5), (3.8), (3.9), we obtain the Poincaré map F2 = F 1
2 ◦ F 0

2 : S1
1 → S1

2 as
follows

n̄1,1
2 = d−1

2 (δω24
2 s2 − ω22

2 s

ρ22(µ)

ρ12(µ)

2 v1
1) +M1

2µ+ h.o.t.,

n̄1,2
2 = d−1

2 (ω12
2 s

ρ22(µ)

ρ12(µ)

2 v1
1 − δω14

2 s2) +M2
2µ+ h.o.t.,

n̄1,4
2 = u0

2 + d−1
2 [δ(ω23

2 ω14
2 − ω13

2 ω24
2 )s2 + (ω13

2 ω22
2 − ω23

2 ω12
2 )s

ρ22(µ)

ρ12(µ)

2 v1
1 ]

+M4
2µ+ h.o.t..

(3.12)

Consequently, the successor functions

(G1, G2)
def
= G(s1, s2, x

0
1, u

0
1, u

0
2, v

1
1)

= (G2
1, G

3
1, G

4
1, G

1
2, G

2
2, G

4
2) = (F1(q1

2)− q1
1 , F2(q1

1)− q1
2)

as follows

G2
1 = x0

1 − δω41
1 s

β1(µ)
1 − d−1

1 (δω33
1 s

1
β2(µ)

2 − ω31
1 s

λ22(µ)

ρ12(µ)

2 u0
2) +M2

1µ+ h.o.t.,

G3
1 = u0

1 − δω43
1 s

β1(µ)
1 − d−1

1 (ω21
1 s

λ22(µ)

ρ12(µ)

2 u0
2 − δω23

1 s
1

β2(µ)

2 ) +M3
1µ+ h.o.t.,

G4
1 = δs

β1(µ)
1 − (ω44

1 )−1v1
1 − (ω44

1 )−1d−1
1 [δ(ω23

1 ω34
1 − ω24

1 ω33
1 )s

1
β2(µ)

2 + (ω24
1 ω31

1

− ω21
1 ω34

1 )s

λ22(µ)

ρ12(µ)

2 u0
2] +M4

1µ+ h.o.t.,

G1
2 = δω24

2 d−1
2 s2 − d−1

2 ω22
2 s

ρ22(µ)

ρ12(µ)

2 v1
1 − s

λ31(µ)

λ11(µ)

1 u0
1 +M1

2µ+ h.o.t.,

G2
2 = d−1

2 ω12
2 s

ρ22(µ)

ρ12(µ)

2 v1
1 − δω14

2 d−1
2 s2 − δs

λ21(µ)

λ11(µ)

1 +M2
2µ+ h.o.t.,

G4
2 = u0

2 − (ω41
2 )−1s1x

0
1 + d−1

2 [δ(ω23
2 ω14

2 − ω13
2 ω24

2 )s2 + (ω13
2 ω22

2 − ω23
2 ω12

2 )s

ρ22(µ)

ρ12(µ)

2 v1
1 ]

+M4
2µ+ h.o.t.,
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can be achieved by using (3.10), (3.11), (3.12).

As we know, the non-generic conditions of heterodimensional cycle Γ can yield
that

W =
∂G

∂Q
|Q=0,µ=0 =



0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −(ω44
1 )−1 0

0 δd−1
2 ω24

2 0 0 0 0

0 −δd−1
2 ω14

2 0 0 0 0

0 δd−1
2 (ω23

2 ω14
2 − ω13

2 ω24
2 ) 0 0 0 1


(3.13)

is degenerate at Q = (s1, s2, x
0
1, u

0
1, v

1
1 , u

0
2) = 0. Which implies the implicit function

theorem is not work here. That is, the uniqueness of heteroclinic loop, homoclinic
loop or periodic orbit cannot be guaranteed, in another words, their coexistence
may be possible.

Next, we denote λi1 =λi1(µ), i= 1, 2, 3; ρ1
1 = ρ1

1(µ), β1 =
ρ11(µ)

λ1
1(µ)

, β2 =
ρ12(µ)

λ1
2(µ)

; ρj2(µ) =

ρj2, λ
j
2 =λj2(µ), j=1, 2.

Notice that the four columns of (3.13), we know that (x0
1, u

0
1, v

1
1 , u

0
2, ) can be

solved uniquely from (G2
1, G

3
1, G

4
1, G

4
2) = 0. And then put it into (G1

2, G
2
2) = 0,

we obtain the bifurcation equations:

ω24
2 s2 =− δ−1d2M

1
2µ+ ω43

1 d2s

λ31
λ11

+β1

1 + ω22
2 s

ρ22
ρ12
2 [ω44

1 sβ1

1 − d
−1
1 (ω23

1 ω34
1 − ω24

1 ω33
1 )s

1
β2
2

+ δ−1ω44
1 M4

1µ]− ω23
2 d−1

1 d2s

λ31
λ11
1 s

1
β2
2 − δ−1d2M

3
1µs

λ31
λ11
1 + h.o.t.,

ω14
2 s2 =δ−1d2M

2
2µ− d2s

λ21
λ11
1 + ω12

2 s

ρ22
ρ12
2 [ω44

1 sβ1

1 − d
−1
1 (ω23

1 ω34
1 − ω24

1 ω33
1 )s

1
β2
2

+ δ−1ω44
1 M4

1µ] + h.o.t..
(3.14)

Remark 3.2. From the expression of Z2(−T2) in Lemma 1, we have d2 =

∣∣∣∣∣∣ω
12
2 ω22

2

ω14
2 ω24

2

∣∣∣∣∣∣
6= 0, that is, (ω14

2 )2 +(ω24
2 )2 6= 0. In other words, there are three possible situations:

ω14
2 ω24

2 6= 0;ω14
2 = 0, ω24

2 6= 0;ω14
2 6= 0, ω24

2 = 0.

4. Main Results

In this section, we can discuss the persistence of heterodimensional cycles, the
existence of homoclinic orbits and periodic orbits by the existence of solution s1 =
s2 = 0, s1 > 0, s2 = 0 (or s1 = 0, s2 > 0) and s1 > 0, s2 > 0 for (3.14). Moreover, we
will establish the coexistence of the persistent hyterodimensional cycle and periodic
orbits or homoclinic orbits.

Firstly, we establish the persistence of the heterodimensional cycle under small
perturbation.
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If s1 = s2 = 0 is the solution of equation (3.14), we obtain M1
2µ + h.o.t. = 0,

M2
2µ+ h.o.t. = 0. Assume rank(M1

2 ,M
2
2 ) = 2, then we have

L12 = {µ : M1
2µ+ h.o.t. = M2

2µ+ h.o.t. = 0},

such that for µ ∈ L12 and 0 < |µ| � 1 system (2.1) has a unique heteroclinic
loop Γµ = Γµ1 ∪ Γµ2 . L12 is a codimension 2 surface with normal plane spanned by
M1

2 ,M
2
2 at µ = 0. By G2

1 = 0, we know that M2
1µ 6= 0 corresponds to x0

1 6= 0, which
means that the persistent heteroclinic orbit Γµ1 enters p1 along the leading unstable
manifold as t→ −∞. Then we have the following results.

Theorem 4.1. Suppose that hypotheses (H1)-(H4)are satisfied, and Rank(M1
2 ,M

2
2 )=

2, then there exists a (l − 2)-dimensional surface

L12 = {µ : M1
2µ+ h.o.t. = M2

2µ+ h.o.t. = 0},

with a normal plane spanned by Σ12 = span{M1
2 ,M

2
2 } at µ = 0, such that sys-

tem (2.1) has a unique heterodimensional cycles Γµ = Γµ1 ∪ Γµ2 as µ ∈ L12 and
0 < |µ| � 1. Furthermore, the persistent heteroclinic orbit Γµ1 has no orbit-flip as
t→ −∞ if M2

1µ 6= 0.

