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Abstract We consider a higher order rational difference equation. Firstly,
we skillfully give a sufficient and necessary condition for the existence and
uniqueness of the initial value problem. And then we investigate the local
stability, asymptotic behavior, periodicity and oscillation of solutions for the
difference equation. Finally, we give some numerical simulations to illustrate
our results.
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1. Introduction

Why are people interested in studying difference equations? We here would like to
put forward two strong reasons as the impetus. First, it provides us some simple and
useful mathematic models to help elucidate interesting phenomena in applications.
And second, they can kind of display some surprising complicated dynamics com-
paring with its analogue differential equations. For example, for a single species, the
simplest differential equations, with no time-delays, lead to very simple dynamics:
a familiar example is the logistic,

dN

dt
= rN(1− N

K
),

with a globally stable equilibrium point at N = K for all r > 0. But the corre-
sponding simplest difference equation

Nt+1 = Nte
r(1−NtK ),

displays intricate dynamics behavior. The phenomenon of a threefold regime of a
stable point, giving way to stable cycles of period 2n, giving way to chaotic behavior,
is a generic one which is liable to occur in any model for discrete generations with
the possibility of strongly density-dependent population growth [17,18].
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Considerable studies on difference equations have been directed to their various
dynamic behaviors [1–34]. For example, we refer to [1, 2, 4–6, 8, 14, 22, 23, 27] on
stability and global attractors, [1, 19, 20] on oscillation, [3, 7, 9, 11–13, 25, 26, 28, 29,
34] on boundary value problems and periodicity and [24, 30–33] on subharmonic
solutions and homoclinic orbits.

Consider the difference equation

xn+1 =
Axn−k

B + C
∏k
i=0 xn−i

, n = 0, 1, 2, . . . ,

with the initial conditions x−i = b−i, i = 0, 1, 2, . . . , k, where k is a nonnegative
integer, b−k, b−k+1, . . . , b0 are given k+ 1 constants, A,B,C are positive constants.

If we set xn = k+1

√
B
C yn, then the above initial value problem(IVP for short) is

translated into  yn+1 =
γyn−k

1 +
∏k
i=0 yn−i

, n = 0, 1, 2, . . . ,

y−i = a−i, i = 0, 1, 2, . . . , k,

(1.1)

where γ = A
B and a−i = k+1

√
C
B b−i, i = 0, 1, 2, . . . , k.

In this paper, we skillfully give a sufficient and necessary condition for the ex-
istence and uniqueness of solutions of IVP(1.1). And then we investigate the local
stability, asymptotic behavior, periodicity and oscillation of solutions of IVP(1.1).
Finally, we give some numerical simulations to illustrate our results.

For some special cases, IVP(1.1) has been studied in the literature, e.g., [1]
discussed the case k = 2 and [7] discussed the case k = 1.

2. Preliminaries

We first introduce some notations, definitions, and preliminary facts that will come
into play later on. Let N stand for the set of natural numbers, f : Jk+1 → J be a
continuous function, where k ∈ N and J is an interval of real numbers. Consider
the difference equation

yn+1 = f(yn, yn−1, . . . , yn−k), n ∈ N (2.1)

with initial values y−k, y−k+1, . . . , y0 ∈ J.
We say that ȳ is an equilibrium point of equation (2.1) if

ȳ = f(ȳ, ȳ, . . . , ȳ).

Let {yn}∞n=−k be a solution of equation (2.1). {yn}∞n=−k is called p-periodic
solution of equation (2.1) if

yn−k+p = yn−k, n ∈ N.

{yn}∞n=−k is called eventually p-periodic solution of equation (2.1) if there exists
n̄ ∈ N such that

yn−k+p = yn−k, n = n̄, n̄+ 1, n̄+ 2, . . . .
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Now we suppose that function f(u0, u1, . . . , uk) is continuously differentiable.
The linearized equation of equation (2.1) about the equilibrium point ȳ is

Zn+1 = a0Zn + a1Zn−1 + · · ·+ akZn−k, n ∈ N, (2.2)

where

ai =
∂f

∂ui
(ȳ, ȳ, . . . , ȳ), i = 0, 1, 2, . . . , k.

The characteristic equation of equation (2.2) is

λk+1 − a0λ
k − a1λ

k−1 − · · · − ak = 0. (2.3)

Definition 2.1. Let ȳ be an equilibrium point of equation (2.1).

(a) ȳ is called locally stable if, for every ε > 0, there exists δ > 0 such that if
y−k, y−k+1, . . . , y0 ∈ J and

0∑
i=−k

|yi − ȳ| < δ,

then
|yn − ȳ| < ε for n ≥ −k.

