FINITE TIME BLOW-UP AND GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR PSEUDO-PARABOLIC EQUATION WITH EXPONENTIAL NONLINEARITY*

Qunfei Long ${ }^{1, \dagger}$, Jianqing Chen ${ }^{1}$ and Ganshan Yang ${ }^{2}$

Abstract

This paper is concerned with the initial boundary value problem of a class of pseudo-parabolic equation $u_{t}-\triangle u-\triangle u_{t}+u=f(u)$ with an exponential nonlinearity. The eigenfunction method and the Galerkin method are used to prove the blow-up, the local existence and the global existence of weak solutions. Moreover, we also obtain other properties of weak solutions by the eigenfunction method.

Keywords Pseudo-parabolic equation, existence, finite time blow-up, exponential nonlinearity.

MSC(2010) 35K70, 35B44, 35A01.

1. Introduction

This work was intended as an attempt to study the initial boundary value problem

$$
\begin{array}{ll}
u_{t}-\triangle u-\triangle u_{t}+u=f(u), & (x, t) \in \Omega \times(0, T) \\
u=0, & (x, t) \in \partial \Omega \times(0, T) \\
u(x, 0)=u_{0}(x), & x \in \Omega, \tag{1.3}
\end{array}
$$

where Ω is a bounded domain with smooth boundary in \mathbb{R}^{n}, f is a nonlinear function, and $T \in \mathbb{R}^{+}$is the maximum existence time of $u(x, t)$.

The equation (1.1) has appeared in a lot of physical phenomena, for example: the unidirectional propagation of nonlinear dispersive long waves, see e.g. [3] and the aggregation of population, see e.g. [18].

If both $-\Delta u_{t}$ and u vanish, then (1.1) becomes the heat equation

$$
\begin{equation*}
u_{t}-\triangle u=f(u) \tag{1.4}
\end{equation*}
$$

There are a lot of works on (1.4) when f is a power function, see for instance [24-26]. There are also some works on (1.4) when f is an exponential nonlinearity, see

[^0][2,5, $7,8,11-13,16,17,20,28-30]$ and the references therein. In particular, Ruf et al. [20] studied firstly the heat equation with an exponential nonlinearity. For the study of the hyperbolic and pseudo-hyperbolic equations with exponential nonlinearity, one may also find several kinds of results in $[1,9,10,21,27]$. Especially, the research results of Ibrahim et al. [10] is essentially important for the study of a hyperbolic equation with an exponential nonlinearity.

If u vanishes, then (1.1) is pseudo-parabolic equation

$$
\begin{equation*}
u_{t}-\triangle u-\eta \triangle u_{t}=f(u) \tag{1.5}
\end{equation*}
$$

when $f(u)=u^{p}$ (where $1<p<\infty$ if $n=1,2$ and $1<p \leq \frac{n+2}{n-2}$ if $n \geq 3$), Xu et al. [23] studied the global existence and the finite time blow-up of weak solutions, and the asymptotic behavior of global weak solutions for the initial boundary value problem of (1.5).

If $n=2$ and f satisfies the following conditions:
$\left(f_{1}\right) f \in C^{1}(\mathbb{R}, \mathbb{R})$ with $f(u) u>0$ for all $u \neq 0$, and possesses a subcritical exponential growth, that is, for each $\beta>0$, there exists a positive constant C_{β} such that

$$
\left|f^{\prime}(u)\right|,|f(u)| \leq C_{\beta} e^{\beta u^{2}}, u \in \mathbb{R}
$$

$\left(f_{2}\right) f(u)=o(|u|)$ as $u \rightarrow 0 ;$
$\left(f_{3}\right)$ there exists some $\theta>1$ such that $\frac{f(u)}{|u|^{\theta}}$ is strictly increasing $(-\infty, 0)$ and $(0,+\infty)$.

For the problem (1.1)-(1.3), Zhu et al. [31] achieved the following main conclusions:
(1) There exists a local in time weak solution u in $C^{1}\left([0, T) ; H_{0}^{1}\right)$;
(2) If $I\left(u_{0}\right)=\left\|u_{0}\right\|_{2}^{2}+\left\|\nabla u_{0}\right\|_{2}^{2}-\int_{\Omega} f\left(u_{0}\right) u_{0} d x>0$, then the weak solution u is global;
(3) If $I\left(u_{0}\right)<0$ or $\left\|u_{0}\right\|_{2}^{2}+\left\|\nabla u_{0}\right\|_{2}^{2}-\mu \int_{\Omega} F\left(u_{0}\right) d x \leq 0$ (where $\mu=\theta+1, \theta>1$, $\left.F(u)=\int_{0}^{u} f(s) d s\right)$, then the weak solution u blows up at finite time $t=T_{1}$, that is,

$$
\lim _{t \rightarrow T_{1}}\left(\|u\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right)=\infty
$$

(4) If $u_{0} \in H_{0}^{1} \backslash\{0\}$ and $u=\left(x, t ; u_{0}\right)$ is a global solution of the problem (1.1)-(1.3), then $u \in L^{\infty}\left(\left[[0, \infty) ; H_{0}^{1}\right)\right.$ and there exist $\left\{t_{n}\right\}$ with $t_{n} \rightarrow \infty, c \in[0,+\infty)$ and K_{c} such that

$$
\lim _{n \rightarrow \infty}\left(\left\|u\left(t_{n}\right)-u^{*}\right\|_{2}^{2}+\left\|\nabla\left(u\left(t_{n}\right)-u^{*}\right)\right\|_{2}^{2}\right)=0
$$

where $K_{c}=\left\{u \in H_{0}^{1}: J^{\prime}(u)=0, J(u)=c\right\}$.
It is obvious that we cannot study the global existence and finite time blow-up of weak solutions on the problem (1.1)-(1.3) by the potential well theory if f does not satisfy $\left(f_{3}\right)$. Therefore, an interesting problem is that: if $n=2$ and f only satisfies $\left(f_{1}\right)$ and $\left(f_{2}\right)$, what happen?

When $n=2$ and f only satisfies $\left(f_{1}\right)$ and $\left(f_{2}\right)$, we obtain the following main conclusions:
(1) If $u_{0} \in H_{0}^{1}$ with $\left\|u_{0}\right\|_{2}^{2}+\left\|\nabla u_{0}\right\|_{2}^{2} \leq \frac{\pi}{4 \gamma \beta}$, then there exits a local in time weak solution u in $C\left([0, T) ; H_{0}^{1}\right)$. Moreover, if β such that $1-C_{\beta} C^{\frac{1}{2}} S_{4}^{-1} \geq 0$, then thus weak solution is global and if β such that $1-C_{\beta} C^{\frac{1}{2}} S_{4}^{-1}<0$, then thus weak solution u blows up in finite time;
(2) If $\left|\int_{\Omega} u_{0} w_{1} d x\right|>\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$ and $u_{0}>(<) 0$, then there exists a finite time $T_{1}>0$ such that

$$
\lim _{t \rightarrow T_{1}} \int_{\Omega} u w_{1} d x=+(-) \infty
$$

(3) If $\left|\int_{\Omega} u_{0} w_{1} d x\right|=\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$ and $u_{0}>(<) 0$, then $\int_{\Omega} u w_{1} d x \geq\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$ $\left(\leq-\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}\right)$ on $[0,+\infty)$;
(4) If $\left|\int_{\Omega} u_{0} w_{1} d x\right|<\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$ and $u_{0}>(<) 0$, then $\int_{\Omega} u w_{1} d x \geq(\leq) e^{-t} \int_{\Omega} u_{0} w_{1} d x$ on $[0,+\infty)$,
where $\lambda_{1}, w_{1}, \gamma$ and C will be given later.
Remark 1.1. Our results (1) and (2) show that if we just discuss the global existence and the finite time blow-up of weak solutions on the problem (1.1)-(1.3), then $\left(f_{3}\right)$ is unnecessary.

This paper is organized as follows. In Section 2, we introduce preliminaries, main results, and we also discuss the smoothness of some functionals. In Section 3 , we prove the local and the global existence and the criterion for blow-up of weak solutions. In Section 4 and 5, by the eigenfunction method (see [6, 22] and the references therein), we find the integral $\int_{\Omega} u w_{1} d x$ of the positive (or negative) solution $u(x, t)$ which possesses one of the following properties: (1) it blows up in finite time (that is, the solution u blows up in finite time); (2) it has the minimum (or maximum) value; (3) it has the lower (or upper) bound function.