A corresponding results about the existence of the homoclinic orbit connecting
pi is contained in the next two theorems.

Theorem 4.2. Suppose the conditions (H1)-(H4) are satisfied, Rank(M1
2 , M

2
2 ) ≥

1, then for 0 < |µ| � 1, the following results hold.
(1) If ω14

2 ω24
2 6= 0, then there exists an (l − 1)-dimensional surface

L1
1 = {µ : W 1

1 (µ)
def
= (ω14

2 M1
2 + ω24

2 M2
2 )µ+ h.o.t. = 0, ω14

2 d2M
2
2µ > 0}

such that system (2.1) has a unique orbit Γ1
1 homoclinic to p1 as µ ∈ L1

1. Meanwhile,
the surface L1

1 is tangent to the surface L12 at µ = 0.
(2) If ω14

2 = 0, ω24
2 6= 0, then there exists an (l − 1)-dimensional surface

L2
1 = {µ : W 2

1 (µ)
def
= M2

2µ+ ω44
1 ω12

2 d−1
2 s

ρ22
ρ12M4

1µ

+ δω12
2 (ω33

1 ω24
1 − ω23

1 ω34
1 )(d1d2)−1s

ρ22
ρ12

+ 1
β2 + h.o.t. = 0,

s = −δ−1(ω24
2 )−1d2M

1
2µ, ω

24
2 d2M

1
2µ < 0}

such that system (2.1) has a unique orbit Γ2
1 homoclinic to p1 as µ ∈ L2

1. Meanwhile,
the surface L2

1 is tangent to the surface L12 at µ = 0.
(3) If ω14

2 6= 0, ω24
2 = 0, then there exists an (l − 1)-dimensional surface

L3
1 = {µ : W 3

1 (µ)
def
= M1

2µ− ω44
1 ω22

2 d−1
2 s

ρ22
ρ12M4

1µ

− δω22
2 (ω33

1 ω24
1 − ω23

1 ω34
1 )(d1d2)−1s

ρ22
ρ12

+ 1
β2 + h.o.t. = 0,

s = δ−1(ω14
2 )−1d2M

2
2µ, ω

14
2 d2M

2
2µ > 0}

such that system (2.1) has a unique orbit Γ3
1 homoclinic to p1 as µ ∈ L3

1. Meanwhile,
the surface L3

1 is tangent to the surface L12 at µ = 0.
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Proof. Assume has a solution satisfying s1 = 0, 0 < s2 � 1, the equation (3.14)
then turns into
ω24

2 s2 = −δ−1d2M
1
2µ+ ω22

2 s

ρ22
ρ12
2 [d−1

1 (ω33
1 ω24

1 − ω23
1 ω34

1 )s
1
β2
2 + δ−1ω44

1 M4
1µ] + h.o.t.,

ω14
2 s2 = δ−1d2M

2
2µ+ ω12

2 s

ρ22
ρ12
2 [d−1

1 (ω33
1 ω24

1 − ω23
1 ω34

1 )s
1
β2
2 + δ−1ω44

1 M4
1µ] + h.o.t..

(4.1)
(1) If ω14

2 ω24
2 6= 0, then (4.1) can be reduced to{

ω24
2 s2 = −δ−1d2M

1
2µ+ h.o.t.,

ω14
2 s2 = δ−1d2M

2
2µ+ h.o.t..

(4.2)

The second equation of (4.2) then yields to

s2 = δ−1d2(ω14
2 )−1M2

2µ+ h.o.t.

Obviously, 0 < s2 � 1 when ω14
2 d2M

2
2µ > 0 and 0 < |µ| � 1. Substituting s2 into

the first equation of (4.2), we obtain the bifurcation surface

L1
1 = {µ : W 1

1 (µ)
def
= (ω14

2 M1
2 + ω24

2 M2
2 )µ+ h.o.t. = 0, ω24

2 d2M
2
2µ > 0}

with a common normal plane ω14
2 M1

2 + ω24
2 M2

2 ∈ Σ12, which is tangent to L12 at
µ = 0.

(2) If ω14
2 = 0, ω24

2 6= 0, equation (4.1) becomes
ω24

2 s2 = −δ−1d2M
1
2µ+ h.o.t.,

δ−1d2M
2
2µ+ ω12

2 s

ρ22
ρ12
2 [d−1

1 (ω33
1 ω24

1 − ω23
1 ω34

1 )s
1
β2
2 + δ−1ω44

1 M4
1µ] + h.o.t. = 0,

(4.3)
The first equation of (4.3) implies that there exists one sufficiently small positive
solution

0 < s2 = −δ−1(ω24
2 )−1d2M

1
2µ+ h.o.t.� 1

as ω24
2 d2M

1
2µ < 0. And then put s2 into the second equation, we obtain the

bifurcation surface L2
1 with normal vector M2

2 ∈ Σ12 at µ = 0, such that there
exists a unique loop Γ2

1 homoclinic to p1 for µ ∈ L2
1 and 0 < |µ| � 1.

(3) If ω14
2 6= 0, ω24

2 = 0, then (4.1) turns to: δ−1d2M
1
2µ− ω22

2 s

ρ22
ρ12
2 [d−1

1 (ω33
1 ω24

1 − ω23
1 ω34

1 )s
1
β2
2 + δ−1ω44

1 M4
1µ]h.o.t. = 0,

ω14
2 s2 = δ−1d2M

2
2µ+ h.o.t..

(4.4)

Notice that the second equation of (4.4), we have 0 < s2 = δ−1(ω14
2 )−1d2M

2
2µ +

h.o.t.� 1 as ω14
2 d2M

2
2µ > 0. Substituting s2 into the first equation, the bifurcation

surface L3
1 is then obtained. It is easy to see that

∂W 3
1 (µ)

∂µ
|µ=0 = M1

2 , which means

that L3
1 is tangent to L12 at µ = 0.

Theorem 4.3. Suppose the conditions (H1)-(H4) are satisfied, Rank(M1
2 ,M

2
2 ) ≥ 1,

then for 0 < |µ| � 1, the following results hold.
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(1) If ω43
1 6= 0, then when µ satisfies |M1

2µ| � |M3
1µ|

α
α−1 , there exists a bifurca-

tion surface

L1
2 = {µ : W 1

2 (µ)
def
= M2

2µ− δs̃
λ21
λ11
1 + h.o.t. = 0, ω43

1 M3
1µ > 0},

such that system (2.1) has a unique orbit Γ1
2 homoclinic to p2 in the small neigh-

borhood of Γ for µ ∈ L1
2 and 0 < |µ| � 1, where α =

λ3
1 + λ1

1β1

λ3
1

> 1, s̃1 =

[δ−1(ω43
1 )−1M3

1µ]
1
β1 + h.o.t..

(2) If ω43
1 6= 0, then when µ satisfies |M1

2µ| � |M3
1µ|

α
α−1 , there exists an bifur-

cation surface

L2
2 = {µ : W 2

2 (µ)
def
= M2

2µ− δŝ
λ21
λ11
1 + h.o.t. = 0, ω43

1 M1
2µ > 0},

such that system (2.1) has a unique orbit homoclinic to p2 in the small neighborhood

of Γ for µ ∈ L2
2 and 0 < |µ| � 1, where ŝ1 = [δ−1(ω43

1 )−1M1
2µ]

λ11
λ31+λ11β1 + h.o.t..

(3) If ω43
1 = 0, then when µ satisfies |M1

2µ| � |M3
1µ|, there exists a bifurcation

surface

L3
2 = {µ : W 3

2 (µ)
def
= M2

2µ− δs̄
λ21
λ11
1 + h.o.t. = 0,M1

2µM
3
1µ < 0},

such that system (2.1) has a unique orbit homoclinic to p2 in the small neighborhood

of Γ for µ ∈ L3
2 and 0 < |µ| � 1, where s̄1 = (−M

1
2µ

M3
1µ

)
λ11
λ31 .