(b) ȳ is called locally asymptotically stable if it is locally stable and if there exists
η > 0 such that if y−k, y−k+1, . . . , y0 ∈ J and

0∑
i=−k

|yi − ȳ| < η,

then
lim
n→∞

yn = ȳ.

(c) ȳ is called a global attractor if, for y−k, y−k+1, . . . , y0 ∈ J , we have

lim
n→∞

yn = ȳ.

(d) ȳ is called globally asymptotically stable if it is locally stable and a global
attractor.

(e) ȳ is called hyperbolic if no root of equation (2.3) has modulus equal to one.
Otherwise, it is called nonhyperbolic.

(f) ȳ is called unstable if it is not locally stable.

Definition 2.2. Let ȳ be an equilibrium point of equation (2.1).

(a) A positive semicycle of the solution {yn}∞n=−k of equation (2.1) consists of a
string of terms yl, yl+1, . . . , ym, all greater than or equal to ȳ with l ≥ −k and
m ≤ +∞ such that either l = −k or l > −k and yl−1 < ȳ and either m = +∞
or m < +∞ and ym+1 < ȳ.

(b) A negative semicycle of the solution {yn}∞n=−k of equation (2.1) consists of a
string of terms yl, yl+1, . . . , ym, all less than ȳ with l ≥ −k and m ≤ +∞ such
that either l = −k or l > −k and yl−1 ≥ ȳ and either m = +∞ or m < +∞
and ym+1 ≥ ȳ.
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Definition 2.3. Let {yn}∞n=−k be a solution of equation (2.1). {yn}∞n=−k is called
nonoscillatory if there exists n̄(n̄ ≥ −k) such that either yn > ȳ or yn < ȳ for n ≥ n̄
and it is called oscillatory if it is not nonoscillatory.

The following result is useful in determining the local stability of the equilibrium
point ȳ of equation (2.1).

Lemma 2.1 (The Linearized Stability Theorem).

(i) If every root of equation (2.3) has absolute value less than one, then the equi-
librium point ȳ of equation (2.1) is locally asymptotically stable.

(ii) If at least one of the roots of equation (2.3) has absolute value greater than
one, then the equilibrium point ȳ of equation (2.1) is unstable.

3. A sufficient and necessary condition on the exis-
tence and uniqueness of solutions for IVP(1.1)

The next result provides a sufficient and necessary condition on the existence and
uniqueness of solutions for IVP(1.1).

Theorem 3.1. A sufficient and necessary condition on the existence and unique-
ness of solutions for IVP(1.1) is

k∏
i=0

a−i 6= −
1∑n
i=0 γ

i
, n ∈ N. (3.1)

Proof. Firstly, we will prove that if the solution of IVP(1.1) exists and is unique,
denotes by {yn}∞n=−k, then (3.1) is satisfied. Actually, if (3.1) is not satisfied, then
there exists n̄ ∈ N such that

k∏
i=0

a−i = − 1∑n̄
i=0 γ

i
.

It follows from (1.1) that

k∏
i=0

y1−i =
y1

y−k

k∏
i=0

a−i =
γ

1− 1∑n̄
i=0 γ

i

(− 1∑n̄
i=0 γ

i
) = − 1∑n̄−1

i=0 γ
i
.

Similarly, we can get
k∏
i=0

y2−i = − 1∑n̄−2
i=0 γ

i
.

By induction, we generally obtain

k∏
i=0

ym−i = − 1∑n̄−m
i=0 γi

,m = 0, 1, 2, . . . , n̄.

And so
k∏
i=0

yn̄−i = −1.
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This implies by (1.1) that yn̄+1 doesn’t exist, which is a contradiction. Hence (3.1)
must be satisfied.

Conversely, we will prove that if (3.1) is satisfied, then the solution of IVP(1.1)
exists and is unique. By way of contradiction, assume that the solution of IVP(1.1)
doesn’t exist, then there exists m̄ ∈ N such that

k∏
i=0

ym̄−i = −1, (3.2)

but
k∏
i=0

yn−i 6= −1, n = 0, 1, 2, . . . , m̄− 1.

By (1.1) and (3.2), we get

k∏
i=0

ym̄−i−1 =
ym̄−k−1

ym̄

k∏
i=0

ym̄−i = −
1 +

∏k
i=0 ym̄−i−1

γ
,

which yields
k∏
i=0

ym̄−i−1 = − 1

1 + γ
.

Similarly, we can get
k∏
i=0

ym̄−i−2 = − 1

1 + γ + γ2
.