2. Preliminaries and main results

2.1. Preliminaries

Throughout this paper, $L^{p}(\Omega)$ is simply denoted by L^{p} with the norm $\|\cdot\|_{L^{p}}$ and $H^{s}(\Omega)$ is simply denoted by H^{s} with the norm $\|\cdot\|_{H^{s}} . L^{p}([0, T) ; X)$ is endowed with the norm

$$
\|\cdot\|_{L^{p}([0, T) ; X)}:=\left\{\begin{array}{cll}
\left(\int_{0}^{T}\|\cdot\|_{X}^{p} d t\right)^{\frac{1}{p}} & \text { as } & 1 \leq p<\infty \\
\text { ess } \sup _{0 \leq t \leq T}\|\cdot\|_{X} & \text { as } & p=\infty
\end{array}\right.
$$

For H_{0}^{1}, we use the norm

$$
\|u\|_{H_{0}^{1}}=\left(\|u\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right)^{\frac{1}{2}}
$$

S_{q} is the best embedding constant from H_{0}^{1} to L^{q}, where $2 \leq q<+\infty . C_{i}, i=$ $1,2,3,4,5,6,7$, denote some positive constants.
$u=u(t)=u(x, t)$.
By $[14,19,31]$, we can obtain the following key lemma.

Lemma 2.1. Let Ω be a bounded domain in \mathbb{R}^{2}. Then there exists a constant \hat{C} dependent on Ω such that

$$
\begin{equation*}
\int_{\Omega} e^{\beta u^{2}} d x=\int_{\Omega} e^{\beta\|u\|_{H_{0}^{1}}^{2} \frac{u^{2}}{\|u\|_{H_{0}^{1}}^{2}}} d x \leq \hat{C} \quad \text { for } \beta\|u\|_{H_{0}^{1}}^{2} \leq 4 \pi \tag{2.1}
\end{equation*}
$$

where $\|u\|_{H_{0}^{1}}^{2}=\int_{\Omega}|u|^{2}+|\nabla u|^{2} d x$.
By the mean value theorem, the Hölder's inequality, Lemma 2.1, the Sobolev imbedding theorem and taking $\|u\|_{H^{1}}^{2} \leq \frac{\pi}{4 \gamma \beta}$, we obtain easily the following continuity Lemma.

Lemma 2.2. Define a mapping $f: H_{0}^{1} \rightarrow L^{2}$. Suppose further that f satisfy $\left(f_{1}\right)$. Then f is Lipschitz continuous.
Lemma 2.3. Suppose that $u \in L^{2}\left([0, T) ; H_{0}^{1}\right)$ with $(I-\Delta) u_{t} \in L^{2}\left([0, T) ; H^{-1}\right)$. Then
(i) $u \in C\left([0, T) ; H_{0}^{1}\right)$ (after possibly being redefined on a set measure zero);
(ii) the mapping $t \rightarrow\|u(t)\|_{2}^{2}+\|\nabla u(t)\|_{2}^{2}$ is absolutely continuous, and

$$
\frac{d}{d t}\left(\|u(t)\|_{2}^{2}+\|\nabla u(t)\|_{2}^{2}\right)=2\left(u_{t}(t), u(t)\right)+2\left(\nabla u_{t}(t), \nabla u(t)\right)=2\left((I-\Delta) u_{t}(t), u(t)\right)
$$

for a.e. $0 \leq t<T$, where (\cdot, \cdot) denotes the pairing of H^{-1} and H_{0}^{1}.
Proof. Similar to the proof of Theorem 3 in $\S 5.9 .2$ in [6]. We extend u to the larger interval $[-\sigma, T+\sigma]$ for $\sigma>0$, and define the regularization $u^{\varepsilon}=\eta_{\varepsilon} * u$, as in the proof of Theorem 1 in $\S 5.3 .1$ in [6]. Then for $\varepsilon, \delta>0$,

$$
\frac{d}{d t}\left(\left\|u^{\varepsilon}(t)-u^{\delta}(t)\right\|_{2}^{2}+\left\|\nabla u^{\varepsilon}(t)-\nabla u^{\delta}(t)\right\|_{2}^{2}\right)=2\left\langle(I-\Delta) u_{t}^{\epsilon}(t)-(I-\Delta) u_{t}^{\delta}(t), u^{\epsilon}(t)-u^{\delta}(t)\right\rangle
$$

Thus

$$
\begin{align*}
& \left\|u^{\varepsilon}(t)-u^{\delta}(t)\right\|_{2}^{2}+\left\|\nabla u^{\varepsilon}(t)-\nabla u^{\delta}(t)\right\|_{2}^{2} \\
= & \left\|u^{\varepsilon}(s)-u^{\delta}(s)\right\|_{2}^{2}+\left\|\nabla u^{\varepsilon}(s)-\nabla u^{\delta}(s)\right\|_{2}^{2} \tag{2.2}\\
& +2 \int_{s}^{t}\left\langle(I-\Delta) u_{t}^{\epsilon}(t)-(I-\Delta) u_{t}^{\delta}(t), u^{\epsilon}(t)-u^{\delta}(t)\right\rangle d \tau
\end{align*}
$$

for all $0 \leq s, t<T$. For any point $s \in[0, T)$ for which

$$
u^{\varepsilon}(s) \rightarrow u(s) \quad \text { in } H_{0}^{1} \quad \text { as } \varepsilon \rightarrow 0
$$

Consequently (2.2) implies

$$
\begin{aligned}
& \quad \limsup _{\varepsilon, \delta \rightarrow 0} \sup _{0 \leq t<T}\left(\left\|u^{\varepsilon}(t)-u^{\delta}(t)\right\|_{2}^{2}+\left\|\nabla u^{\varepsilon}(t)-\nabla u^{\delta}(t)\right\|_{2}^{2}\right) \\
& \leq \lim _{\varepsilon, \delta \rightarrow 0} \int_{0}^{T}\left\|(I-\Delta) u_{\tau}^{\epsilon}(\tau)-(I-\Delta) u_{\tau}^{\delta}(\tau)\right\|_{H^{-1}}^{2} \\
& \\
& \quad+\left(\left\|u^{\varepsilon}(t)-u^{\delta}(t)\right\|_{2}^{2}+\left\|\nabla u^{\varepsilon}(t)-\nabla u^{\delta}(t)\right\|_{2}^{2}\right) d \tau=0
\end{aligned}
$$

Thus the smoothed functions $\left\{u^{\varepsilon}\right\}_{0 \leq \varepsilon \leq 1}$ converge to a limit $v \in C\left([0, T) ; H_{0}^{1}\right)$ in $C\left([0, T) ; H_{0}^{1}\right)$. Since $u^{\varepsilon} \rightarrow u$ for a.e. t as $\varepsilon \rightarrow 0$, it follows that $u=v$ a.e.

Similarly, we obtain

$$
\left\|u^{\varepsilon}(t)\right\|_{2}^{2}+\left\|\nabla u^{\varepsilon}(t)\right\|_{2}^{2}=\left\|u^{\varepsilon}(s)\right\|_{2}^{2}+\left\|\nabla u^{\varepsilon}(s)\right\|_{2}^{2}+2 \int_{s}^{t}\left\langle(I-\Delta) u_{\tau}^{\epsilon}(\tau), u^{\epsilon}(\tau)\right\rangle d \tau
$$

and so, identifying u with v above,

$$
\|u(t)\|_{2}^{2}+\|\nabla u(t)\|_{2}^{2}=\|u(s)\|_{2}^{2}+\|\nabla u(s)\|_{2}^{2}+2 \int_{s}^{t}\left\langle(I-\Delta) u_{\tau}(\tau), u(\tau)\right\rangle d \tau
$$

for all $0 \leq s<t<T$, which proves Lemma 2.3.
Definition 2.1. A function $u \in L^{2}\left([0, T) ; H_{0}^{1}\right)$ with $(I-\Delta) u_{t} \in L^{2}\left([0, T) ; H^{-1}\right)$ is called a weak solution of the initial boundary value problem (1.1)-(1.3) on $\Omega \times[0, T)$ if
(i) for each $v \in H_{0}^{1}$ and a.e. $t \in(0, T)$,

$$
\begin{equation*}
\left\langle(I-\Delta) u_{t}, v\right\rangle+\langle u, v\rangle+\langle\nabla u, \nabla v\rangle=\langle f(u), v\rangle . \tag{2.3}
\end{equation*}
$$

(ii) $u(x, 0)=u_{0}$ in H_{0}^{1}.

Definition 2.2 (Maximal existence time). Suppose that u is a weak solution of the problem (1.1)-(1.3). Then the maximal existence time T of weak solution u is defined as follows:
(i) if u exists for any $t \in[0,+\infty)$, then $T=+\infty$;
(ii) if there exists a $t_{0} \in(0,+\infty)$ such that u exists for any $0 \leq t<t_{0}$, but u does not exist at $t=t_{0}$, then $T=t_{0}$.