(4) If ω43
1 = 0, then when µ satisfies |M1

2µ| � |M3
1µ|, system (2.1) has no

homoclinic loop associated to p2 near Γ.

Proof. Let s2 = 0 in system (3.14), then we have
ω43

1 s

λ31
λ11

+β1

1 − δ−1M3
1µs

λ31
λ11
1 − δ−1M1

2µ+ h.o.t. = 0,

s

λ21
λ11
1 − δ−1M2

2µ+ h.o.t. = 0.

(4.5)

Take t = s

λ31
λ11
1 , α =

λ3
1 + λ1

1β1

λ3
1

in the first equation of (4.5), we have

ω43
1 tα = δ−1M1

2µ+ δ−1M3
1µt+ h.o.t. (4.6)

(1) If ω43
1 6= 0, then when |M1

2µ| � |M3
1µ|

α
α−1 and ω43

1 M3
1µ > 0 are valid, we

can conclude that system (4.6) has a unique sufficiently small positive solution

t = [δ−1(ω43
1 )−1M3

1µ]
1

α−1 + h.o.t.

This follows the fact that |M1
2µ| � |M3

1µt|. Then we have

s̃1 = t
λ11
λ31 = [δ−1(ω43

1 )−1M3
1µ]

1
β1 + h.o.t..
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Putting this solution s̃1 into the second equation of (4.5), we obtain the bifurcation
surface L1

2, which is tangent to L12 at µ = 0.
(2) If ω43

1 6= 0, then when µ satisfies |M1
2µ| � |M3

1µ|
α
α−1 and ω43

1 M1
2µ > 0, (4.6)

becomes
ω43

1 tα = δ−1M1
2µ+ h.o.t.,

which has a unique sufficiently small positive solution

t = [δ−1(ω43
1 )−1M1

2µ]
1
α + h.o.t.

This follows the fact that |M1
2µ| � |M3

1µt|. Now we have

s1 = ŝ1 = [δ−1(ω43
1 )−1M1

2µ]
λ11

λ31+λ11β1 + h.o.t..

Substituting ŝ1 into the second equation of (4.5), we obtain the bifurcation surface
L2

2.
(3) If ω43

1 = 0, then by the first equation of (4.5),we have

M3
1µs

λ31
λ11
1 = −M1

2µ+ h.o.t.,

which has a unique sufficiently small positive solution s1 = s̄1 = (−M
1
2µ

M3
1µ

)
λ11
λ31 +h.o.t.

if M3
1µM

1
2µ < 0 and |M1

2µ| � |M3
1µ|. Substituting s̄1 into the second equation of

(4.5), we obtain the bifurcation surface L3
2.

(4) If ω43
1 = 0, then when µ satisfies |M1

2µ| � |M3
1µ|, by the discussion of (3),

we know that (4.5) has no sufficiently small positive solution s1. This ends the
proof of conclusion (4).

Remark 4.1. If we discuss the bifurcation problem according to the second equa-
tion of (4.5), we obtain that

s1 = [δ−1M2
2µ]

λ11
λ21 + h.o.t.

Then when M2
2µ > 0 we have 0 < s1 � 1. Substituting s1 into the first equation

of (4.5), we can obtain the following bifurcation surface

L4
2 = {µ : W 4

2 (µ)
def
= ω43

1 [δ−1M2
2µ]

λ21+λ11β1

λ21 − δ−1M3
1µ[δ−1M2

2µ]
λ31
λ21

− δ−1M1
2µ+ h.o.t. = 0,M2

2µ > 0},

such that for µ ∈ L4
2 and 0 < |µ| � 1, system (2.1) has a unique homoclinic orbit

connecting p2 in a neighborhood of the heterodimensional cycle Γ.

Next, relying on the analysis for the bifurcation equations (3.14), we discuss the
existence of the periodic orbit under small perturbation.

Theorem 4.4. Suppose that hypotheses (H1)-(H4) are valid, Rank(M1
2 , M

2
2 ) ≥ 1,

and ω14
2 ω24

2 6= 0, then for 0 < |µ| � 1, the following results hold.
(1) If M2

2µ < 0, d2ω
14
2 < 0, then when µ satisfies ω24

2 W 1
1 (µ) > 0, system

(2.1) has one unique periodic orbit near Γ; when µ satisfies ω24
2 W 1

1 (µ) < 0, system
(2.1) has no periodic orbits near Γ.
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(2) If M2
2µ > 0, d2ω

14
2 < 0, when µ satisfies ω24

2 d2W
4
2 (µ) > 0, there exists

one periodic orbit near Γ; when µ satisfies ω24
2 d2W

2
2 (µ) < 0, system (2.1) has no

periodic orbit near Γ.
(3) If M2

2µ > 0, d2ω
14
2 > 0, when µ satisfies ω24

2 W 1
1 (µ) > 0, d2ω

24
2 W 4

2 (µ) > 0,
system (2.1) has one unique periodic orbit near Γ; otherwise, there exists no periodic
orbit near Γ.

(4) If M2
2µ < 0, d2ω

14
2 > 0, then system (2.1) has no periodic orbit near Γ.

Proof. When ω14
2 ω24

2 6= 0, bifurcation equations (3.14) are reduced to
ω24

2 s2 = −δ−1d2M
1
2µ+ ω43

1 d2s

λ31
λ11

+β1

1 − δ−1d2M
3
1µs

λ31
λ11
1 + h.o.t.,

ω14
2 s2 = δ−1d2M

2
2µ− d2s

λ21
λ11
1 + h.o.t..

(4.7)

By the second equation of (4.7), we have

s2 = (ω14
2 )−1d2(δ−1M2

2µ− s
λ21
λ11
1 ) + h.o.t.

(1) In case M2
2µ < 0, ω14

2 d2 < 0, and 0 < s1 � 1, we have 0 < s2 � 1.
Substituting the expression of s2 into the first equation of (4.7), we have

F (s1, µ)
def
= (ω14

2 )−1(δ−1M2
2µ− s

λ21
λ11
1 ) + (ω24

2 )−1δ−1M1
2µ− ω43

1 (ω24
2 )−1s

λ31
λ11

+β1

1

+ δ−1(ω24
2 )−1M3

1µs

λ31
λ11
1 + h.o.t. = 0.

Setting t1 = s

λ21
λ11
1 , then

F (t1, µ) =δ−1(ω14
2 ω24

2 )−1[ω14
2 M1

2µ+ ω24
2 M2

2µ]− (ω14
2 )−1t1

− ω43
1 (ω24

2 )−1t

λ31+λ11β1

λ21
1 + δ−1(ω24

2 )−1M3
1µt

λ31
λ21
1 + h.o.t. = 0.

By F (0, µ) = δ−1(ω14
2 ω24

2 )−1W 1
1 (µ), F ′t1(t1, µ) = −(ω14

2 )−1 + h.o.t., then we know
that F (t1, µ) = 0 has a unique sufficiently small positive solution t1 = t1(µ) > 0 as
ω24

2 W 1
1 (µ) > 0, then system (2.1) has one unique periodic orbit. If ω24

2 W 1
1 (µ) < 0,

then (2.1) has no periodic orbits near Γ.
(2) If M2

2µ > 0, d2ω
14
2 < 0, then by the second equation of (4.7), we obtain

s1 = [δ−1M2
2µ− d−1

2 ω14
2 s2]

λ11
λ21 + h.o.t. > 0.

Putting this simple expression of s1 into the first equation, we have

G(s2, µ)
def
= ω24

2 s2 + δ−1d2M
1
2µ− ω43

1 d2[δ−1M2
2µ− d−1

2 ω14
2 s2]

λ31+λ11β1

λ21

+ δ−1d2M
3
1µ[δ−1M2

2µ− d−1
2 ω14

2 s2]
λ31
λ21 + h.o.t. = 0.