By induction, we generally obtain

k∏
i=0

ym̄−i−n = − 1∑n
i=0 γ

i
, n = 0, 1, 2, . . . , m̄.

And so
k∏
i=0

a−i =

k∏
i=0

y−i = − 1∑m̄
i=0 γ

i
,

which is in contradiction with (3.1). Hence the proof is finished.

Remark 3.1. Throughout this paper, we assume that (3.1) is always satisfied. And

for convenience, set α =
∏k
i=0 a−i and

In =

{
1− γ + α(1− γn) for n ∈ N,when γ 6= 1;

1 + nα for n ∈ N,when γ = 1.

Then In 6= 0 for n ∈ N.

4. Local stability of the equilibrium points of IVP(1.1)

In this section, we investigate the local stability of the equilibrium points of IVP(1.1).
Note that IVP(1.1) has the equilibrium points ȳ = 0 and ȳ = k+1

√
γ − 1 (γ ≥ 1 when
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k is odd). Then for the equilibrium point ȳ = 0, the linearized equation associated
with IVP(1.1) is

Zn+1 = γZn−k, (4.1)

whose characteristic equation is

λk+1 − γ = 0. (4.2)

For the equilibrium point ȳ = k+1
√
γ − 1(γ ≥ 1 when k is odd). The linearized

equation associated with IVP(1.1) is

Zn+1 =

k−1∑
i=0

(
1

γ
− 1)Zn−i +

1

γ
Zn−k, (4.3)

whose characteristic equation is

λk+1 −
k−1∑
i=0

(
1

γ
− 1)λk−i − 1

γ
= 0. (4.4)

Theorem 4.1. For the equilibrium point ȳ = 0, the following statements are true.

(i) Suppose γ < 1, then ȳ = 0 is locally asymptotically stable.

(ii) Suppose γ = 1, then ȳ = 0 is nonhyperbolic.

(iii) Suppose γ > 1, then ȳ = 0 is unstable.

Proof. Note that equation (4.2) has the roots λm = k+1
√
γe

2mπ
k+1 i, m = 0, 1, 2, . . . , k,

where i =
√
−1, hence the proof follows by Definition 2.1 and Lemma 2.1.

Theorem 4.2. For the equilibrium point ȳ = k+1
√
γ − 1(γ ≥ 1 when k is odd), the

following statements are true.

(i) Suppose γ < 1, then ȳ = k+1
√
γ − 1 is unstable.

(ii) Suppose γ ≥ 1, then ȳ = k+1
√
γ − 1 is nonhyperbolic.

Proof. Note that

λk+1 −
k−1∑
i=0

(
1

γ
− 1)λk−i − 1

γ
= (λ− 1

γ
)

k∑
i=0

λk−i,

it is obviously that equation (4.4) has the roots λ0 = 1
γ , λm = e

2mπ
k+1 i, m =

1, 2, 3, . . . , k, where i =
√
−1. The proof follows by Definition 2.1 and Lemma

2.1.

5. The closed solution of IVP(1.1) and it’s conver-
gence

In this section, we seek the closed solution of IVP(1.1) and investigate it’s conver-
gence.
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Theorem 5.1. Let {yn}∞n=−k be a solution of IVP(1.1). Then

ym(k+1)+j+1 = y−k+jγ
m+1

m∏
i=0

Ii(k+1)+j

Ii(k+1)+j+1
, (5.1)

for j = 0, 1, 2, . . . , k; m ∈ N.

Proof. We will prove the conclusion by induction. By IVP(1.1), note that In +
αγnI0 = In+1 and In 6= 0, n ∈ N, we have

y1 =
γy−k

1 +
∏k
i=0 y−i

= y−kγ
1

1 + α
= y−kγ

I0
I1
,

y2 =
γy−k+1

1 +
∏k
i=0 y−i+1

=
y−k+1γ

1 + α y1

y−k

=
y−k+1γ

1 + αγ I0I1
= y−k+1γ

I1
I2
,

y3 =
γy−k+2

1 +
∏k
i=0 y−i+2

=
y−k+2γ

1 + α y1

y−k

y2

y−k+1

=
y−k+2γ

1 + αγ2 I0
I1
I1
I2

= y−k+2γ
I2
I3
.