2.2. Main results

Theorem 2.1. Let f satisfy $\left(f_{1}\right)$ and $\left(f_{2}\right)$, and $u_{0} \in H_{0}^{1}$.
(i) (Local existence) If there exists a constant $\gamma>1$ such that

$$
\left\|u_{0}\right\|_{2}^{2}+\left\|\nabla u_{0}\right\|_{2}^{2} \leq \frac{\pi}{4 \gamma \beta}
$$

then the problem (1.1)-(1.3) admits a local in time weak solution u in $L^{2}\left([0, T) ; H_{0}^{1}\right)$, with $(I-\Delta) u_{t} \in L^{2}\left([0, T) ; H^{-1}\right)$.
(ii) (Global existence) If β such that $1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1} \geq 0$, then the weak solution u is global for u_{0} satisfying

$$
\left\|u_{0}\right\|_{2}^{2}+\left\|\nabla u_{0}\right\|_{2}^{2} \leq \frac{\pi}{4 \beta}
$$

Further, if β such that $1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}>0$, then thus global weak solution u decays exponentially.
(iii) (Criterion for blow-up) If β such that $1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}<0$, then the weak solution u blows up in finite time.

Remark 2.1. By the regularity theory, Lemma 2.3 and Definition 2.1, we obtain that if u is a weak solution of the problem (1.1)-(1.3), then $u \in C\left([0, T) ; H_{0}^{1}\right)$ with $u_{t} \in L^{2}\left([0, T) ; H_{0}^{1}\right)$.

Remark 2.2. The conditions $f(s) \rightarrow o(|s|)$ as $s \rightarrow 0$ in $\left(f_{2}\right)$ and $f(s) s>0$ for any $s \neq$ 0 in $\left(f_{1}\right)$ imply that there exist $l(s)>0$ for any $s \in \mathbb{R}$ and constants $\alpha>1$ and $C>0$ such that $l(s) \geq C$ and $f(s)=s|s|^{\alpha-1} l(s)$ for any $s \in \mathbb{R}$. Therefore, we have

$$
\begin{equation*}
C s^{\alpha} \leq f(s) \text { for any } s \in[0,+\infty) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
C s|s|^{\alpha-1} \geq f(s) \quad \text { for any } s \in(-\infty, 0] \tag{2.5}
\end{equation*}
$$

Let λ_{1} is a principal eigenvalue of $-\Delta$ with homogenous Dirichlet boundary condition, w_{1} is an eigenfunction corresponding to λ_{1}. By the theory of eigenvalues on symmetric elliptic operators, it is well known that w_{1} is smooth and we may furthermore assume that $w_{1}>0$ in Ω and $\int_{\Omega} w_{1} d x=1$.
Theorem 2.2. Under the hypotheses of Theorem 2.1, suppose further that $u_{0}>0$. Then the weak solution u of the problem (1.1)-(1.3) is positive and possesses one of the following properties:
(i) If $\int_{\Omega} u_{0} w_{1} d x>\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, then u blows up in finite time. That is, there exists a finite time $T_{1}>0$ such that

$$
\lim _{t \rightarrow T_{1}} \int_{\Omega} u w_{1} d x=+\infty
$$

where

$$
T_{1}=-\frac{1}{\alpha-1} \ln \frac{C\left(\int_{\Omega} u_{0} w_{1} d x\right)^{\alpha-1}-\left(1+\lambda_{1}\right)}{C\left(\int_{\Omega} u_{0} w_{1} d x\right)^{\alpha-1}}>0
$$

(ii) If $\int_{\Omega} u_{0} w_{1} d x=\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, then $\int_{\Omega} u w_{1} d x \geq\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$ on $[0,+\infty)$;
(iii) If $\int_{\Omega} u_{0} w_{1} d x<\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, then $\int_{\Omega} u w_{1} d x \geq e^{-t} \int_{\Omega} u_{0} w_{1} d x$ on $[0,+\infty)$.

Similarly, we also obtain the following result.
Theorem 2.3. Under the hypotheses of Theorem 2.1, suppose further that $u_{0}<0$. Then the weak solution u of the problem (1.1)-(1.3) is negative and possesses one of the following properties:
(i) If $\int_{\Omega} u_{0} w_{1} d x<-\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, then u blows up in finite time. That is, there exists a finite time $T_{1}>0$ such that

$$
\lim _{t \rightarrow T_{1}} \int_{\Omega} u w_{1} d x=-\infty
$$

where

$$
T_{1}=-\frac{1}{\alpha-1} \ln \frac{C\left(-\int_{\Omega} u_{0} w_{1} d x\right)^{\alpha-1}-\left(1+\lambda_{1}\right)}{C\left(-\int_{\Omega} u_{0} w_{1} d x\right)^{\alpha-1}}>0
$$

(ii) If $\int_{\Omega} u_{0} w_{1} d x=-\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, then $\int_{\Omega} u w_{1} d x \leq-\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$ on $[0,+\infty)$;
(iii) If $\int_{\Omega} u_{0} w_{1} d x>-\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, then $\int_{\Omega} u w_{1} d x \leq e^{-t} \int_{\Omega} u_{0} w_{1} d x$ on $[0,+\infty)$.

3. Proof of Theorem 2.1

To prove Theorem 2.1, we first prove the following Lemma.
Lemma 3.1. For $\gamma>1$, define

$$
W:=\left\{u \in C\left([0, T) ; H_{0}^{1}\right) \left\lvert\, \quad\|u\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{4 \beta} \quad\right. \text { and } \quad\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{4 \gamma \beta}\right\}
$$

For any $u \in\left([0, T) ; H_{0}^{1}\right)$ with satisfying

$$
\|u\|_{H_{0}^{1}}^{2} \leq e^{-2\left(1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right) t}\left\|u_{0}\right\|_{H_{0}^{1}}^{2}
$$

and Lemmas 2.1-2.2, if $u_{0} \in H_{0}^{1}$ satisfies $\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{4 \gamma \beta}$, then there exists a finite time $T>0$ such that $u \in W$ for any $t \in[0, T)$.
Proof. (a) If $1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1} \geq 0$, then, for $\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{4 \gamma \beta}$, we obtain

$$
16 \beta\|u\|_{H_{0}^{1}}^{2} \leq 16 \beta e^{-2\left(1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right) t}\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \leq 4 e^{-2\left(1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right) t} \frac{\pi}{\gamma} \leq 4 \pi
$$

which implies $t \geq 0$ and $\|u\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{4 \beta}$;
(b) If $1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}<0$, then, for $\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{4 \gamma \beta}$, we obtain

$$
16 \beta\|u\|_{H_{0}^{1}}^{2} \leq 16 \beta e^{-2\left(1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right) t}\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \leq 4 e^{-2\left(1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right) t} \frac{\pi}{\gamma} \leq 4 \pi
$$

which implies $t \leq \frac{1}{2\left(C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}-1\right)} \ln ^{\gamma}$ and $\|u\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{4 \beta}$.
Combining (a) with (b), we can assert that there exists some $T>0$ such that $u \in W$ for any $t \in[0, T)$.
Proof of Theorem 2.3. (i) Let $\left\{w_{j}\right\}_{j=1}^{\infty}$ be a group of orthogonal basis in H_{0}^{1} and a group of orthonormal basis in L^{2}. We construct the approximate weak solutions of the initial value problem (1.1)-(1.3)

$$
\begin{equation*}
u_{m}(x, t)=\sum_{j=1}^{m} g_{j m}(t) w_{j}(x), \quad(m=1,2, \cdots, j=1,2, \cdots, m) \tag{3.1}
\end{equation*}
$$

satisfying

$$
\begin{align*}
&\left\langle u_{m t}, w_{j}\right\rangle+\left\langle\nabla u_{m t}, \nabla w_{j}\right\rangle+\left\langle u_{m}, w_{j}\right\rangle+\left\langle\nabla u_{m}, \nabla w_{j}\right\rangle \tag{3.2}\\
&=\left\langle f\left(u_{m}\right), w_{j}\right\rangle, \quad(0 \leq t<T, j=1,2, \cdots, m) \\
& g_{j m}(0)=\left\langle u_{0}, w_{j}(x)\right\rangle \quad j=1,2, \cdots, m \quad \text { in } H_{0}^{1} . \tag{3.3}
\end{align*}
$$

Multiplying (3.2) by $g_{j m}(t)$, summing for $j=1,2, \cdots, m$, integrating the resulting equation over Ω and applying integration by parts, it follows that

$$
\begin{equation*}
\frac{d}{d t}\left\|u_{m}\right\|_{H_{0}^{1}}^{2}+2\left\|u_{m}\right\|_{H_{0}^{1}}^{2}=2 \int_{\Omega} f\left(u_{m}\right) u_{m} d x \tag{3.4}
\end{equation*}
$$

for a.e. $0 \leq t<T \leq T^{\prime}$.