Then by G(0, µ) = −d2W
4
2 (µ), G′s2(s2, µ) = ω24

2 +h.o.t., we know that G(s2, µ) = 0
has a unique sufficiently small positive solution 0<s2 =s2(µ)�1 as ω24

2 d2W
4
2 (µ)>0.
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Otherwise, G(s2, µ) = 0 no sufficiently small positive solutions. We finish the proof
of the conclusion of (2).

(3) If M2
2µ > 0, d2ω

14
2 > 0, then it is easy to see that s1 > 0 only if 0 ≤ s2 <

s̃2 = δ−1d2(ω14
2 )−1M2

2µ. So to show the existence of the periodic orbit, it suffices
to find a positive solution s2 = s2(µ) of G(s2, µ) = 0 such that 0 ≤ s2(µ) < s̃2.
By G′s2(s2, µ) =ω24

2 +h.o.t. 6=0, we know that G(s2, µ) is monotone with respect to
s2. By some simple computation, we have G(s̃2, µ) = δ−1d2(ω14

2 )−1W 1
1 µ, then if

ω24
2 W 1

1 (µ)>0, d2ω
24
2 W 4

2 (µ)>0, we can get G′s2(s2, µ)G(0, µ)<0, G(0, µ)G(s̃2, µ)<0,
which means that G(s2, µ) = 0 has a unique sufficiently small positive solution
satisfying 0 ≤ s2(µ) < s̃2. Otherwise, G(s2, µ) = 0 has no sufficiently small positive
solution satisfying 0 ≤ s2(µ) < s̃2. we obtain the conclusion (3).

(4) If M2
2µ < 0, d2ω

14
2 > 0, then we have s2 = (ω14

2 )−1d2(δ−1M2
2µ − s

λ21
λ11
1 ) +

h.o.t. < 0. Then the bifurcation equation (3.14) has no sulutions satisfying 0 <
s1 � 1, 0 < s2 � 1, that is, system (2.1) has no periodic orbits near Γ.

Theorem 4.5. Suppose that hypotheses (H1)-(H4) are valid, Rank(M1
2 , M

2
2 ) ≥ 1,

ω24
2 6= 0 and ω14

2 = ω43
1 = 0. Then for 0 < |µ| � 1, the following results hold.

(1) If ω24
2 d2M

1
2µ < 0, ω24

2 d2M
3
1µ < 0, then system (2.1) has a unique periodic

orbit near Γ as µ lies in the small one-sided neighborhood of L2
1 satisfying W 2

1 (µ) >
0; System (2.1) has no periodic orbits near Γ as W 2

1 (µ) < 0.

(2) If ω24
2 d2M

1
2µ < 0, ω24

2 d2M
3
1µ > 0, then when µ lies in the region {µ :

|M1
2µ| � |M3

1µ|, W 2
1 (µ) > 0,W 3

2 (µ) < 0}, system (2.1) has a unique periodic orbit
near Γ; Otherwise, System (2.1) has no periodic orbits near Γ.

(3) If ω24
2 d2M

1
2µ > 0, system (2.1) has no periodic orbits near Γ.

Proof. For 0 < |µ| � 1, when ω14
2 = ω43

1 = 0 but ω24
2 6= 0, bifurcation equations

(3.14) are changed into
ω24

2 s2 = −δ−1d2M
1
2µ− δ−1d2M

3
1µs

λ31
λ11
1 + h.o.t.,

δ−1d2M
2
2µ− d2s

λ21
λ11
1 + ω12

2 s

ρ22
ρ12
2 [ω44

1 sβ1

1 − d
−1
1 (ω23

1 ω34
1 − ω24

1 ω33
1 )s

1
β2
2

+ δ−1ω44
1 M4

1µ] + h.o.t. = 0.

(4.8)

By the first equation of (4.8), we have

s2 = −δ−1(ω24
2 )−1d2[M1

2µ+M3
1µs

λ31
λ11
1 ] + h.o.t..

(1) If ω24
2 d2M

1
2µ < 0, ω24

2 d2M
3
1µ < 0, then for 0 < s1 � 1, we have 0 < s2 � 1.

Substituting the expression of s2 into the second equation of (4.8), we have

F (s1, µ)
def
= δ−1M2

2µ− s
λ21
λ11
1 + ω12

2 d−1
2 [−δ−1(ω24

2 )−1d2]
ρ22
ρ12 [M1

2µ+M3
1µs

λ31
λ11
1 ]

ρ22
ρ12 [ω44

1 sβ1

1

− d−1
1 (ω23

1 ω34
1 − ω24

1 ω33
1 )[−δ−1(ω24

2 )−1d2]
1
β2 (M1

2µ+M3
1µs

λ31
λ11
1 )

1
β2

+ δ−1ω44
1 M4

1µ] + h.o.t. = 0.
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Take t1 = s

λ21
λ11
1 , then we have

F (t1, µ) = δ−1M2
2µ− t1 + ω12

2 d−1
2 [−δ−1(ω24

2 )−1d2]
ρ22
ρ12 [M1

2µ+M3
1µt

λ31
λ21
1 ]

ρ22
ρ12 [ω44

1 t

λ11β1

λ21
1

− d−1
1 (ω23

1 ω34
1 − ω24

1 ω33
1 )[−δ−1(ω24

2 )−1d2]
1
β2 (M1

2µ+M3
1µt

λ31
λ21
1 )

1
β2

+ δ−1ω44
1 M4

1µ] + h.o.t..

Notice that F (0, µ) = δ−1W 2
1 (µ), F ′t1(t1, µ) = −1 + h.o.t.. In case W 2

1 (µ) > 0, then
F (t1, µ) = 0 has a unique sufficiently small positive solution 0 < t1 � 1, thus system
(2.1) has a unique periodic orbit near Γ; In case W 2

1 (µ) < 0, then F (t1, µ) = 0 has
no sufficiently small positive solution, thus system (2.1) has no periodic orbits near
Γ.

(2) If ω24
2 d2M

1
2µ < 0, ω24

2 d2M
3
1µ > 0, then we have M1

2µM
3
1µ < 0. It is easy to

see that 0 < s2 � 1 only if 0 < s1 < s̄1 = (−M
1
2µ

M3
1µ

)
λ11
λ31 � 1. To assure the existence

of small enough positive solutions, |M3
1µ| � |M1

2µ|,M1
2µM

3
1µ < 0 must be valid.

Next we shall look for the small positive solution s1 = s1(µ) of F (s1, µ) such that
0 < s1 < s̄1. That is, we need to find small positive solution t1 = t1(µ) of F (t1, µ)

satisfying 0 < t1 < t̄1 = (−M
1
2µ

M3
1µ

)
λ21
λ31 . In case of W 2

1 (µ) > 0,W 3
2 (µ) < 0, then by

F ′t1(t1, µ) = −1 + h.o.t., we obtain that F (0, µ)F ((t̄1, µ) < 0, F (0, µ)F ′t1(t1, µ) < 0,
where F (t̄1, µ) = δ−1W 3

2 (µ). Therefore, F (t1, µ) has a small positive solution. We
obtain the conclusion (2).

(3) If ω24
2 d2M

1
2µ > 0, then when ω24

2 d2M
3
1µ < 0, we have

s2 = −δ−1(ω24
2 )−1d2M

1
2µ− δ−1(ω24

2 )−1d2M
3
1µs

λ31
λ11
1 + h.o.t. < 0

for 0 < s1 < s̄1 = (−M
1
2µ

M3
1µ

)
λ11
λ31 . On the other hand, notice that F (s1, µ) has

no positive solution s1 = s1(µ) for s1 > s̄1, then equation (4.8) has no positive
solutions; when ω24

2 d2M
3
1µ > 0, by the expression of s2, we know that s2 < 0 for

s1 ≥ 0,then equation (4.8) also has no positive solutions. The proof is complete.