Similarly,

yj+1 =
γy−k+j

1 +
∏k
i=0 y−i+j

=
y−k+jγ

1 + α
∏j−1
i=0

yi+1

y−k+i

=
y−k+jγ

1 + αγj
∏j−1
i=0

Ii
Ii+1

=
y−k+jγ

1 + αγj I0Ij
= y−k+jγ

Ij
Ij+1

,

for j = 1, 2, 3, . . . , k. Hence, the conclusion holds for m = 0 .
Suppose the conclusion holds for m ≤ n, then for m = n+ 1,

y(n+1)(k+1)+1 =
γyn(k+1)+1

1 +
∏k
l=0 y(n+1)(k+1)−l

=
γyn(k+1)+1

1 +
∏k
i=0 yn(k+1)+i+1

=
yn(k+1)+1γ

1 + α
∏k
i=0

yn(k+1)+i+1

yi−k

=
yn(k+1)+1γ

1 + α
∏k
i=0(

∏n
l=0

yn(k+1)+i+1−l(k+1)

yn(k+1)+i+1−(l+1)(k+1)
)

=
yn(k+1)+1γ

1 + α
∏k
i=0(γn+1

∏n
l=0

Il(k+1)+i

Il(k+1)+i+1
)

=
yn(k+1)+1γ

1 + αγ(n+1)(k+1) I0
I(n+1)(k+1)

= yn(k+1)+1γ
I(n+1)(k+1)

I(n+1)(k+1)+1
= y−kγ

n+2
n+1∏
i=0

Ii(k+1)

Ii(k+1)+1
,

y(n+1)(k+1)+2 =
γyn(k+1)+2

1 +
∏k
l=0 y(n+1)(k+1)−l+1

=
γyn(k+1)+2

1 +
∏k
i=0 yn(k+1)+i+2

=
yn(k+1)+2γ

1 + α
∏k
i=0

yn(k+1)+i+2

yi−k

=
yn(k+1)+2γ

1 + α
y(n+1)(k+1)+1

yn(k+1)+1

∏k
i=0(

∏n
l=0

yn(k+1)+i+1−l(k+1)

yn(k+1)+i+1−(l+1)(k+1)
)

=
yn(k+1)+2γ

1 + αγ
I(n+1)(k+1)

I(n+1)(k+1)+1

∏k
i=0(γn+1

∏n
l=0

Il(k+1)+i

Il(k+1)+i+1
)

=
yn(k+1)+2γ

1 + αγ(n+1)(k+1)+1 I0
I(n+1)(k+1)+1
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= yn(k+1)+2γ
I(n+1)(k+1)+1

I(n+1)(k+1)+2
= y−k+1γ

n+2
n+1∏
i=0

Ii(k+1)+1

Ii(k+1)+2
.

Similarly,

y(n+1)(k+1)+j =
γyn(k+1)+j

1 +
∏k
l=0 y(n+1)(k+1)−l+j−1

=
γyn(k+1)+j

1 +
∏k
i=0 yn(k+1)+i+j

=
yn(k+1)+jγ

1 + α
∏k
i=0

yn(k+1)+i+j

yi−k

=
yn(k+1)+jγ

1 + α
∏j−2
s=0

y(n+1)(k+1)+s+1

yn(k+1)+s+1

∏k
i=0

yn(k+1)+i+1

yi−k

=
yn(k+1)+jγ

1 + α
∏j−2
s=0 γ

I(n+1)(k+1)+s

I(n+1)(k+1)+s+1

∏k
i=0(γn+1

∏n
l=0

Il(k+1)+i

Il(k+1)+i+1
)

=
yn(k+1)+jγ

1 + αγ(n+1)(k+1)+j−1 I0
I(n+1)(k+1)+j−1

= yn(k+1)+jγ
I(n+1)(k+1)+j−1

I(n+1)(k+1)+j

= y−k+j−1γ
n+2

n+1∏
i=0

Ii(k+1)+j−1

Ii(k+1)+j
,

for j = 2, 3, . . . , k+ 1. Hence the conclusion holds for m = n+ 1, from which we get
the conclusion.

The proof of the next lemma follows by simple computations and will be omitted.

Lemma 5.1. Let {yn}∞n=−k be a solution of IVP(1.1), then the following statements
are true.

(i) Suppose α = 0, then

In =

{
1− γ for n ∈ N, when γ 6= 1;

1 for n ∈ N, when γ = 1.

(ii) Suppose α > 0, then{
In+1 < In < 0 for n ∈ N, when γ > 1;

0 < In < In+1 for n ∈ N, when γ ≤ 1.

(iii) Suppose α < 0.

(a) If γ > 1, then there exists n̄ ∈ N such that{
0 < In < In+1 for n > n̄;

In−1 < In < 0 for n ≤ n̄.

(b) If γ = 1, then there exists n̄ ∈ N such that{
In+1 < In < 0 for n > n̄;

0 < In < In−1 for n ≤ n̄.