By $\left(f_{1}\right),\left(f_{2}\right)$, Lemma 2.1 (here we take $\left\|u_{m}\right\|_{H_{0}^{1}}^{2} \leq \frac{2 \pi}{\beta}$), the Hölder's inequality and the embedding theorem, it follows that

$$
\begin{align*}
\int_{\Omega}\left|f\left(u_{m}\right) \| u_{m}\right| d x & =\int_{\Omega}\left|\int_{0}^{1} f^{\prime}\left(s u_{m}\right) u_{m} d s\right|\left|u_{m}\right| d x \\
& \leq C_{\beta} \int_{\Omega}^{\beta u_{m}}\left|u_{m}\right|^{2} d x \tag{3.5}\\
& \leq C_{\beta}\left(\int_{\Omega} e^{2 \beta u_{m}} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|u_{m}\right|^{4} d x\right)^{\frac{1}{2}} \\
& \leq C_{\beta} \hat{\mathrm{C}}^{\frac{1}{2}} S_{4}^{-1}\left\|u_{m}\right\|_{H_{0}^{1}}^{2}
\end{align*}
$$

for each $0 \leq t<T$. Therefore, we conclude from (3.4) and (3.5) that

$$
\frac{d}{d t}\left\|u_{m}\right\|_{H_{0}^{1}}^{2}+2\left\|u_{m}\right\|_{H_{0}^{1}}^{2} \leq 2 \int_{\Omega}\left|f\left(u_{m}\right)\left\|u_{m} \left\lvert\, d x \leq 2 C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right.\right\| u_{m} \|_{H_{0}^{1}}^{2}\right.
$$

for each $0 \leq t<T$. We further deduce from the above inequality that

$$
\begin{equation*}
\frac{d}{d t}\left\|u_{m}\right\|_{H_{0}^{1}}^{2}+2\left(1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right)\left\|u_{m}\right\|_{H_{0}^{1}}^{2} \leq 0 \tag{3.6}
\end{equation*}
$$

for a.e. $0 \leq t<T$. Multiplying (3.6) by $e^{2\left(1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right) t}$ and integrating on [0, t], we obtain

$$
\begin{equation*}
\left\|u_{m}\right\|_{H_{0}^{1}}^{2} \leq e^{-2\left(1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right) t}\left\|u_{0 m}\right\|_{H_{0}^{1}}^{2} \tag{3.7}
\end{equation*}
$$

for a.e. $0 \leq t<T$. Since $\left\|u_{0 m}\right\|_{H_{0}^{1}}^{2} \leq\left\|u_{0}\right\|_{H_{0}^{1}}^{2}$ by (3.3), we obtain from (3.7) the estimate

$$
\begin{equation*}
\left\|u_{m}\right\|_{H_{0}^{1}}^{2} \leq e^{-2\left(1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\right) t}\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \tag{3.8}
\end{equation*}
$$

By Lemma 3.1, we deduce that there exists a finite time $T>0$ such that Lemmas 2.1-2.2, (3.5), (3.7) and the following (3.13) hold for $\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{4 \gamma \beta}$ and any $t \in[0, T)$. Thus, (3.8) implies that exists a $C_{0}>0$ such that

$$
\begin{equation*}
\int_{0}^{T}\left\|u_{m}\right\|_{H_{0}^{1}}^{2} d t \leq C_{0}\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \tag{3.9}
\end{equation*}
$$

We conclude from (3.5) and (3.9) that there exists a $C_{1}>0$ such that

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left|f\left(u_{m}\right)\left\|u_{m} \mid d x d t \leq C_{1}\right\| u_{0} \|_{H_{0}^{1}}^{2}\right. \tag{3.10}
\end{equation*}
$$

For any $v \in H_{0}^{1}$ with $\left(\|v\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \leq 1$ and write $v=v^{1}+v^{2}$, where $v^{1} \in$ $\operatorname{span}\left\{w_{j}\right\}_{j=1}^{\infty}$ and $\left(v^{2}, w_{j}\right)=0, j=1,2, \cdots$. Since the functions $\left\{w_{j}\right\}_{j=1}^{\infty}$ are orthogonal in $H_{0}^{1},\left\|v^{1}\right\|_{2}^{2}+\left\|\nabla v^{1}\right\|_{2}^{2} \leq\|v\|_{2}^{2}+\|\nabla v\|_{2}^{2} \leq 1$. Using (3.2), we obtain

$$
\begin{equation*}
\left\langle u_{m t}, v^{1}\right\rangle+\left\langle\nabla u_{m t}, \nabla v^{1}\right\rangle+\left\langle u_{m}, v^{1}\right\rangle+\left\langle\nabla u_{m}, \nabla v^{1}\right\rangle=\left\langle f\left(u_{m}\right), v^{1}\right\rangle \tag{3.11}
\end{equation*}
$$

which together with (3.1), we get

$$
\begin{align*}
\left|\left((I-\Delta) u_{m t}, v\right)\right| & =\left|\left(u_{m t}, v\right)+\left(\nabla u_{m t}, \nabla v\right)\right| \\
& =\left|\left\langle u_{m t}, v^{1}\right\rangle+\left\langle\nabla u_{m t}, \nabla v^{1}\right\rangle\right| \tag{3.12}\\
& =\left\langle f\left(u_{m}\right), v^{1}\right\rangle-\left\langle u_{m}, v^{1}\right\rangle-\left\langle\nabla u_{m}, \nabla v^{1}\right\rangle
\end{align*}
$$

where (\cdot, \cdot) denotes the pairing of H^{-1} and H_{0}^{1}. Since $\left\|v^{1}\right\|_{H_{0}^{1}} \leq 1$, we deduce from (3.12) that there exists a $C_{3}>0$ such that

$$
\begin{equation*}
\left\|(I-\Delta) u_{m t}\right\|_{H^{-1}} \leq C_{3}\left(\int_{\Omega}\left|f\left(u_{m}\right)\right|^{2} d x\right)^{\frac{1}{2}}+C_{3}\left(\left\|u_{m}\right\|_{H_{0}^{1}}^{2}\right)^{\frac{1}{2}} \tag{3.13}
\end{equation*}
$$

By $\left(f_{1}\right),\left(f_{2}\right)$, Lemma 2.1 (here we take $\left\|u_{m}\right\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{\beta}$), the Hölder's inequality, the embedding theorem and (3.9), it follows that there exists a $C_{4}>0$ such that

$$
\begin{align*}
\int_{0}^{T} \int_{\Omega}\left|f\left(u_{m}\right)\right|^{2} d x d t & =\int_{0}^{T} \int_{\Omega}\left|\int_{0}^{1} f^{\prime}\left(s u_{m}\right) u_{m} d s\right|^{2} d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} C_{\beta}^{2} e^{2 \beta u_{m}^{2}} u_{m}^{2} d x d t \\
& \leq C_{\beta}^{2} \int_{0}^{T}\left(\int_{\Omega} e^{4 \beta u_{m}^{2}} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|u_{m}\right|^{4} d x\right)^{\frac{1}{2}} d t \tag{3.14}\\
& \leq C_{\beta}^{2} \hat{C}^{\frac{1}{2}} S_{4}^{-1} \int_{0}^{T}\left\|u_{m}\right\|_{2}^{2}+\left\|\nabla u_{m}\right\|_{2}^{2} d t \\
& \leq C_{4}\left\|u_{0}\right\|_{H_{0}^{1}}^{2}
\end{align*}
$$

Combining (3.9), (3.13) and (3.14), it follows that there exists a $C_{5}>0$ such that

$$
\begin{equation*}
\int_{0}^{T}\left\|(I-\Delta) u_{m t}\right\|_{H^{-1}}^{2} d t \leq C_{5}\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \tag{3.15}
\end{equation*}
$$

It is concluded from (3.9), (3.10), (3.14) and (3.15) that $\left\{u_{m}\right\}_{m=1}^{\infty}$ is bounded in $L^{2}\left([0, T) ; H_{0}^{1}\right),\left\{(I-\Delta) u_{m t}\right\}_{m=1}^{\infty}$ is bounded in $L^{2}\left([0, T) ; H^{-1}\right), f\left(u_{m}\right)$ is bounded in $L^{2}\left([0, T) ; L^{2}\right)$ and $f\left(u_{m}\right) u_{m}$ is bounded in $L^{1}\left([0, T) ; L^{1}\right)$ for $t \in[0, T)$.