Next, relying on the analysis for the bifurcation equations (3.14), we discuss
the coexistence of the heterodimensional cycle, homoclinic orbit and periodic orbit
under small perturbation

Theorem 4.6. Suppose that hypotheses (H1)-(H4) are valid, Rank(M1
2 , M

2
2 ) = 2,

and ω24
2 6= 0, then for µ ∈ L12 and 0 < |µ| � 1, the heterodimensional cycle can

not coexistence with homoclinic orbit and periodic orbit.

Proof. (1) When ω14
2 ω24

2 6= 0, bifurcation equations (3.14) are reduced to
ω24

2 s2 = ω43
1 d2s

λ31
λ11

+β1

1 − δ−1d2M
3
1µs

λ31
λ11
1 + h.o.t.,

ω14
2 s2 = −d2s

λ21
λ11
1 + h.o.t.,

(4.9)
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for µ ∈ L12 and 0 < |µ| � 1. By the second equation of (4.9), we know that
s1 = 0 ⇔ s2 = 0. Then the heterodimensional cycle can not coexistence with the
homoclinic orbit. Eliminating s2 in (4.9), it follows that:

(ω24
2 )−1ω43

1 s

λ31
λ11

+β1

1 = −(ω14
2 )−1s

λ21
λ11
1 + δ−1(ω24

2 )−1M3
1µs

λ31
λ11
1 + h.o.t. (4.10)

By λ2
1 < λ3

1, it is obvious that the heterodimensional cycle can not coexistence with
the periodic orbit.

(2) When ω14
2 = 0, ω24

2 6= 0, bifurcation equations (3.14) are changed into
ω24

2 s2 = ω43
1 d2s

λ31
λ11

+β1

1 − δ−1d2M
3
1µs

λ31
λ11
1 + h.o.t.,

− d2s

λ21
λ11
1 + ω12

2 s

ρ22
ρ12
2 [ω44

1 sβ1

1

− d−1
1 (ω23

1 ω34
1 − ω24

1 ω33
1 )s

1
β2
2 + δ−1ω44

1 M4
1µ] + h.o.t. = 0.

(4.11)

By the first equation of (4.11), we have that s2 = o(s

λ31
λ11
1 ), then s

ρ22
ρ12
2 = o(s

λ31ρ
2
2

λ11ρ
1
2

1 ) =

o(s

λ31
λ11
1 ). By the second equation, we know that system (4.11) has no nonnegative

solutions except the solution s1 = 0, s2 = 0. Then the heterodimensional cycle can
not coexistence with homoclinic orbit and periodic orbit.

Theorem 4.7. Suppose that hypotheses (H1)-(H4) are valid, Rank(M1
2 , M

2
2 ) = 2,

1

β2
> β1 > 1, ω14

2 6= 0, ω24
2 = 0, then for µ ∈ L12 and 0 < |µ| � 1, the following

results hold.
(1) When ω14

2 d2 > 0, then systen (2.1) has no periodic orbits near Γ.

(2) When ω14
2 d2 < 0, ω43

1 6= 0 and
λ3

1

λ1
1

+ β1 <
λ2

1ρ
2
2

λ1
1ρ

1
2

, then there exists one unique

periodic orbit near Γ as ω43
1 M3

1µ > 0; System (2.1) has no periodic orbit near Γ as
ω43

1 M3
1µ < 0.

(3) When ω14
2 d2 < 0, ω43

1 6= 0 and
λ3

1

λ1
1

<
λ2

1ρ
2
2

λ1
1ρ

1
2

<
λ3

1

λ1
1

+ β1, then

(a) If ω43
1 M3

1µ < 0, d2ω
43
1 ω44

1 ω22
2 M4

1µ > 0, system (2.1) has no periodic orbit
near Γ.

(b) If ω43
1 M3

1µ > 0, d2ω
43
1 ω44

1 ω22
2 M4

1µ > 0 or d2ω
43
1 ω44

1 ω22
2 M4

1µ < 0, there exists
one unique periodic orbit near Γ.

(c) If ω43
1 M3

1µ<0, d2ω
43
1 ω44

1 ω22
2 M4

1µ<0 and ω43
1 ∆1<0(resp., ∆1 =0 or M3

1µ∆1>
0), then system (2.1) has exactly two periodic orbits (resp., has a unique double
periodic orbit, or has no periodic orbit), where

∆1 = −δ−1M3
1µ+ (1− 1

α1
)δ−1d−1

2 ω22
2 ω44

1 ν

ρ22
ρ12
1 M4

1µ(−ω
22
2 ω44

1 ν

ρ22
ρ12
1 M4

1µ

δα1ω43
1 d2

)
1
α1 ,

α1 =
λ1

1ρ
1
2β1

λ2
1ρ

2
2 − λ3

1ρ
1
2

> 1.

(4) When ω14
2 d2 < 0, ω43

1 6= 0 and
λ3

1

λ1
1

>
λ2

1ρ
2
2

λ1
1ρ

1
2

, then
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(a) If M4
1µ > 0, ω44

1 ω22
2 d2M

3
1µM

4
1µ < 0, system (2.1) has no periodic orbit near

Γ.
(b) If M4

1µ < 0, d2ω
44
1 ω22

2 M3
1µ > 0 or d2ω

44
1 ω22

2 M3
1µ < 0, system (2.1) has a

unique periodic orbit near Γ.
(c) If M4

1µ>0, ω44
1 ω22

2 d2M
3
1µ>0 and ω44

1 ω22
2 ∆2<0(resp., ∆2 =0, or ω44

1 ω22
2 ∆2>

0), then system (2.1) has exactly two periodic orbits (resp., has a unique double pe-
riodic orbit, or has no periodic orbit), where

∆2 = ω44
1 ω22

2 ν

ρ22
ρ12
1 M4

1µ+ (1− 1

α2
)d2M

3
1µ(

d2M
3
1µ

α2δω22
2 ω44

1 ν
ρ22/ρ

1
2

1

)
1

α2−1 ,

α2 =
λ1

1ρ
1
2β1

λ3
1ρ

1
2 − λ2

1ρ
2
2

> 1.

(5) When ω14
2 d2 < 0, ω43

1 = 0 and ω23
1 6= 0, then

(a) For
λ3

1

λ1
1

+
λ2

1

λ1
1β1

<
λ2

1ρ
2
2

λ1
1ρ

1
2

, system (2.1) has a unique periodic orbit near Γ as

ω23
1 d1M

3
1µ < 0; system (2.1) has no periodic orbit near Γ as ω23

1 d1M
3
1µ > 0.

(b) For
λ3

1

λ1
1

<
λ2

1ρ
2
2

λ1
1ρ

1
2

<
λ3

1

λ1
1

+
λ2

1

λ1
1β1

<
λ2

1ρ
2
2

λ1
1ρ

1
2

+ β1, system (2.1) has no periodic

orbit near Γ as ω23
1 ω44

1 ω22
2 d1d2M

4
1µ < 0, ω23

1 d1M
3
1µ > 0; system (2.1) has a unique

periodic orbit as ω23
1 d1M

3
1µ > 0, ω23

1 ω44
1 ω22

2 d1d2M
4
1µ < 0 or ω23

1 ω44
1 ω22

2 d1d2M
4
1µ >

0; system (2.1) has exactly two periodic orbits (resp., has a unique double periodic
orbit, or has no periodic orbit) as ω23

1 ω44
1 ω22

2 d1d2M
4
1µ > 0, ω23

1 d1M
3
1µ > 0 and

d1ω
23
1 ∆3 < 0(resp., ∆3 = 0, or ω23

1 d1∆3 > 0), where

∆3 = −δ−1d−1
2 ω22

2 ω44
1 M4

1µν

ρ22
ρ12
1 + (1− 1

α3
)δ−1M3

1µ(− M3
1µ

δd1α3ω33
1 ν

1/β2

1

)
1
α3 ,

α3 =
λ1

1ρ
1
2

(λ3
1ρ

1
2 − λ2

1ρ
2
2)β2

> 1.