(c) If α < γ − 1 < 0, then there exists n̄ ∈ N such that{
In+1 < In < 0 for n > n̄;

0 < In < In−1 for n ≤ n̄.
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(d) If γ − 1 ≤ α, then 0 < In+1 < In for n ∈ N.

Theorem 5.2. Let {yn}∞n=−k be a solution of IVP(1.1). Then the following state-
ments are true.

(i) Suppose γ < 1, then limn→∞ yn = 0.

(ii) Suppose γ = 1.

(a) If α = 0, then {yn}∞n=−k is a (k + 1)-periodic solution of IVP(1.1).

(b) If α 6= 0, then limn→∞ yn = 0.

(iii) Suppose γ > 1.

(a) If α = 0, then{
lim
m→∞

ym(k+1)+j+1 =∞, when y−k+j 6= 0;

ym(k+1)+j+1 = 0 for m ∈ N, when y−k+j = 0.

(b) If α < 0, then

lim
m→∞

ym(k+1)+j+1 =

{
− sgn (y−k+j) exp(ϕj), when j = j0;

sgn (y−k+j) exp(ϕj), when j 6= j0,

where ϕj = ln (|y−k+j |) +
∞∑
i=0

ln
(

Ii(k+1)+j

Ii(k+1)+j+1

)
, j = 0, 1, 2, . . . , k; j0 = n̄

mod (k + 1), n̄ satisfies In̄In̄+1 < 0.

(c) If α > 0, then

lim
m→∞

ym(k+1)+j+1 = sgn (y−k+j) exp(ϕj), j = 0, 1, 2, . . . , k,

where ϕj = ln (|y−k+j |) +
∞∑
i=0

ln
(

Ii(k+1)+j

Ii(k+1)+j+1

)
, j = 0, 1, 2, . . . , k.

Proof. (i) Suppose γ < 1. Consider the following three cases.
Case 1: α = 0. By Theorem 5.1 and Lemma 5.1, we have

ym(k+1)+j+1 = y−k+jγ
m+1

m∏
i=0

Ii(k+1)+j

Ii(k+1)+j+1
= y−k+jγ

m+1, j = 0, 1, 2, . . . , k.

Note that γ < 1, we have

lim
m→∞

ym(k+1)+j+1 = 0, j = 0, 1, 2, . . . , k,

hence
lim
n→∞

yn = 0.

Case 2: Either α > 0 or α < γ − 1. By Lemma 5.1, there exists n̄ ∈ N, such
that 0 < In

In+1
< 1 for all m(k + 1) + j + 1 > n̄, hence there exists M > 0 such that

|ym(k+1)+j+1| = |y−k+j |γm+1
m∏
i=0

Ii(k+1)+j

Ii(k+1)+j+1
< Mγm+1, j = 0, 1, 2, . . . , k.
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Since

lim
m→∞

Mγm+1 = 0,

we have

lim
m→∞

ym(k+1)+j+1 = 0, j = 0, 1, 2, . . . , k,

hence

lim
n→∞

yn = 0.

Case 3: γ − 1 ≤ α < 0. By Lemma 5.1, we have 0 < In+1 < In for all n ∈ N,
note that

γIn − In+1 = (γ − 1)(1− γ + α) ≤ 0, n ∈ N

and

lim
n→∞

ln

(
γIn
In+1

)
= ln(γ) < 0.

By (5.1) we have

lim
m→∞

ln
(
|ym(k+1)+j+1|

)
=ln(|y−k+j |)+

∞∑
i=0

ln

(
γIi(k+1)+j

Ii(k+1)+j+1

)
=−∞, j = 0, 1, 2, . . . , k,

then

lim
m→∞

ym(k+1)+j+1 = 0, j = 0, 1, 2, . . . , k,

hence

lim
n→∞

yn = 0.

(ii) Suppose γ = 1.
(a) If α = 0, by Theorem 5.1 and Lemma 5.1, we have

ym(k+1)+j+1 = y−k+j

m∏
i=0

Ii(k+1)+j

Ii(k+1)+j+1
= y−k+j , j = 0, 1, 2, . . . , k,

namely, {yn}∞n=−k is a (k + 1)-periodic solution of IVP(1.1).
(b) If α 6= 0, by Lemma 5.1, we have

ln

(
In
In+1

)
∼ −α

1 + (n+ 1)α
, as n→∞

and
∞∑
n=0

−α
1 + (n+ 1)α

= −∞.