Consequently, there exist a subsequence $\left\{u_{m_{l}}\right\}_{l=1}^{\infty} \subset\left\{u_{m}\right\}_{m=1}^{\infty} \subset L^{2}\left([0, T) ; H_{0}^{1}\right)$ and a function $u \in L^{2}\left([0, T) ; H_{0}^{1}\right)$ such that

$$
\begin{array}{ll}
u_{m_{l}} \rightharpoonup u & \text { weakly in } L^{2}\left([0, T) ; H_{0}^{1}\right) \\
(I-\Delta) u_{m_{l} t} \rightharpoonup(I-\Delta) u_{t} & \text { weakly in } L^{2}\left([0, T) ; H^{-1}\right), \\
f\left(u_{m_{l}}\right) \rightharpoonup f(u) & \text { weakly in } L^{2}\left([0, T) ; L^{2}\right) \tag{3.18}
\end{array}
$$

We now prove

$$
\begin{equation*}
f\left(u_{m}\right) u_{m} \rightharpoonup f(u) u \quad \text { weakly in } L^{1}\left([0, T) ; L^{1}\right) \tag{3.19}
\end{equation*}
$$

By (3.16), (3.17) and Remark 2.2, we obtain $u_{t} \in L^{2}\left([0, T) ; H_{0}^{1}\right)$. And since $H_{0}^{1} \hookrightarrow L^{l}$ is compact, we have, thanks to Aubin-Lions-lemma(or theorem) $[4,15]$ that

$$
u_{m} \rightarrow u \text { in } L^{2}\left([0, T) ; L^{l}\right) \text { strongly as } m \rightarrow+\infty
$$

which implies

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \int_{0}^{t}\left\|u_{m}-u\right\|_{L^{l}}^{2} d s=0 \tag{3.20}
\end{equation*}
$$

where $l \in[2,+\infty)$ since $n=2$.

By the mean value theorem, the Hölder's inequality and $\left(f_{1}\right)$, it follows that

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}\right) u_{m}-f(u) u\right| d x d s \\
= & \int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}\right) u_{m}-f(u) u_{m}+f(u) u_{m}-f(u) u\right| d x d s \\
\leq & \int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}\right)-f(u)\right|\left|u_{m}\right| d x d s+\int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}\right)\right|\left|u_{m}-u\right| d x d s \\
\leq & \int_{0}^{t} \int_{\Omega}\left|f^{\prime}\left(u_{m}+\theta\left(u-u_{m}\right)\right)\right|\left|u_{m}-u\right|\left|u_{m}\right| d x d s+\int_{0^{\frac{1}{2}}}^{t} \int_{\Omega}\left|f\left(u_{m}\right)\right|\left|u_{m}-u\right| d x d s \\
\leq & \left(\int_{0}^{t}\left(\int_{\Omega}\left|f^{\prime}\left(u_{m}+\theta\left(u-u_{m}\right)\right)\right|^{4} d x\right)^{\frac{1}{2}}\left\|u_{m}\right\|_{L^{4}}^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{t}\left\|u_{m}-u\right\|_{L^{2}}^{2} d s\right)^{\frac{1}{2}} \\
& +\left(\int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}\right)\right|^{2} d x d s\right)^{\frac{1}{2}}\left(\int_{0}^{t}\left\|u_{m}-u\right\|_{L^{2}}^{2} d s\right)^{\frac{1}{2}} \\
\leq & C_{\beta}\left(\int_{0}^{t}\left(\int_{\Omega} e^{4 \beta\left(u_{m}+\theta\left(u-u_{m}\right)\right)^{2}} d x\right)^{\frac{1}{2}}\left\|u_{m}\right\|_{L^{4}}^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{t}\left\|u_{m}-u\right\|_{L^{2}}^{2} d s\right)^{\frac{1}{2}} \\
& +\left(\int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}\right)\right|^{2} d x d s\right)^{\frac{1}{2}}\left(\int_{0}^{t}\left\|u_{m}-u\right\|_{L^{2}}^{2} d s\right)^{\frac{1}{2}} .
\end{aligned}
$$

Since $f\left(u_{m}\right)$ is bounded in $L^{2}\left([0, T) ; L^{2}\right)$ and u_{m} is bounded in $L^{2}\left([0, T) ; H_{0}^{1}\right)$, we deduce from the obtained formula, (3.16), (3.17) and Lemma 2.1 that there exists a $C_{6}>0$ such that

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}\right) u_{m}-f(u) u\right| d x d s \leq C_{6} \int_{0}^{t}\left\|u_{m}-u\right\|_{L^{2}} d s \tag{3.21}
\end{equation*}
$$

Hence, (3.19) is obtained by (3.20) and (3.21).
Next, fix an integer N and choose a function $v \in C^{1}\left([0, T) ; H_{0}^{1}\right)$ with the form

$$
\begin{equation*}
v(t)=\Sigma_{k=1}^{N} d^{k}(t) w_{k} \tag{3.22}
\end{equation*}
$$

where $\left\{d^{k}\right\}_{k=1}^{N}$ are given smooth functions. Taking $m \geq N$, multiplying (3.2) by $d^{k}(t)$, summing for $k=1,2, \cdots, N$, and then integrating it on $[0, T)$, it follows that

$$
\begin{equation*}
\int_{0}^{T}\left\langle(I-\Delta) u_{m t}, v\right\rangle+\left\langle u_{m}, v\right\rangle+\left\langle\nabla u_{m}, \nabla v\right\rangle d t=\int_{0}^{T}\left\langle f\left(u_{m}\right), v\right\rangle d t \tag{3.23}
\end{equation*}
$$

Using (3.16)-(3.19), taking the limit for (3.23) with respect to m, it follows that

$$
\begin{equation*}
\int_{0}^{T}\left\langle(I-\Delta) u_{t}, v\right\rangle+\langle u, v\rangle+\langle\nabla u, \nabla v\rangle d t=\int_{0}^{T}\langle f(u), v\rangle d t \tag{3.24}
\end{equation*}
$$

Hence (3.24) holds for all functions $v \in L^{2}\left([0, T) ; H_{0}^{1}\right)$ as functions of the form (3.22) are dense in $L^{2}\left([0, T) ; H_{0}^{1}\right)$. Further, it follows that

$$
\begin{equation*}
\left\langle(I-\Delta) u_{t}, v\right\rangle+\langle u, v\rangle+\langle\nabla u, \nabla v\rangle=\langle f(u), v\rangle \tag{3.25}
\end{equation*}
$$

for each $v \in H_{0}^{1}$ and a.e. $0 \leq t<T$. Using Lemma 2.3, it follows that $u \in$ $C\left([0, T) ; H_{0}^{1}\right)$.

We next prove $u(0)=u_{0}$ in H_{0}^{1} as $m \rightarrow \infty$. Integrating by parts with respect to time t, we deduce from (3.24) that

$$
\begin{align*}
& \int_{0}^{T}-\left\langle v_{t},(I-\Delta) u\right\rangle+\langle u, v\rangle+\langle\nabla u, \nabla v\rangle d t \\
= & \int_{0}^{T}\langle f(u), v\rangle d t+((I-\Delta) u(0), v(0)) \tag{3.26}\\
= & \int_{0}^{T}\langle f(u), v\rangle d t+(u(0), v(0))+(\nabla u(0), \nabla v(0))
\end{align*}
$$

for each $v \in C^{1}\left([0, T) ; H_{0}^{1}\right)$ with $v(T)=0$. Similarly, we conclude from (3.23) that

$$
\begin{align*}
& \int_{0}^{T}-\left\langle v_{t},(I-\Delta) u_{m}\right\rangle+\left\langle u_{m}, v\right\rangle+\left\langle\nabla u_{m}, \nabla v\right\rangle d t \\
= & \int_{0}^{T}\left\langle f\left(u_{m}\right), v\right\rangle d t+\left((I-\Delta) u_{m}(0), v(0)\right) \tag{3.27}\\
= & \int_{0}^{T}\left\langle f\left(u_{m}\right), v\right\rangle d t+\left(u_{m}(0), v(0)\right)+\left(\nabla u_{m}(0), \nabla v(0)\right) .
\end{align*}
$$

Let

$$
\lim _{m \rightarrow \infty} u_{m}(0)=u_{0} \quad \text { in } \quad H_{0}^{1} .
$$

Once again employing (3.16)-(3.19), taking the limit for (3.27) with respect to m, it follows that

$$
\begin{align*}
& \int_{0}^{T}-\left\langle v_{t},(I-\Delta) u\right\rangle+\langle u, v\rangle+\langle\nabla u, \nabla v\rangle d t \tag{3.28}\\
= & \int_{0}^{T}\langle f(u), v\rangle d t+\left(u_{0}, v(0)\right)+\left(\nabla u_{0}, \nabla v(0)\right) .
\end{align*}
$$

Comparing (3.26) and (3.28), it follows that $u(0)=u_{0}$ in H_{0}^{1} since $v(0)$ is arbitrary, which proves Theorem 2.1.
(ii) From the proving process of (i), we see that if β such that $1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1} \geq 0$, then the weak solution u of the problem (1.1)-(1.3) is global for $\left\|u_{0}\right\|_{H_{0}^{1}}^{2} \leq \frac{\pi}{4 \beta}$. Further, if $1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}>0$, then thus global weak solution u decay exponentially.
(iii) By the proving process of (i), we know that if β such that $1-C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}<0$, then the conclusion of $(i i i)$ is easily gotten.