Proof. For any µ ∈ L12 and 0 < |µ| � 1, when ω14
2 6= 0, ω24

2 = 0, then bifurcation
equations (3.14) are changed into

ω43
1 d2s

λ31
λ11

+β1

1 − δ−1d2M
3
1µs

λ31
λ11
1 − d−1

1 d2ω
23
2 s

λ31
λ11
1 s

1
β2
2 + ω22

2 s

ρ22
ρ12
2 [ω44

1 sβ1

1

− d−1
1 (ω23

1 ω34
1 − ω24

1 ω33
1 )s

1
β2
2 + δ−1ω44

1 M4
1µ] + h.o.t. = 0,

ω14
2 s2 = −d2s

λ21
λ11
1 + h.o.t..

(4.12)

By d2 =

∣∣∣∣∣∣ω
12
2 ω22

2

ω14
2 ω24

2

∣∣∣∣∣∣ 6= 0, and ω24
2 = 0, we have ω22

2 6= 0. By the second equation

of (4.12), we have s2 = −(ω14
2 )−1d2s

λ21
λ11
1 + h.o.t. = O(s

λ21
λ11
1 ) > 0 as ω14

2 d2 < 0, s1 > 0.
Put the expression of s2 into the first equation and take ν1 = −(ω14

2 )−1d2, we obtain

ω43
1 s

λ31
λ11

+β1

1 − δ−1M3
1µs

λ31
λ11
1 − d−1

1 ω23
2 ν

1
β2
1 s

λ31
λ11

+
λ21
λ11β2

1 + ω22
2 d−1

2 ν

ρ22
ρ12
1 s

λ21ρ
2
2

λ11ρ
1
2

1 [ω44
1 sβ1

1

+ δ−1ω44
1 M4

1µ] + h.o.t. = 0.

(4.13)
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(1) If ω14
2 d2 > 0, then by the expression of s2, (4.12) has no positive solution,

that is, system (2.1) has no periodic orbit except the persistent heterodimensional
cycle.

Next we consider the bifurcation problem under the case ω14
2 d2 < 0.

(2) If ω43
1 6= 0 and

λ3
1

λ1
1

+ β1 <
λ2

1ρ
2
2

λ1
1ρ

1
2

, equation (4.13) turns out to be

ω43
1 s

λ31
λ11

+β1

1 = δ−1M3
1µs

λ31
λ11
1 + h.o.t..

(4.14)

It is obvious that (4.14) has only one positive solution s1 = [δ−1(ω43
1 )−1M3

1µ]
1
β1 +

h.o.t. as ω43
1 M3

1µ > 0. That is, system (2.1) has a unique periodic orbit near Γ.

(3) If ω43
1 6= 0 and

λ2
1ρ

2
2

λ1
1ρ

1
2

<
λ3

1

λ1
1

+ β1 <
λ2

1ρ
2
2

λ1
1ρ

1
2

+ β1, equation (4.13) is equivalent

to

ω43
1 s

λ31
λ11

+β1

1 − δ−1M3
1µs

λ31
λ11
1 + δ−1ω22

2 ω44
1 d−1

2 ν

ρ22
ρ12
1 M4

1µs

λ21ρ
2
2

λ11ρ
1
2

1 + h.o.t. = 0,
(4.15)

which can be simplified to

ω43
1 sβ1

1 = δ−1M3
1µ− δ−1ω22

2 ω44
1 d−1

2 ν

ρ22
ρ12
1 M4

1µs

λ21ρ
2
2

λ11ρ
1
2
−λ

3
1
λ11

1 + h.o.t..

Setting t1 = s

λ21ρ
2
2

λ11ρ
1
2
−λ

3
1
λ11

1 , α1 =
λ1

1ρ
1
2β1

λ2
1ρ

2
2 − λ3

1ρ
1
2

> 1, then the above equation becomes

ω43
1 tα1

1 = δ−1M3
1µ− δ−1ω22

2 ω44
1 d−1

2 ν

ρ22
ρ12
1 M4

1µt1 + h.o.t.. (4.16)

Take

h(t1, µ) = ω43
1 tα1

1 − δ−1M3
1µ+ δ−1ω22

2 ω44
1 d−1

2 ν

ρ22
ρ12
1 M4

1µt1 + h.o.t..

With the analysis above, we know that each positive zero point t1 of h(t1, µ) corre-
sponds to a unique pair of positive solutions (s1; s2) of (4.12). Thus, in the following,
we focus our attention on seeking the positive zero point of h(t1, µ). Let

L(t1, µ) = −δ−1ω22
2 ω44

1 d−1
2 ν

ρ22
ρ12
1 M4

1µt1 + δ−1M3
1µ+ h.o.t.,

N(t1, µ) = ω43
1 tα1

1 + h.o.t.,

then we have h(t1, µ) = N(t1, µ)− L(t1, µ). Note that

h(0, µ) = −δ−1M3
1µ, h′t1(t1, µ) = α1ω

43
1 tα1−1

1 + δ−1d−1
2 ω22

2 ω44
1 ν

ρ22
ρ12
1 M4

1µ+ h.o.t..

Then if d2ω
43
1 ω22

2 ω44
1 M4

1µ < 0, h′t1(t1, µ) = 0 has a unique sufficiently small
positive zero point

t̄ = (−ω
22
2 ω44

1 ν

ρ22
ρ12
1 M4

1µ

δα1ω43
1 d2

)
1

α1−1 + h.o.t..
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While, it has no small positive zero point if d2ω
43
1 ω22

2 ω44
1 M4

1µ > 0.

(a) If ω43
1 M3

1µ < 0, d2ω
43
1 ω22

2 ω44
1 M4

1µ > 0, then the curve N(t1, µ) and the
straight-line L(t1, µ) cannot intersect in the right half-plane, thus system (4.16) has
no non-negative solutions.

(b) If ω43
1 M3

1µ > 0, d2ω
43
1 ω22

2 ω44
1 M4

1µ > 0, then the curve N(t1, µ) and the
straight-line L(t1, µ) intersect at a unique positive point, that is, h(t1, µ) = 0 has
a unique sufficiently small positive zero point. Next we show that the positive zero
point is sufficiently small.

Without loss of the generality, take ω43
1 < 0,M3

1µ < 0, d2ω
22
2 ω44

1 M4
1µ < 0, we

have h(0, µ) = −δ−1M3
1µ > 0, h′t1(t1, µ) < 0, h(t̃, µ) = δ−1d−1

2 ω22
2 ω44

1 ν

ρ22
ρ12
1 M4

1µt̃ +
h.o.t. < 0, where

t̃ = [δ−1(ω43
1 )−1M3

1µ]
1
α1 + h.o.t.� 1.

Then there is a unique small t1 satisfying 0 < t1 < t̃� 1, such that h(t1, µ) = 0.

If ω43
1 M3

1µ > 0, d2ω
43
1 ω44

1 ω22
2 M4

1µ < 0, we also have that there exists one unique
periodic orbit near Γ.