By (5.1) we have

lim
m→∞

ln
(
|ym(k+1)+j+1|

)
=ln (|y−k+j |)+

∞∑
i=0

ln

(
Ii(k+1)+j

Ii(k+1)+j+1

)
=−∞, j = 0, 1, 2, . . . , k,

then

lim
m→∞

ym(k+1)+j+1 = 0, j = 0, 1, 2, . . . , k,



780 Q. Wang & Q. Zhang

hence
lim
n→∞

yn = 0.

(iii) Suppose γ > 1.
(a) If α = 0, by (5.1) and Lemma 5.1, we have

ym(k+1)+j+1 = y−k+jγ
m+1

m∏
i=0

Ii(k+1)+j

Ii(k+1)+j+1
= y−k+jγ

m+1, j = 0, 1, 2, . . . , k.

Note that γ > 1, we have{
lim
m→∞

ym(k+1)+j+1 =∞, when y−k+j 6= 0;

ym(k+1)+j+1 = 0 for m ∈ N, when y−k+j = 0.

(b) If α < 0, note that

ln

(
γIn
In+1

)
∼ (γ − 1)(1− γ + α)

1− γ + α(1− γn+1)
, as n→∞

and the series
∞∑
n=0

(γ−1)(1−γ+α)
1−γ+α(1−γn+1) is convergent, hence

∞∑
n=0

ln
(
γIn
In+1

)
is convergent.

Set ϕj = ln (|y−k+j |) +
∞∑
i=0

ln
(
γIi(k+1)+j

Ii(k+1)+j+1

)
, j = 0, 1, 2, . . . , k. By (5.1) we have

lim
m→∞

ln
(
|ym(k+1)+j+1|

)
= ln (|y−k+j |) +

∞∑
i=0

ln

(
γIi(k+1)+j

Ii(k+1)+j+1

)
= ϕj . (5.2)

By Lemma 5.1, there exists n̄ ∈ N such that{
0 < In < In+1 for n > n̄;

In−1 < In < 0 for n ≤ n̄.

Let n̄ = i0(k + 1) + j0, 0 ≤ j0 ≤ k, then by (5.1) we know

sgn
(
ym(k+1)+j+1

)
= sgn

(
y−k+jγ

m+1
m∏
i=0

Ii(k+1)+j

Ii(k+1)+j+1

)

=

{
− sgn (y−k+j) for m ≥ i0, when j = j0;

sgn (y−k+j) for m ≥ i0, when j 6= j0,

from which and (5.2) we get

lim
m→∞

ym(k+1)+j+1 =

{
− sgn (y−k+j) exp(ϕj), when j = j0;

sgn (y−k+j) exp(ϕj), when j 6= j0.

(c) If α > 0, the method is similar to (b), by Lemma 5.1 we get

lim
m→∞

ym(k+1)+j+1 = sgn (y−k+j) exp(ϕj), j = 0, 1, 2, . . . , k,

where ϕj = ln (|y−k+j |) +
∞∑
i=0

ln
(
γIi(k+1)+j

Ii(k+1)+j+1

)
, j = 0, 1, 2, . . . , k.
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6. Periodicity of IVP(1.1)

Theorem 6.1. Let {yn}∞n=−k be a solution of IVP(1.1). Then {yn}∞n=−k is even-
tually (k + 1)-periodic solution of IVP(1.1) if and only if

k∏
i=0

a−i = γ − 1. (6.1)

In fact, eventually (k + 1)-periodic solution of IVP(1.1) must be (k + 1)-periodic
solution of IVP(1.1).

Proof. Let {yn}∞n=−k be a solution of IVP(1.1). Firstly, we will prove that if
{yn}∞n=−k is eventually (k+ 1)-periodic solution of IVP(1.1), then (6.1) is satisfied.

Actually, if
∏k
i=0 a−i = 0, then In = In+1, n ∈ N, by Theorem 5.1 we know

yn+1 = γyn−k, n ∈ N, note that {yn}∞n=−k is (k + 1)-periodic solution of IVP(1.1),

hence γ = 1, (6.1) is satisfied. Suppose that
∏k
i=0 a−i 6= 0, then yn 6= 0, n ∈ N. By

IVP(1.1) we know

(γ −
k∏
i=0

yn−i+1)yn−k = yn+1, n ∈ N. (6.2)

Since {yn}∞n=−k is eventually (k + 1)-periodic solution of IVP(1.1), there exists
n̄ ∈ N such that

yn+1 = yn−k, n = n̄, n̄+ 1, n̄+ 2, . . . , (6.3)

and so

yn̄+1 = yn̄−k. (6.4)

Combing (6.2) with (6.4), we get

k∏
i=0

yn̄−i+1 = γ − 1. (6.5)

Combing (6.5) with (6.4), we get

k∏
i=0

yn̄−i = γ − 1. (6.6)

Substituting (6.6) into (6.2) we get

yn̄ = yn̄−k−1. (6.7)

Similarly, from (6.7) we can get

yn̄−1 = yn̄−k−2.