4. Proof of Theorem 2.2

To prove Theorem 2.2, we first prove the following key Lemma.
Lemma 4.1. Let $T>0, u_{0} \in H_{0}^{1}, u$ be a solution of the problem (1.1)-(1.3) and f satisfy $\left(f_{1}\right)$ and $\left(f_{2}\right)$. If $u_{0} \geq 0$, then $u \geq 0$ for any $(x, t) \in \Omega \times[0, T)$.
Proof. For any $t \in[0, T)$, let

$$
l(t)=\int_{\Omega}\left(u^{-}-\Delta u^{-}\right) u^{-} d x .
$$

Now, we prove $l(t) \equiv 0$ as $u_{0}>0$. By arguing by contradiction, suppose that $l(t) \neq 0$. By the definitions of $l(t), u^{-}$and ∇u^{-}, Lemma 2.1 (here taking $\|u\|_{2}^{2}+$ $\left.\|\nabla u\|_{2}^{2} \leq \frac{2 \pi}{\beta}\right),\left(f_{1}\right),\left(f_{2}\right)$ and the Hölder's inequality, it follows that

$$
\begin{aligned}
l^{\prime}(t) & =-2 \int_{\Omega}\left(u_{t}-\Delta u_{t}\right) u^{-} d x \\
& =-2 \int_{\Omega}(\Delta u-u+f(u)) u^{-} d x \\
& \leq 2 \int_{\Omega}|f(u)|\left|-u^{-}\right| d x=2 \int_{\Omega}\left|\int_{0}^{1} f^{\prime}(s u) u d s \|-u^{-}\right| d x \\
& \leq 2 C_{\beta} \int_{\Omega} e^{\beta u^{2}}\left|-u^{-}\right|^{2} d x \\
& \leq 2 C_{\beta}\left(\int_{\Omega} e^{2 \beta u^{2}} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|u^{-}\right|^{4} d x\right)^{\frac{1}{2}} \leq 2 C_{\beta} \hat{C}^{\frac{1}{2}} S_{4}^{-1}\left\|u^{-}\right\|_{H_{0}^{1}}^{2}
\end{aligned}
$$

which together with

$$
l(t)=\int_{\Omega}\left(u^{-}-\Delta u^{-}\right) u^{-} d x=\int_{\Omega}\left|u^{-}\right|^{2}+\left|\nabla u^{-}\right|^{2} d x=\left\|u^{-}\right\|_{H_{0}^{1}}^{2}
$$

it follows that there exists a $C_{7}>0$ such that

$$
l^{\prime}(t) \leq C_{7}\left\|u^{-}\right\|_{H_{0}^{1}}^{2}=C_{7} l(t)
$$

Multiplying the above inequality by $e^{-C_{7} t}$, it deduces that

$$
l(t) \leq l(0) e^{C_{7} t}=0
$$

for $u_{0} \geq 0$. Hence $u \geq 0$ for any $t \in[0, T)$, which proves Lemma 4.1.
Proof of Theorem 2.2. We first prove that $u>0$. By $u_{0}>0$ and Lemma 4.1, it follows that $u>0$. Thus $f(u)>0$ since $u f(u)>0$ for any $u \in \mathbb{R} \backslash\{0\}$.

Define

$$
\begin{equation*}
h(t):=\int_{\Omega}(I-\Delta) u w_{1} d x \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d}{d t} h(t)=\int_{\Omega}(I-\Delta) \frac{d u}{d t} w_{1} d x=\int_{\Omega}\left(u_{t}-\Delta u_{t}\right) w_{1} d x \tag{4.2}
\end{equation*}
$$

Therefore, we deduce from (1.1) and (4.2) that

$$
\begin{align*}
\frac{d}{d t} h(t) & =\int_{\Omega}(\Delta u-u+f(u)) w_{1} d x \\
& =-\int_{\Omega}(I-\Delta) u w_{1} d x+\int_{\Omega} f(u) w_{1} d x=-h(t)+\int_{\Omega} f(u) w_{1} d x \tag{4.3}
\end{align*}
$$

Combining (4.3) and (2.4), we obtain

$$
\begin{equation*}
\frac{d}{d t} h(t) \geq-h(t)+C \int_{\Omega} u^{\alpha} w_{1} d x \tag{4.4}
\end{equation*}
$$

On the other hand, using $-\Delta w_{1}=\lambda_{1} w_{1}, \int_{\Omega} w_{1} d x=1, \alpha>1$ and the Hölder's inequality, it follows from (4.1) that

$$
\begin{align*}
h(t) & =\left(1+\lambda_{1}\right) \int_{\Omega} u w_{1} d x \\
& \leq\left(1+\lambda_{1}\right)\left(\int_{\Omega} u^{\alpha} w_{1} d x\right)^{\frac{1}{\alpha}}\left(\int_{\Omega} w_{1} d x\right)^{\frac{\alpha-1}{\alpha}} \tag{4.5}\\
& \leq\left(1+\lambda_{1}\right)\left(\int_{\Omega} u^{\alpha} w_{1} d x\right)^{\frac{1}{\alpha}}
\end{align*}
$$

which implies

$$
\begin{equation*}
\frac{1}{\left(1+\lambda_{1}\right)^{\alpha}} h^{\alpha}(t) \leq \int_{\Omega} u^{\alpha} w_{1} d x \tag{4.6}
\end{equation*}
$$

Substituting (4.6) into (4.4), it follows that

$$
\begin{equation*}
\frac{d}{d t} h(t) \geq-h(t)+\frac{C}{\left(1+\lambda_{1}\right)^{\alpha}} h^{\alpha}(t) \tag{4.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
\eta(t):=e^{t} h(t) . \tag{4.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d}{d t} \eta(t)=e^{t} h(t)+e^{t} \frac{d}{d t} h(t) \tag{4.9}
\end{equation*}
$$

Combining (4.7), (4.8) and (4.9), we conclude

$$
\begin{equation*}
\frac{d}{d t} \eta(t) \geq \frac{C}{\left(1+\lambda_{1}\right)^{\alpha}} e^{-(\alpha-1) t} \eta^{\alpha}(t) \tag{4.10}
\end{equation*}
$$

Since $u, w_{1}, \lambda_{1}>0$, (4.5) implies $h(t)>0$. Combining this with the definition of $\eta(t)$, it follows that $\eta(t)>0$. Thus, (4.10) is equivalent to

$$
\begin{equation*}
-\frac{1}{\alpha-1} \frac{d \frac{1}{\eta^{\alpha-1}(t)}}{d t} \geq \frac{C}{\left(1+\lambda_{1}\right)^{\alpha}} e^{-(\alpha-1) t} \tag{4.11}
\end{equation*}
$$

Integrating (4.11) on [0, t], it follows that

$$
\begin{equation*}
-\frac{1}{\alpha-1}\left(\frac{1}{\eta^{\alpha-1}(t)}-\frac{1}{\eta^{\alpha-1}(0)}\right) \geq \frac{C}{\left(1+\lambda_{1}\right)^{\alpha}} \int_{0}^{t} e^{-(\alpha-1) s} d s \tag{4.12}
\end{equation*}
$$

We now calculate $\int_{0}^{t} e^{-(\alpha-1) s} d s$. Write $y=-(\alpha-1) s$. It follows that $y=0$ if $s=0, y=-(\alpha-1) t$ if $s=t$ and $d s=-\frac{d y}{\alpha-1}$. Hence, we obtain

$$
\int_{0}^{t} e^{-(\alpha-1) s} d s=-\frac{1}{\alpha-1} \int_{0}^{-(\alpha-1) t} e^{s} d s=\frac{1}{\alpha-1} \frac{e^{(\alpha-1) t}-1}{e^{(\alpha-1) t}}
$$

Substituting the above formula into (4.12), it follows that

$$
-\frac{1}{\alpha-1}\left(\frac{1}{\eta^{\alpha-1}(t)}-\frac{1}{\eta^{\alpha-1}(0)}\right) \geq \frac{C\left(e^{(\alpha-1) t}-1\right)}{(\alpha-1)\left(1+\lambda_{1}\right)^{\alpha} e^{(\alpha-1) t}}
$$

Using $\alpha>1$, we conclude

$$
\begin{equation*}
\eta(t) \geq \frac{\eta(0)\left(1+\lambda_{1}\right)^{\frac{\alpha}{\alpha-1}} e^{t}}{\left(\left(\left(1+\lambda_{1}\right)^{\alpha}-C \eta^{\alpha-1}(0)\right) e^{(\alpha-1) t}+C \eta^{\alpha-1}(0)\right)^{\frac{1}{\alpha-1}}} . \tag{4.13}
\end{equation*}
$$