(c) If ω43
1 M3

1µ < 0, d2ω
2
2ω

43
1 ω44

1 M4
1µ < 0, without loss of generality, take ω43

1 >
0,M3

1µ < 0, d2ω
22
2 ω44

1 M4
1µ < 0, then we have h(0, µ) > 0, ht1t1(t1, µ) > 0. Take

h(t̄, µ) = ω43
1 t̄α1

1 − δ−1M3
1µ+ δ−1ω22

2 ω44
1 d−1

2 ν

ρ22
ρ12
1 ω44

1 M4
1µt̄1 + h.o.t,

= −δ−1M3
1µ+ (1− 1

α1
)δ−1d−1

2 ω22
2 ω44

1 ν

ρ22
ρ12
1 M4

1µt̄+ h.o.t.

= ∆1.

Hence, if h(t̄, µ) = ∆1 = 0, straight-line L is tangent to the curve N at point t = t̄,
that is, t = t̄ is the double positive zero point of h(t1, µ) = 0; if h(t̄, µ) = ∆1 > 0,
straight-line L does not intersect the curve N , which implies h(t1, µ) = 0 has no
positive solution; if h(t̄, µ) = ∆1 < 0, then the straight-line L intersects the curve
N at exact two points 0 < t′1 < t̄ < t′′1 , which means h(t1, µ) = 0 has two positive
solutions.

(4) If ω43
1 6= 0 and

λ3
1

λ1
1

>
λ2

1ρ
2
2

λ1
1ρ

1
2

, we have s

λ31
λ11

+β1

1 = o(s

λ21ρ
2
2

λ11ρ
1
2

+β1

1 ), now system

(4.13) is reduced to

ω22
2 d−1

2 ν

ρ22
ρ12
1 s

λ21ρ
2
2

λ11ρ
1
2

1 [ω44
1 sβ1

1 + δ−1ω44
1 M4

1µ]− δ−1M3
1µs

λ31
λ11
1 + h.o.t. = 0.

(4.17)

By eliminating the s

λ21ρ
2
2

λ11ρ
1
2

1 from both sides of (4.17) and setting t2 = s

λ31ρ
1
2−λ21ρ

2
2

λ11ρ
1
2

1 , α2 =
λ1

1ρ
1
2β1

λ3
1ρ

1
2 − λ2

1ρ
2
2

> 1, system (4.17) is transformed into

δω22
2 ω44

1 ν

ρ22
ρ12
1 tα2

2 = −ω44
1 ω22

2 ν

ρ22
ρ12
1 M4

1µ+ d2M
3
1µt2 + h.o.t.. (4.18)

Then taking similar techniques to (4.16), we obtain the conclusion.
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(5) If ω43
1 = 0 and ω23

1 6= 0, then system (4.13) becomes

d−1
1 ω23

1 ν
1
β2
1 s

λ31
λ11

+
λ21
λ11β2

1 + δ−1M3
1µs

λ31
λ11
1

− ω22
2 d−1

2 ν

ρ22
ρ12
1 s

λ21ρ
2
2

λ11ρ
1
2

1 [ω44
1 sβ1

1 + δ−1ω
44
1 M4

1µ] + h.o.t. = 0.

(4.19)

(a) If
λ3

1

λ1
1

+
λ2

1

λ1
1β2

<
λ2

1ρ
2
2

λ1
1ρ

1
2

, then (4.19) is simplified to

d−1
1 ω23

1 ν
1
β2
1 s

λ31
λ11

+
λ21
λ11β2

1 = −δ−1M3
1µs

λ31
λ11
1 + h.o.t. = 0. (4.20)

Obviously, (4.20) has a unique sufficiently small positive solution

0 < s1 = (−δ−1d1(ω23
1 )−1ν

− 1
β2

1 M3
1µ)

λ11β2

λ21 + h.o.t.

as ω23
1 d1M

3
1µ < 0, which corresponds to a unique pair of positive solutions (s1; s2)

of (4.13). Then system (2.1) has one unique periodic orbit.

(b) If
λ3

1

λ1
1

<
λ2

1ρ
2
2

λ1
1ρ

1
2

<
λ3

1

λ1
1

+
λ2

1

λ1
1β2

<
λ2

1ρ
2
2

λ1
1ρ

1
2

+ β1, we obtain the following equation

from system (4.19)

d−1
1 ω23

1 ν
1
β2
1 s

λ31
λ11

+
λ21
λ11β2

1 + δ−1M3
1µs

λ31
λ11
1 − δ−1ω22

2 ω44
1 d−1

2 ν

ρ22
ρ12
1 M4

1µs

λ21ρ
2
2

λ11ρ
1
2

1 + h.o.t. = 0.

Eliminating the common factor s

λ3
1

λ1
1

1 . Take t2 = s

−λ31ρ
1
2+λ21ρ

2
2

λ11ρ
1
2

1 , α3 =
λ1

1ρ
1
2

(λ3
1ρ

1
2 − λ2

1ρ
2
2)β2

,

which mean α3 > 1. Then we have

d−1
1 ω23

1 ν
1
β2
1 tα3

2 = −δ−1M3
1µ+ δ−1ω22

2 ω44
1 d−1

2 ν

ρ22
ρ12
1 M4

1µt2 + h.o.t.
(4.21)

Applying analogous techniques used for (4.16) to the above equation, one can com-
plete the proof.

5. Example

In this section we shall present an example to illustrate our results and eliminate
doubts about the existence of system which has a heterodimensional cycle with both
orbit flip and inclination flip.

Take into account the following 4-dimensional system

ż = f(z) + g(z, µ), (5.1)

and its unperturbed system

ż = f(z), (5.2)
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where z=(z1, z2, z3, z4)∗ ∈ R4, µ=(µ1, µ2, µ3)∗∈R3, g(z, 0)=0, 0 < |µ| � 1, and

f(z) =


−(z1 − 1)(z1 + 1) + 3(z2

1 + z2
2 − 1) + z1z4

−z1z2

1

3
z3(20 + 19z1)

−3z1z4

 ,

g(z, µ) =


(z1 + 1)(z1 − 1)µ1

(z1 + 1)
1
2 (z1 − 1)2µ2

(z1 + 1)(z1 − 1)2µ1

(z1 + 1)(z1 − 1)2µ3

 .

For µ = 0, system (5.2) has two equilibria

p1 = (−1, 0, 0, 0), p2 = (1, 0, 0, 0),

which are joined by a heteroclinic cycle Γ = Γ1 ∪ Γ2. And the heteroclinic orbit
Γi = {z = ri(t), t ∈ R}, i = 1, 2 are expressed by

Γ1 = {z = r1(t) = (
1− e−2t

1 + e−2t
, 2

√
1

2 + e2t + e−2t
, 0, 0)∗, t ∈ R},

Γ2 = {z = r2(t) = (
1− e4t

1 + e4t
, 0, 0, 0)∗, t ∈ R},

which satisfies r1(−∞) = r2(+∞) = p1, r1(+∞) = r2(−∞) = p2.
Note that

Df(z) =


4z1 + z4 6z2 0 z1

−z2 −z1 0 0
19

3
z3 0

1

3
(20 + 19z1) 0

−3z4 0 0 −3z1

 ,

then we have

Df(p1) = diag(−4, 1,
1

3
, 3), Df(p2) = diag(4,−1, 13,−3),

which means Γ = Γ1 ∪ Γ2 is a heterodimensional cycle. Notice that Γ1 tends
to the equilibrium point p1 along the strong unstable direction z1 as t → −∞.
Since the plane z1z3 is invariant, Tr2(t)W

u
p2 → span{(1, 0, 0, 0)∗, (0, 0, 1, 0)∗}, as

t→ +∞, where (0, 0, 1, 0)∗ is the unit eigenvector of p1 corresponding to the positive

eigenvalue
1

3
, so Wu

p2 undergoes strong inclination flip as t→ +∞ (see Figure 3)

Let 0 < δ � 1 and Ti(i = 1, 2) be large enough such that

r1(−T1) = (−
√

1− δ2, δ, 0, 0)∗, r1(T1) = (
√

1− δ2, δ, 0, 0)∗,

r2(−T2) = (1− δ, 0, 0, 0)∗, r2(T2) = (−1 + δ, 0, 0, 0)∗,
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Figure 3. Heterodimensional cycle with orbit flip and inclination flip.

then we have

T1 = ln
δ

1−
√

1− δ2
= ln

2

δ(1 +O(δ2))
, T2 =

1

4
(ln(2− δ)− ln δ).