By induction, we generally obtain

yn+1 = yn−k, n = 0, 1, 2, . . . , n̄− 1. (6.8)
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From (6.8) we know y1 = y−k, combing with (1.1) we get

k∏
i=0

a−i =

k∏
i=0

y−i = γ − 1,

namely (6.1) is satisfied.
Conversely, we will prove that if (6.1) is satisfied, then the solution {yn}∞n=−k

of IVP(1.1) is eventually (k + 1)-periodic. By IVP(1.1) we know

y1 =
γy−k

1 +
∏k
i=0 a−i

= y−k.

Note that
∏k
i=0 y−i+1 =

∏k
i=0 y−i = γ−1, by IVP(1.1) we can also get y2 = y−k+1.

By induction, one can get yn+1 = yn−k, n ∈ N. Hence {yn}∞n=−k is a (k+1)-periodic
solution of IVP(1.1). Of course {yn}∞n=−k is eventually (k + 1)-periodic solution of
IVP(1.1).

7. Oscillation behavior

In this section, we investigate the oscillation of the solution of IVP(1.1).

Theorem 7.1. Suppose α = 0, then the solution {yn}∞n=−k of IVP(1.1) is oscilla-
tory about ȳ = 0.

Proof. Suppose α = 0, then by Lemma 5.1 we know In
In+1

= 1, n ∈ N, hence by

Lemma 5.1 we have

ym(k+1)+j+1 = y−k+jγ
m+1, (7.1)

for j = 0, 1, 2, . . . , k; m ∈ N.
Since α =

∏k
i=0 y−i = 0, there exists i0(0 ≤ i0 ≤ k) such that y−k+i0 = 0, by

(7.1) we have

ym(k+1)+i0+1 = y−k+i0γ
m+1 = 0, m = 0, 1, 2, . . . ,

hence {yn}∞n=−k is oscillatory about ȳ = 0.

Theorem 7.2. The following statements are true.

(i) Suppose α > 0, then {yn}∞n=−k is positive(negative when k is odd) or {yn}∞n=−k
oscillates about ȳ = 0 with negative semicycles of length at most 2bk2 c, where
b·c is floor function.

(ii) Suppose γ − 1 ≤ α < 0, then {yn}∞n=−k is negative(when k is even) or
{yn}∞n=−k oscillates about ȳ = 0 with negative semicycles of length at most

2bk+1
2 c − 1, where b·c is floor function.

Proof. Suppose either α > 0 or γ− 1 ≤ α < 0, by Lemma 5.1, we know In
In+1

> 0,

n ∈ N, hence by (5.1) we have

sgn(ym(k+1)+j+1) = sgn

(
y−k+jγ

m+1
m∏
i=0

Ii(k+1)+j

Ii(k+1)+j+1

)
= sgn(y−k+j),
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for j = 0, 1, 2, . . . , k; m ∈ N.
That is, each subsequence {ym(k+1)+j+1}∞m=−1, j = 0, 1, 2, . . . , k preserves sign.

It follows that, if y−k+j > 0(respectively, y−k+j < 0), j = 0, 1, 2, . . . , k, then
{ym(k+1)+j+1}∞m=0 is positive(respectively, negative).

(i) If α > 0, then either {yn}∞n=−k is positive(negative when k is odd) or
{yn}∞n=−k oscillates about ȳ = 0 with negative semicycles of length at most k − 1
when k is odd, {yn}∞n=−k oscillates about ȳ = 0 with negative semicycles of length
at most k when k is even, that means that {yn}∞n=−k oscillates about ȳ = 0 with

negative semicycles of length at most τ, where τ = 2bk2 c, b·c is floor function.
(ii) If γ − 1 ≤ α < 0, then {yn}∞n=−k is negative(when k is even) or {yn}∞n=−k

oscillates about ȳ = 0 with negative semicycles of length at most k when k is odd,
{yn}∞n=−k oscillates about ȳ = 0 with negative semicycles of length at most k − 1
when k is even, that means that {yn}∞n=−k oscillates about ȳ = 0 with negative

semicycles of length at most τ, where τ = 2bk+1
2 c − 1, b·c is floor function.