Since

$$
\eta(t)=e^{t} h(t)=e^{t} \int_{\Omega}(1-\Delta) u w_{1} d x=\left(1+\lambda_{1}\right) e^{t} \int_{\Omega} u w_{1} d x
$$

we deduce from (4.13) that

$$
\begin{equation*}
\int_{\Omega} u w_{1} d x \geq \frac{\eta(0)\left(1+\lambda_{1}\right)^{\frac{1}{\alpha-1}}}{\left(\left(\left(1+\lambda_{1}\right)^{\alpha}-C \eta^{\alpha-1}(0)\right) e^{(\alpha-1) t}+C \eta^{\alpha-1}(0)\right)^{\frac{1}{\alpha-1}}} . \tag{4.14}
\end{equation*}
$$

We next discuss the properties of (4.14) according to the size of the relationship between the initial data $\int_{\Omega} u(x, 0) w_{1} d x$ and $\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$.
(i) If $\int_{\Omega} u(x, 0) w_{1} d x>\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, by $\eta(0)=h(0)=\left(1+\lambda_{1}\right) \int_{\Omega} u(x, 0) w_{1} d x>0$, it follows that $-C \eta^{\alpha-1}(0)<\left(1+\lambda_{1}\right)^{\alpha}-C \eta^{\alpha-1}(0)<0$ and $C \eta^{\alpha-1}(0)>$ $\left(1+\lambda_{1}\right)^{\alpha}$. From this, we know that (4.14) makes sense and the right side of (4.14) closes to the positive infinity as $t \rightarrow T_{1}$. Hence, it is deduced from (4.14) that

$$
\begin{equation*}
\lim _{t \rightarrow T_{1}} \int_{\Omega} u w_{1} d x=+\infty, \tag{4.15}
\end{equation*}
$$

where

$$
T_{1}=-\frac{1}{\alpha-1} \ln \frac{C\left(\int_{\Omega} u_{0} w_{1} d x\right)^{\alpha-1}-\left(1+\lambda_{1}\right)}{C\left(\int_{\Omega} u_{0} w_{1} d x\right)^{\alpha-1}}>0 .
$$

In this case, we say u blowing up at finite time T_{1}.
(ii) If $\int_{\Omega} u(x, 0) w_{1} d x=\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, it is concluded from (4.14) that

$$
\int_{\Omega} u w_{1} d x \geq\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}} \quad \text { for any } t \geq 0
$$

(iii) If $\int_{\Omega} u(x, 0) w_{1} d x<\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, it is deduced from (4.14) that

$$
\begin{aligned}
\int_{\Omega} u w_{1} d x & \geq \frac{\eta(0)\left(1+\lambda_{1}\right)^{\frac{1}{\alpha-1}}}{\left(\left(1+\lambda_{1}\right)^{\alpha} e^{(\alpha-1) t}-C \eta^{\alpha-1}(0)\left(e^{(\alpha-1) t}-1\right)\right)^{\frac{1}{\alpha-1}}} \\
& \geq \frac{\eta(0)\left(1+\lambda_{1} \frac{1}{\alpha-1}\right.}{\left(1+\lambda_{1}\right)^{\frac{\alpha}{\alpha-1}} e^{t}}=\eta(0)\left(1+\lambda_{1}\right)^{-1} e^{-t}=e^{-t} \int_{\Omega} u_{0} w_{1} d x
\end{aligned}
$$

for any $t \geq 0$, which proves Theorem 2.2.

5. Proof of Theorem 2.3

Similar to Lemma (4.1), we obtain the following Lemma.

Lemma 5.1. Under the hypotheses of Lemma 4.1, if $u_{0} \leq 0$, then $u \leq 0$ for any $(x, t) \in \Omega \times[0, T)$.
Proof of Theorem 2.3. By Lemma 5.1 and $u_{0}<0$, it follows that $u<0$. Thus, $f(u)<0$ since $u f(u)>0$ for any $u \in \mathbb{R} \backslash\{0\}$.

Inserting (2.5) into (4.3), it follows that

$$
\begin{equation*}
\frac{d}{d t} h(t) \leq-h(t)+C \int_{\Omega} u|u|^{\alpha-1} w_{1} d x=-h(t)-C \int_{\Omega}|u|^{\alpha} w_{1} d x \tag{5.1}
\end{equation*}
$$

On the other hand, using $-\Delta w_{1}=\lambda_{1} w_{1}, \int_{\Omega} w_{1} d x=1, \alpha>1$ and the Hölder's inequality, it is deduced from (4.1) that

$$
\begin{align*}
h(t) & =-\left(1+\lambda_{1}\right) \int_{\Omega}|u| w_{1} d x \\
& \geq-\left(1+\lambda_{1}\right)\left(\int_{\Omega}|u|^{\alpha} w_{1} d x\right)^{\frac{1}{\alpha}}\left(\int_{\Omega} w_{1} d x\right)^{\frac{\alpha-1}{\alpha}} \tag{5.2}\\
& \geq-\left(1+\lambda_{1}\right)\left(\int_{\Omega}|u|^{\alpha} w_{1} d x\right)^{\frac{1}{\alpha}} .
\end{align*}
$$

Since $w_{1}, \lambda_{1}>0$ and $u<0,(5.2)$ implies $h(t)<0$. This is equivalent to $-h(t)>0$ for any $t \in[0, T)$. Thus, we obtain from (5.2) that

$$
\begin{equation*}
\frac{(-h(t))^{\alpha}}{\left(1+\lambda_{1}\right)^{\alpha}} \leq \int_{\Omega}|u|^{\alpha} w_{1} d x . \tag{5.3}
\end{equation*}
$$

We conclude from (5.1) and (5.3) that

$$
\begin{equation*}
\frac{d}{d t} h(t) \leq-h(t)-\frac{C}{\left(1+\lambda_{1}\right)^{\alpha}}(-h(t))^{\alpha} \tag{5.4}
\end{equation*}
$$

Combining (4.8), (4.9) and (5.4), it follows that

$$
\begin{equation*}
\frac{d}{d t} \eta(t) \leq-\frac{C}{\left(1+\lambda_{1}\right)^{\alpha}} e^{-(\alpha-1) t}(-\eta(t))^{\alpha} \tag{5.5}
\end{equation*}
$$

Using $h(t)<0$ and the definition of $\eta(t)$, it follows that $\eta(t)<0$. Thus, (5.5) is equivalent to

$$
\begin{equation*}
\frac{1}{\alpha-1} \frac{d \frac{1}{(-\eta(t))^{\alpha-1}}}{d t} \leq-\frac{C}{\left(1+\lambda_{1}\right)^{\alpha}} e^{-(\alpha-1) t} \tag{5.6}
\end{equation*}
$$

Integrating (5.6) on [0, t] and using $\alpha>1$, we obtain

$$
\begin{equation*}
\frac{1}{(-\eta(t))^{\alpha-1}}-\frac{1}{(-\eta(0))^{\alpha-1}} \leq-\frac{(\alpha-1) C}{\left(1+\lambda_{1}\right)^{\alpha}} \int_{0}^{t} e^{-(\alpha-1) s} d s \tag{5.7}
\end{equation*}
$$

where

$$
\eta(0)=\lim _{t \rightarrow 0} e^{t} h(t)=h(0)=-\left(1+\lambda_{1}\right) \int_{\Omega}\left|u_{0}\right| w_{1} d x<0
$$

By $\int_{0}^{t} e^{-(\alpha-1) s} d s=\frac{1}{\alpha-1} \frac{e^{(\alpha-1) t}-1}{e^{(\alpha-1) t}}$, we conclude from (5.7) that

$$
\frac{1}{(-\eta(t))^{\alpha-1}}-\frac{1}{(-\eta(0))^{\alpha-1}} \leq-\frac{C\left(e^{(\alpha-1) t}-1\right)}{\left(1+\lambda_{1}\right)^{\alpha} e^{(\alpha-1) t}}
$$

which is equivalent to

$$
\begin{equation*}
\eta(t) \leq \frac{\eta(0)\left(1+\lambda_{1}\right)^{\frac{\alpha}{\alpha-1}} e^{t}}{\left(\left(\left(1+\lambda_{1}\right)^{\alpha}-C(-\eta(0))^{\alpha-1}\right) e^{(\alpha-1) t}+C(-\eta(0))^{\alpha-1}\right)^{\frac{1}{\alpha-1}}} \tag{5.8}
\end{equation*}
$$