Now we consider the linear variational system of unperturbed system (5.2) along
Γi(i = 1, 2):

ż = Df(ri(t))z, (5.3)

and its adjoint system

φ̇ = −(Df(ri(t)))
∗φ, (5.4)

where

Df(r1(t)) =



4(1−e−2t)
1+e−2t 12

√
1

2+e2t+e−2t 0 (1−e−2t)
1+e−2t

−2
√

1
2+e2t+e−2t − 1−e−2t

1+e−2t 0 0

0 0 20
3 + 19

3
1−e−2t

1+e−2t 0

0 0 0 − 3(1−e−2t)
1+e−2t

 ,

Df(r2(t)) =



4(1− e4t)

1 + e4t
0 0

(1− e4t)

1 + e4t

0 −1− e4t

1 + e4t
0 0

0 0
20

3
+

19

3

1− e4t

1 + e4t
0

0 0 0 −3(1− e4t)

1 + e4t


.

Next we discuss the persistent of the heterodimensional cycle of (5.2), by a
similar computation given in section 2, we know that the persistent of the heterodi-
mensional cycle is only related with elements in Z2(T2), Z2(−T2) as well as M1

2 ,
M2

2 . So, we only care about the fundamental solution matrix Z2(t) and Φ2(t).
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One fundamental solution matrix for (5.3) is

Ẑ2(t)=


C1e

4t(1 + e4t)−2 0 0 C1(t)e4t(1 + e4t)−2

0 C2e
−t(1 + e4t)

1
2 0 0

0 0 C3e
13t(1 + e4t)−

19
6

0 0 0 C4e
−3t(1 + e4t)

3
2

 .

One fundamental solution matrix for (5.4) is

Φ̂2(t) = (Ẑ∗2 (t))−1

=


C−1

1 e−4t(1 + e4t)2 0 0 0

0 C−1
2 et(1 + e4t)−

1
2 0 0

0 0 C−1
3 e−13t(1 + e4t)

19
6 0

d 0 0 C−1
4 e3t(1 + e4t)−

3
2

,

where d = −C1(t)C−1
1 C−1

4 e3t(1 + e4t)−
3
2 , C1(t) =

∫ t
0
e−7s(1 − e4s)(1 + e4s)

5
2 ds +

c5, c1, c2, c3, c4, c5 are constants to be determined.

Note that we should perform the coordinates transformation by

z1 → y, z2 → ω, z3 → x, z4 → u

in the small neighborhood of P1 and perform the coordinates transformation by

z1 → x, z2 → y, z3 → u, z4 → v

in the small neighborhood of P2 so as to match well with the system (3.1), (3.2)
given in Section 2.

Thus, we obtain

Z2(t)=


C1(t)e4t(1 + e4t)−2 0 C1e

4t(1 + e4t)−2 0

0 C2e
−t(1 + e4t)

1
2 0 0

0 0 0 C3e
13t(1 + e4t)−

19
6

C4e
−3t(1 + e4t)

3
2 0 0 0


for t ∈ (−∞, − T2], and

Z2(t)=


0 0 0 C3e

13t(1 + e4t)−
19
6

C1(t)e4t(1 + e4t)−2 0 C1e
4t(1 + e4t)−2 0

C4e
−3t(1 + e4t)

3
2 0 0 0

0 C2e
−t(1 + e4t)

1
2 0 0


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for t ∈ [T2,+∞). By the initial values

Z2(−T2) =


ω11

2 ω21
2 1 0

ω12
2 ω22

2 0 0

ω13
2 ω23

2 0 1

ω14
2 ω24

2 0 0

 , Z2(T2) =


0 0 0 ω41

2

0 0 ω32
2 ω42

2

1 0 0 0

0 1 0 0

 ,

we obtain that

C1 = 4
δ(2−δ) , C2 = ( δ(2−δ)4 )

1
2 , C3 = ( δ

2−δ )−
13
4 [1 + ( δ

2−δ )]
19
6 , C4 = ( δ(2−δ)4 )

3
4 ,

ω11
2 =ω21

2 =ω13
2 =ω23

2 =ω24
2 =ω42

2 = 0, ω22
2 =ω14

2 =1, ω32
2 =( 2−δ

δ )2, ω41
2 =( δ

2−δ )−
10
3 .

Accordingly, we have

Φ2(t) =


0 0 C−1

1 e−4t(1 + e4t)2 0

0 C−1
2 et(1 + e4t)−

1
2 0 0

0 0 0 C−1
3 e−13t(1 + e4t)

19
6

C−1
4 e3t(1 + e4t)−

3
2 0 d 0


for t ∈ R. Note that

gµ(r2(t), 0) =



− 4e4t

(1 + e4t)2
0 0

0

√
2

1 + e4t
(− 2e4t

1 + e4t
)2 0

8e8t

(1 + e4t)3
0 0

0 0
8e8t

(1 + e4t)3


,

then we have

M1
2 = ( 0, 0,

2

C4

∫ +∞

0

x7/4

(1 + x)9/2
dx ),

M2
2 = ( 0,

√
2

C2

∫ +∞

0

x5/4

(1 + x)3
dx, 0 ).

With M1
2 , M2

2 being specifically given above, then by Theorem 1, the system
(5.1) has a unique heterocdimensional loop Γµ = Γµ1∪Γµ2 as µ ∈ L12 and 0 < |µ| � 1.
To illustrate other results concerning homoclinic bifurcation, periodic bifurcation,
we need more information, which will cause much more complicated computation.
However, the idea and procedure are more or less the same as this one.

Acknowledgments

We are grateful for many useful comments and suggestions from the reviewers.



150 F. Geng, T. Wang & X. Liu

References

[1] A. Algaba, E. Freire, E. Gamero and A. J. Rodrguez-Luis, A tame degenerate
Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator, Nonlin-
ear Dynam, 2000, 22(3), 249–269.

[2] F. Battelli and K. Palmer, A remark about Sil’nikov saddle-focus homoclinic
orbits, Commun on pure and appl. anal., 2012, 10(3), 817–830.

[3] C. Bonatti, L. Diaz, E. Pujals, and J. Rocha, Robust transitivity and heterodi-
mensional cycles, Asterisqu, 2003, 286, 187–222.

[4] V. Bykov, The bifurcations of separatrix contours and chaos, Phys. D, 1993,
62(1), 290–299.

[5] V. Bykov, Orbits structure in a neighborhoood of a separatrix cycle containing
two saddlefoci, Amer. Math. Soc. Trans., 2000, 200, 87–97.

[6] A. Champneys, J. Härterich and B. Sandstede, A non-transverse homoclinic
orbit to a saddle-node equilibrium, Ergod. Theor. Dyn. Syst., 1996, 16(3), 431–
450.

[7] S. Chow, B. Deng and B. Fiedler, Homoclinic bifurcation at resonant eigenval-
ues, J. Dyn. Syst. Diff. Eq., 1990, 2(2), 177–244.

[8] L. Diaz and J. Rocha, Heterodimensional cycles, partial hyperbolity and limit
dynamics, Fund. Math., 2002, 174(2), 127–186.

[9] M. Fec̆kan and J. Gruendler, Homoclinic-Hopf interaction: an autoparametric
bifurcation, Proc. Roy. Soc. Edinburgh, 2000, 130(5), 999–1015.

[10] F. Fernández-Sánchez, E. Freire and A. Rodŕiguez-Luis, Bi-spiraling homoclin-
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