Theorem 7.3. Suppose either α < 0 ≤ γ − 1 or α < γ − 1 < 0, if there exist
j0(0 ≤ j0 ≤ k) and n̄ ∈ N such that

In =

{
1− γ + α(1− γn), n ∈ N, when γ 6= 1,

1 + nα, n ∈ N, when γ = 1,

y−k+j

{
< 0 for j = j0,

> 0 for j 6= j0,

and
In
In+1

{
< 0 for n = n̄,

> 0 for n 6= n̄,

where j0 and n̄ satisfy (n̄− j0 − 1) mod (k+ 1) = 0. Then {yn}∞n=−k is eventually
positive; Otherwise, {yn}∞n=−k is oscillatory about ȳ = 0.

Proof. Suppose either α < 0 ≤ γ − 1 or α < γ − 1 < 0, then by Lemma 5.1 there
exists n̄ ∈ N such that In̄

In̄+1
< 0, In

In+1
> 0 for n 6= n̄. Hence

sgn
(
ym(k+1)+j+1

)
= sgn

(
y−k+jγ

m+1
m∏
i=0

Ii(k+1)+j

Ii(k+1)+j+1

)

=

{
− sgn (y−k+j) , when (m(k + 1) + j + 1− n̄) mod (k + 1) = 0,

sgn (y−k+j) , when (m(k + 1) + j + 1− n̄) mod (k + 1) 6= 0,

for m(k + 1) + j + 1 ≥ n̄.
If there exists j0(0 ≤ j0 ≤ k) such that

y−k+j

{
< 0 for j = j0,

> 0 for j 6= j0,

and (n̄− j0 − 1) mod (k + 1) = 0.
Then

sgn
(
ym(k+1)+j+1

)
=

{
− sgn (y−k+j) , when j = j0,

sgn (y−k+j) , when j 6= j0,
= 1
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for m(k+1)+j+1 ≥ n̄. Hence {yn}∞n=−k is eventually positive; Otherwise, {yn}∞n=−k
is oscillatory about ȳ = 0.

8. Numerical results

In this section, we give a few numerical results for some special values of the pa-
rameters. We take k = 3 and k = 4 in IVP(1.1).

Case 1: γ < 1.
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Figure 1. The case γ < 1. (A) yn+1 =
0.8yn−3

1+
∏3
i=0

yn−i
, (y1, y2, y3, y4) = (−4, 5,−3,−6). (B) yn+1 =

0.85yn−4

1+
∏4
i=0

yn−i
, (y1, y2, y3, y4, y5) = (6,−3, 3, 5,−2).

Case 2: γ = 1, α = 0.
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Figure 2. The case γ = 1, α = 0. (A) yn+1 =
yn−3

1+
∏3
i=0

yn−i
, (y1, y2, y3, y4) = (−3, 4, 0,−5). (B)

yn+1 =
yn−4

1+
∏4
i=0

yn−i
, (y1, y2, y3, y4, y5) = (5,−1, 3,−5, 0).

Case 3: γ = 1, α 6= 0.
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Figure 3. The case γ = 1, α 6= 0. (A) yn+1 =
yn−3

1+
∏3
i=0

yn−i
, (y1, y2, y3, y4) = (14, 20,−7,−5). (B)

yn+1 =
yn−4

1+
∏4
i=0

yn−i
, (y1, y2, y3, y4, y5) = (7,−2, 9,−6, 3).
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Case 4: γ > 1, α = 0.
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Figure 4. The case γ > 1, α = 0. (A) yn+1 =
2yn−3

1+
∏3
i=0

yn−i
, (y1, y2, y3, y4) = (5, 0,−3, 2). (B)

1.2yn+1 =
yn−4

1+
∏4
i=0

yn−i
, (y1, y2, y3, y4, y5) = (−3, 5, 2, 0,−3).

Case 5: γ > 1, α < 0.
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Figure 5. The case γ > 1, α < 0. (A) yn+1 =
1.4yn−3

1+
∏3
i=0

yn−i
, (y1, y2, y3, y4) = (−8, 9,−4,−6). (B)

yn+1 =
1.2yn−4

1+
∏4
i=0

yn−i
, (y1, y2, y3, y4, y5) = (−6, 3, 1,−4,−3).

Case 6: γ > 1, α > 0.
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Figure 6. The case γ > 1, α > 0. (A) yn+1 =
1.2yn−3

1+
∏3
i=0

yn−i
, (y1, y2, y3, y4) = (−12, 10, 4,−9). (B)

yn+1 =
1.7yn−4

1+
∏4
i=0

yn−i
, (y1, y2, y3, y4, y5) = (−7, 5, 1,−4, 3).
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