Since

$$
\eta(t)=e^{t} h(t)=e^{t} \int_{\Omega}(1-\Delta) u(x, t) w_{1}(x) d x=\left(1+\lambda_{1}\right) e^{t} \int_{\Omega} u(x, t) w_{1}(x) d x
$$

it is deduced from (5.8) that

$$
\begin{equation*}
\int_{\Omega} u w_{1} d x \leq \frac{\eta(0)\left(1+\lambda_{1}\right)^{\frac{1}{\alpha-1}}}{\left(\left(\left(1+\lambda_{1}\right)^{\alpha}-C(-\eta(0))^{\alpha-1}\right) e^{(\alpha-1) t}+C(-\eta(0))^{\alpha-1}\right)^{\frac{1}{\alpha-1}}} . \tag{5.9}
\end{equation*}
$$

We next discuss the properties of (5.9) according to the size of the relationship between the initial data $\int_{\Omega} u(x, 0) w_{1} d x$ and $\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$.
(i) If $\int_{\Omega} u(x, 0) w_{1} d x<-\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, by $\eta(0)=h(0)=\left(1+\lambda_{1}\right) \int_{\Omega} u(x, 0) w_{1} d x<$ 0 , it follows that
$-C(-\eta(0))^{\alpha-1}<\left(1+\lambda_{1}\right)^{\alpha}-C(-\eta(0))^{\alpha-1}<0$ and $C(-\eta(0))^{\alpha-1}>\left(1+\lambda_{1}\right)^{\alpha}$.
From this, we know that (5.8) makes sense and the right side of (5.9) closes to the negative infinity as $t \rightarrow T_{1}$. Hence, it concluded from (5.9) that

$$
\lim _{t \rightarrow T_{1}} \int_{\Omega} u w_{1} d x=-\infty
$$

where

$$
T_{1}=-\frac{1}{\alpha-1} \ln \frac{C\left(-\int_{\Omega} u_{0} w_{1} d x\right)^{\alpha-1}-\left(1+\lambda_{1}\right)}{C\left(-\int_{\Omega} u_{0} w_{1} d x\right)^{\alpha-1}}>0
$$

(ii) If $\int_{\Omega} u(x, 0) w_{1} d x=-\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, it is deduced from (5.9) that

$$
\int_{\Omega} u w_{1} d x \leq-\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}} \quad \text { for any } t \geq 0
$$

(iii) If $\int_{\Omega} u(x, 0) w_{1} d x>-\left(\frac{1+\lambda_{1}}{C}\right)^{\frac{1}{\alpha-1}}$, then $\left(1+\lambda_{1}\right)^{\alpha}>C(-\eta(0))^{\alpha-1}$. We further obtain $\left(\left(1+\lambda_{1}\right)^{\alpha}-C(-\eta(0))^{\alpha-1}\right) e^{(\alpha-1) t}+C(-\eta(0))^{\alpha-1}>0$. Thus, it is concluded from (5.9) that

$$
\begin{aligned}
\int_{\Omega} u w_{1} d x & \leq \frac{\eta(0)\left(1+\lambda_{1}\right)^{\frac{1}{\alpha-1}}}{\left(\left(1+\lambda_{1}\right)^{\alpha} e^{(\alpha-1) t}-C(-\eta(0))^{\alpha-1}\left(e^{(\alpha-1) t}-1\right)\right)^{\frac{1}{\alpha-1}}} \\
& \leq \frac{\eta(0)\left(1+\lambda_{1}\right)^{\frac{1}{\alpha-1}}}{\left(1+\lambda_{1}\right)^{\frac{\alpha}{\alpha-1}} e^{t}}=e^{-t} \int_{\Omega} u_{0} w_{1} d x
\end{aligned}
$$

for any $t \geq 0$, which proves Theorem 2.3.

References

[1] C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blowing up for solutions of the 2-D wave equation with exponential source, Calc. Var., 2009, 34, 377-411.
[2] A. Alcolado, T. Kolokolnikov and D. Iron, Instability thresholds in the microwave heating model with exponential non-linearity, European J. Appl. Math., 2011, 22(03), 187-216.
[3] H. Brill, A Semilinear Sobolev Evolution Equation in a Banach Space, J. Differ. Equations, 1977, 24, 412-425.
[4] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Springer Science+Business Media, New York, 2013. DOI 10.1007/978-1-4614-5975-0.
[5] H. Y. Dai and H. W. Zhang, Energy decay and nonexistence of solution for a reaction-diffusion equation with exponential nonlinearity, Bound. Value Probl., 2014, 2014(5), 768-779.
[6] L. C. Evans, Partial differntial equations, American Mathematical Society, American, 2010.
[7] G. Furioli, T. Kawakami, B. Ruf and E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, J. Differ. Equations, 2017, 262(1), 145-180.
[8] N. Ioku, The cauchy problem for heat equations with exponential nonlinearity, J. Differ. Equations, 2011, 251(4-5), 1172-1194.
[9] R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 1996, 26(3), 475-491.
[10] S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear $2 D$ Klein-Gordon equation with exponential type nonlinearity, Comm. Pure App. Math., 2006, 59, 1639-1658.
[11] N. Ioku, B. Ruf and E. Terraneo, Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in \mathbb{R}^{2}, Math. Phys. Anal. Geom., 2015, 18(1), 1-19.
[12] S. Ibrahim, R. Jrad, M. Majdoub and T. Saanouni, Local well posedness of a 2D semilinear heat equation, Bull. Belg. Math. Soc. Simon Stevin, 2014, 21, 535-551.
[13] R. Jebari, I. Ghanmi and A. Boukricha, Adomian decomposition method for solving nonlinear heat equation with exponential nonlinearity, Int. J. Math. Anal., 2013, 7(15), 725-734.
[14] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 1970/71, 20, 1077-1092.
[15] A. Moussa, Some variants of the classical Aubin-Lions-Lemma, J. Evol. Equ., 2016, 16, 65-93.
[16] P. T. Nguyen, Parabolic equations with exponential nonlinearity and measure data, J. Differ. Equations, 2014, 257(7), 2704-2727.
[17] A. Pulkkinen, Blow-up profiles of solutions for the exponential reactiondiffusion equation, Math. Mehod. Appl. Sci., 2011, 34(16), 2011-2030.
[18] V. Padrón, Effect of aggregation on population recovery modeled by a forwardbackward pseudoparabolic equation, Trans. Amer. Math. Soc., 2004, 356, 27392756 (electronic).
[19] B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domain in \mathbb{R}^{2}, J. Funct. Anal., 2005, 219, 340-367.
[20] B. Ruf and E. Terraneo, The Cauchy problem for a semilinear heat equation with singular initial data, Progress in Nonlinear Differential Equations and Their Applications, 2002, 50, 295-309.
[21] D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. An., 1968, 30(2), 148-172.
[22] M. X. Wang, Semigroup of operator and evolution equations(Chinese), Science Press, Peking, China, 2006.
[23] R. Z. Xu and J. Su, Global existence and and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 2013, 264, 2732-2763.
[24] R. Z. Xu, X. Y. Cao and T. Yu, Finite time blow-up and global solutions for a class of semilinear parabolic equations at high energy level, Nonlinear Anal. RWA., 2012, 13, 197-202.
[25] R. Z. Xu, C. Y. Jin, T. Yu and Y. C. Liu, On quenching for some parabolic problems with combined power-type nonlinearities, Nonlinear Anal. RWA., 2012, 13, 333-339.
[26] G. Yoshikazu, Solutions for semilinear parabolic equations in L^{p} and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equations, 1986, 61, 186-212.
[27] H. G. Zhang, Global existence and nonexistence of solution for Cauchy problem of two-dimensional generalized Boussinesq equation, J. Math. Anal. Appl., 2015, 422, 1116-1130.
[28] H. W. Zhang, D. H. Li and Q. Y. Hu, Existence and nonexistence of global solution for a reaction-diffusion equation with exponential nonlinearity, Wseas Transactions on Mathematics, 2013, 12(12), 1232-1240.
[29] Z. G. Zhang and B. Hu, Rate estimates of gradient blowing up for a heat equation with exponential nonlinearity, Nonlinear Anal. TMA., 2010, 72(12), 4594-4601.
[30] Z. G. Zhang and Y. Y. Li, Boundedness of global solutions for a heat equation with exponential gradient source, Abstr. Appl. Anal., 2012, 2012. ID: 398049 (1-10). doi:10.1155/2012/398049.
[31] X. L. Zhu, F. Y. Li and T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pur. Appl. Anal., 2015, 14(6), 2465-2485.

[^0]: ${ }^{\dagger}$ the corresponding author. Email address: qflongfjnu@126.com(Q. Long)
 ${ }^{1}$ Department of Mathematics \& FJKLMAA, FuJian Normal University, FuZhou, 350117, China
 ${ }^{2}$ Department of Mathematics, Yunnan Nationalities University and Yunnan Normal University, 650031, 650092, China
 *The authors were supported by National Nature Science Foundation of China (Youth Fund) (No. 11401100), National Natural Science Foundation of China (No. 11561076, 11371091, 11161057) and the innovation group of 'Nonlinear analysis and its applications' (No. IRTL1206).

